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Abstract. Myers and Shelat (FOCS 2009) showed how to convert a cho-
sen ciphertext secure (CCA secure) PKE scheme that can encrypt only
1-bit plaintexts into a CCA secure scheme that can encrypt arbitrarily
long plaintexts (via the notion of key encapsulation mechanism (KEM)
and hybrid encryption), and subsequent works improved efficiency and
simplicity. In terms of efficiency, the best known construction of a CCA
secure KEM from a CCA secure 1-bit PKE scheme, has the public key
size Ω(k) · |pk| and the ciphertext size Ω(k2) · |c|, where k is a security
parameter, and |pk| and |c| denote the public key size and the ciphertext
size of the underlying 1-bit scheme, respectively.
In this paper, we show a new CCA secure KEM based on a CCA secure
1-bit PKE scheme which achieves the public key size 2 · |pk| and the
ciphertext size (2k + o(k)) · |c|. These sizes are asymptotically optimal
in the sense that they are the same as those of the simplest “bitwise-
encrypt” construction (seen as a KEM by encrypting a k-bit random
session-key) that works for the chosen plaintext attack and non-adaptive
chosen ciphertext attack settings. We achieve our main result by develop-
ing several new techniques and results on the “double-layered” construc-
tion (which builds a KEM from an inner PKE/KEM and an outer PKE
scheme) by Myers and Shelat and on the notion of detectable PKE/KEM
by Hohenberger, Lewko, and Waters (EUROCRYPT 2012).

1 Introduction

1.1 Background and Motivation

In this paper, we revisit the problem of how to construct a chosen ciphertext se-
cure (CCA2, or just CCA) public key encryption (PKE) scheme that can encrypt
plaintexts of arbitrary length from a CCA secure PKE scheme whose plaintext
space is only 1-bit. (Hereafter, we call a PKE scheme whose plaintext space is
{0, 1}n an n-bit PKE scheme.) It is well-known that if we only consider cho-
sen plaintext attack (CPA) and non-adaptive chosen ciphertext attack (CCA1)
settings, then the simple(st) “bitwise-encrypt” construction suffices, in which a
plaintext is encrypted bit-by-bit (under the same public key) by a 1-bit PKE
scheme, and the concatenation of all ciphertexts is regarded as a ciphertext of the



construction. However, for the CCA setting, until recently, the simple question
of how (and even whether) one can realize such a “1-bit-to-multi-bit” conversion
had been left open.

This open problem was resolved affirmatively by Myers and Shelat [20]. They
actually constructed a CCA secure key encapsulation mechanism (KEM) which
encrypts a random session-key, and can be used together with a CCA secure
symmetric key encryption (SKE) scheme to achieve a full-fledged CCA secure
PKE scheme via hybrid encryption [8]. One of the important steps of the ap-
proach by Myers and Shelat is to consider the “double-layered” construction of
a KEM from an “inner” PKE scheme and an “outer” PKE scheme, where the
inner ciphertext encrypts a plaintext (or a session-key if one wants to construct
a KEM) and a randomness used for outer encryption, and the outer ciphertext
encrypts the inner ciphertext using the randomness encrypted in the inner ci-
phertext. To decrypt a ciphertext, one first decrypts the outer ciphertext, and
then the resulting inner ciphertext, to recover a plaintext and a randomness (for
outer encryption), and the plaintext is output if the re-encryption of the inner
ciphertext using the recovered randomness results in the outer ciphertext. My-
ers and Shelat showed that if the outer scheme that is built from a 1-bit scheme
satisfies the security notion called “unquoted CCA” (UCCA) security (which is
a weaker security notion than CCA security that can be considered only for a
PKE scheme constructed based on 1-bit PKE scheme), and the inner scheme
satisfies “1-wise non-malleability against UCCA” (which has a similar flavor to
1-bounded CCA security [7]), the resulting construction achieves CCA security.

The efficiency and simplicity of the construction by Myers and Shelat were
improved by Hohenberger, Lewko, and Waters [16]. Specifically, they introduced
the notion of a detectable PKE scheme, which is a PKE scheme that has an effi-
ciently computable predicate F as part of the syntax, and whose security notions
are defined with respect to this F. In particular, they introduced the notions of
detectable CCA (DCCA) security (which is a relaxed variant of CCA security)
and unpredictability, and considered a construction which has a mixed flavor of
the double-layered construction of Myers and Shelat, and the double (parallel)
encryption of Naor and Yung [21] (this construction has two PKE schemes for
the outer encryption). They showed that if the “inner” PKE scheme satisfies
DCCA security and unpredictability, and the “outer” PKE schemes are CPA se-
cure and 1-bounded CCA secure [7], respectively, then the resulting PKE scheme
is CCA secure. They also showed that the “bitwise-encrypt” construction based
on a CCA secure 1-bit PKE scheme yields a DCCA secure and unpredictable de-
tectable PKE scheme for long plaintexts, and thus achieves a 1-bit-to-multi-bit
conversion for CCA security. (In their construction, in fact a 1-bit scheme sat-
isfying only DCCA security and unpredictability suffices as the building block.)
The efficiency of the construction in [16] was further improved by Matsuda and
Hanaoka [19] using the ideas and techniques of hybrid encryption.

Despite the elegant ideas employed in [20, 16, 19], however, even in the best
construction of [19] (in terms of efficiency), the public key size is Ω(k) · |pk| and
the ciphertext size (when seen as a KEM) is Ω(k2) · |c|, where k is a security
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parameter, and |pk| and |c| denote the public key size and the ciphertext size of
a CCA secure 1-bit scheme, respectively. On the other hand, for constructing a
CPA (resp. CCA1) secure KEM from a CPA (resp. CCA1) secure 1-bit scheme,
one can use the above mentioned bitwise-encrypt construction in which one
encrypts a k-bit random string and regards this as a session-key of a KEM.
Note that the public key size of this KEM is just |pk| and the ciphertext size is
k · |c|. Compared to this simplest and most straightforward method, in the CCA
setting, the known constructions have the public key size and the ciphertext size
that are at least Ω(k) times larger.

Motivated by the above, in this paper we study the following question: How
efficient can a 1-bit-to-multi-bit conversion for CCA security be?

1.2 Our Contributions

As our main result, we show a new 1-bit-to-multi-bit construction for the CCA
setting, i.e., a construction of a CCA secure KEM based on a CCA secure 1-bit
PKE scheme, with much better asymptotic efficiency than the existing construc-
tions. Specifically, our construction achieves the public key size 2 · |pk|, and the
ciphertext size (2k + o(k)) · |c| = O(k) · |c|, which are asymptotically optimal in
the sense that these sizes are (except for a constant factor) the same as for the
simple bitwise-encrypt construction for CPA and CCA1 security.

We achieve our main result by developing several new techniques and results
on the double-layered construction of Myers and Shelat [20] and on the notion
of detectable PKE/KEM by Hohenberger, Lewko, and Waters [16]. Our tech-
nical contributions in this paper lie in (1) coming up with appropriate security
notions for detectable PKE/KEM so that we can conduct CCA security proofs
for the double-layered construction using the language of detectable PKE/KEM
(without addressing the details of how each of the inner and outer schemes is
constructed) which we believe helps us understanding our proposed construction
(and more generally the double-layered approach itself) in a clearer manner, and
(2) showing how one can realize the inner and outer schemes (satisfying the re-
quirements of our security proofs) from a CCA secure 1-bit PKE scheme, so that
the resulting CCA secure KEM achieves asymptotically optimal efficiency with
respect to the bitwise-encrypt construction.

Below we explain more technical details of our results.

New Security Notions for Detectable PKE/KEM. In Section 3, we introduce new
security notions for detectable PKE and detectable KEMs. Recall that DCCA
security of [16] is defined like ordinary CCA security, except that in the secu-
rity experiment, the decryption oracle is restricted according to the predicate F
(which is a part of the syntax of detectable PKE/KEM): an adversary is not
allowed to query a ciphertext c such that F(c∗, c) = 1 where c∗ is the challenge
ciphertext. The first notion we introduce is a weak form of non-malleability [12,
3, 22] under DCCA that we simply name wNM-DCCA security, which is defined like
DCCA security except that we allow an adversary to make one “unrestricted”
decryption query (which is not affected by the restriction of F). We also introduce
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an even weaker variant, which is a “replayable”-CCA-analogue [4] of wNM-DCCA
security, which we call wRNM-DCCA security, that is defined like wNM-DCCA secu-
rity except that the final unrestricted decryption query (and only this query) is
answered like a decryption query in the replayable CCA security.

We also introduce a new security notion for detectable PKE/KEM that we
call randomness-inextractability. Recall that a DCCA secure detectable PKE
scheme is meaningful only if it also satisfies another security notion that pre-
vents the predicate F from outputting 1 for every input (which makes DCCA
security equivalent to CPA security). Unpredictability [16] is one example of
a security notion that prevents DCCA security from being trivial, which en-
sures that a ciphertext c satisfying F(c∗, c) = 1 is hard to find without seeing
c∗. Randomness-inextractability is another such security notion for detectable
PKE: Informally, it requires that if an adversary is given a ciphertext c∗ (that
encrypts a plaintext m of the adversary’s choice), it cannot come up with a pair
of a (possibly different) plaintext m′ and randomness r′ such that F(c∗, c′) = 1,
where c′ is the encryption of m′ generated using the randomness r′. We also
show that randomness-inextractability and unpredictability do not imply each
other, even if we combine one notion with wNM-DCCA security. See Section 3 for
the details.

New CCA Security Proofs for the Double-Layered Construction Based on De-
tectable PKE/KEM. In Section 4, we show our main technical results: two
new CCA security proofs for the double-layered construction of Myers and She-
lat [20]. Our first security proof shows that if the inner KEM is a detectable
KEM satisfying DCCA security and unpredictability, and the outer PKE scheme
is a detectable PKE scheme satisfying wRNM-DCCA security and randomness-
inextractability, then the KEM obtained from the double-layered construction is
CCA secure. Our main result with asymptotically optimal efficiency is obtained
from this security proof.

Our second security proof shows that if the inner KEM is wNM-DCCA secure
and unpredictable, and the outer PKE scheme is DCCA secure and randomness-
inextractable, then the KEM obtained from the double-layered construction is
CCA secure. Interestingly, this security proof can be seen as a generalization of
Myers-Shelat’s original security proof of their construction [20].

Both of the security proofs have similar flavors to the security proofs of [16,
19]. Namely, DCCA security of the inner KEM guarantees that a session-key
(hidden in the challenge ciphertext) is random as long as an adversary does
not submit a “dangerous” decryption query (which are defined with respect
to the predicate F from the inner detectable KEM), and we then upperbound
the probability that the adversary comes up with such “dangerous” decryption
queries to be negligible by the combination of the security properties of the
outer PKE scheme and the inner KEM. However, unlike the previous works [16,
19] that use a “detectable” primitive only for the inner scheme, we employ a
detectable primitive also for the outer scheme. Consequently, we have to deal
with two types of “dangerous” decryption queries in the security proofs: an
“inner-dangerous” query and an “outer-dangerous” query, which, as the names
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indicate, are related to the inner KEM and the outer PKE scheme, respectively.
Our two security proofs differ in the treatment of the inner- and outer-dangerous
queries, which lead to the difference between which of the inner KEM or the outer
PKE scheme needs to be “non-malleable” under DCCA. In both of the proofs,
randomness-inextractability of the outer PKE scheme is used to show that the
adversary’s outer-dangerous queries do not help.

We also show an evidence that indicates that our reliance on “non-malleability”
under DCCA for either the inner KEM or the outer PKE scheme would be un-
avoidable, by showing a counterexample for the double-layered construction that
does not achieve CCA security if the inner and outer schemes only satisfy DCCA
security, unpredictability, and randomness-inextractability. For the details, see
Section 4.

A Detectable PKE Scheme Satisfying wRNM-DCCA Security and Randomness-
Inextractability from CCA Secure 1-bit PKE. In Section 5, we show a construc-
tion of a detectable PKE scheme satisfying wRNM-DCCA security and randomness-
inextractability, using a CCA secure 1-bit PKE scheme and a non-malleable code
[13] for “bitwise-tampering and bit-level permutations” [2, 1]. The idea of this
construction is based on the recent result by Agrawal et al. [2] who showed how
to transform a 1-bit commitment scheme secure against chosen commitment at-
tacks (CCA) into a non-malleable string commitment scheme: We first encode
a plaintext by a non-malleable code, and then do “bitwise-encryption” of the
encoded value by a CCA secure 1-bit PKE scheme. (Due to its structure, we
call this construction the “Encode-then-Bitwise-Encrypt” (EtBE) construction.)
Our contribution regarding this construction is to clarify that the approach of
[2] also works well for detectable PKE as we require.

Agrawal et al. [1] recently constructed a non-malleable code for the above
mentioned class of functions with “optimal rate”, meaning that the ratio between
the length n of a codeword and the length k of a message can be made arbitrarily
close to 1 (i.e. n = k + o(k)). We employ this non-malleable code to achieve the
asymptotic efficiency of our proposed KEM.

The Proposed 1-Bit-to-Multi-Bit Conversion, and More. Our main result, i.e.
a CCA secure KEM from a CCA secure 1-bit PKE scheme that achieves op-
timal asymptotic efficiency in terms of the public key and ciphertext sizes, is
obtained by using the above mentioned detectable PKE scheme (together with
some hybrid encryption techniques) as the outer PKE scheme, and using the
bitwise-encrypt construction of a detectable KEM as the inner KEM, in the
double-layered construction, via our first security proof. In Section 6, we show
the full description of our construction. As noted above, our construction uses
only two key pairs of the underlying 1-bit PKE scheme.

Interestingly, there we also show that if a 2-bit PKE scheme can be used
instead of a 1-bit PKE scheme, then one can construct a CCA secure KEM
(with almost the same construction as our main construction) that uses only
one key pair.
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On the Necessity of Two Key Pairs. As mentioned above, our proposed KEM
from a 1-bit PKE scheme uses two key pairs of the underlying CCA secure 1-bit
PKE scheme. Given this, it is natural to ask if the number 2 of key pairs of the
underlying 1-bit scheme is optimal for 1-bit-to-multi-bit constructions for CCA
security. Although we could not answer this question affirmatively or negatively,
we show that the one-key variant of our proposed construction is vulnerable to
a CCA attack. (This result is shown in the full version.) This negative result
shows a necessity of different techniques and ideas than ours towards answering
the question. It also contrasts strikingly with our 2-bit-to-multi-bit construction
for CCA security that uses only one key pair of the underlying 2-bit scheme.

We leave it as an open problem to clarify whether one can achieve a 1-bit-
to-multi-bit conversion using only one key pair of the underlying 1-bit scheme,
or it is generally impossible.

1.3 Related Work

The double-layered construction [20, 16], and extension of the plaintext space
of encryption schemes based on it, have been used in several works: Lin and
Tessaro [18] showed how to turn a 1-bit PKE scheme whose correctness is not
perfect and which only satisfies weak CCA security (weak in the sense that an
adversary may have bounded but non-negligible CCA advantage), into a PKE
scheme (with a large plaintext space) satisfying ordinary CCA security, via the
construction of [16]. Dachman-Soled et al. [9] studied the notion of “enhanced”
CCA security for PKE schemes with randomness recovery property, where the
decryption oracle in the security experiment returns not only the decryption
result of a queried ciphertext but also a randomness that is consistent with the
ciphertext, and (among other things) showed that the construction of [16] can be
used to achieve a 1-bit-to-multi-bit conversion for enhanced CCA security. Most
recently, Kitagawa et al. [17] showed that a simpler variant of the double-layered
construction which does not have validity check by re-encryption in the decryp-
tion algorithm, can be used to extend the plaintext space of PKE satisfying
key-dependent message (KDM) security against CCA with respect to projection
functions (projection-KDM-CCA security).

Very recently, Coretti et al. [6] showed a 1-bit-to-multi-bit conversion for
a PKE scheme. However, the security notion considered in their construction
is so-called “self-destruct” CCA security, which is defined like ordinary CCA
security except that in the security experiment, once an adversary submits an
invalid ciphertext (which does not decrypt to a valid plaintext) as a decryption
query, the decryption oracle “self-destructs”, i.e. it will not answer to subsequent
decryption queries. This security notion is strictly weaker than ordinary CCA
security. Furthermore, in another recent work, Coretti et al. [5] considered non-
malleability under self-destruct CCA, which is also strictly weaker than ordinary
CCA security, and showed a 1-bit-to-multi-bit conversion for a PKE scheme
satisfying this security notion. The 1-bit-to-multi-bit constructions of [6, 5] share
the same idea with Agrawal et al.’s conversion (and hence with our “outer”
PKE scheme): first encode a plaintext by a suitable non-malleable code, and
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then do bitwise encryption. The main differences between these works [6, 5] and
our “double-layered” construction are: (1) Ours achieves ordinary (full) CCA
security, while they achieve weaker security notions. (2) Our construction uses
only two key pairs of the underlying 1-bit scheme, while the constructions in [6,
5] use O(k) key pairs, of the building block 1-bit scheme. (3) The requirements
of the used non-malleable codes are all different: [6, 5] need stronger form of non-
malleability called “continuous” non-malleability [15] (and its extension), while
we only need the original definition of non-malleability in [13] that captures
“one-time” tampering.; The tampering functions with respect to which non-
malleability is considered in [6, 5] are based on bit-wise tampering (extended to
take into account continuous non-malleability), while ours requires additionally
non-malleability against bit-level permutation (as in [1, 2]).

Paper Organization. The rest of this paper is organized as follows: Section 2 re-
views the basic notation and definitions of cryptographic primitives. In Section 3,
we define new security notions for detectable PKE, and also show several facts
on them. In Section 4, we show our main technical result: new security proofs for
the “double-layered” construction. We also explain some evidence that justifies
our reliance on non-malleability under DCCA. In Section 5, we show how to
build a detectable PKE scheme satisfying our new security notions based on a
CCA secure 1-bit PKE scheme and a non-malleable code. In Section 6, we pro-
vide the full description of our proposed 1-bit-to-multi-bit construction. There
we also explain our 2-bit-to-multi-bit construction with a single key pair. We
give a comparison among 1-bit-to-multi-bit constructions in Section 7.

Due to space limitation, the proofs of the theorems and lemmas in this paper
are omitted and will be given in the full version, and we only give proof sketches
or intuitive explanations.

2 Preliminaries

In this section, we review the basic notation and the definitions for cryptographic
primitives.

Basic Notation. N denotes the set of all natural numbers. For n ∈ N, we define
[n] := {1, . . . , n}. “x← y” denotes that x is chosen uniformly at random from y
if y is a finite set, x is output from y if y is a function or an algorithm, or y is
assigned to x otherwise. If x and y are strings, then “|x|” denotes the bit-length

of x, “x∥y” denotes the concatenation x and y, and “(x
?
= y)” is defined to be

1 if x = y and 0 otherwise. “(P)PTA” stands for a (probabilistic) polynomial
time algorithm. For a finite set S, “|S|” denotes its size. If A is a probabilistic
algorithm then “y ← A(x; r)” denotes that A computes y as output by taking
x as input and using r as randomness. If furthermore O is an algorithm, then
“AO” denotes that A has oracle access to O. A function ϵ(·) : N → [0, 1] is
said to be negligible if for all positive polynomials p(k) and all sufficiently large
k ∈ N, we have ϵ(k) < 1/p(k). Throughout this paper, we use the character “k”
to denote a security parameter.
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2.1 (Detectable) Public Key Encryption

A public key encryption (PKE) scheme Π consists of the three PPTAs (PKG,
Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk)← PKG(1k) c← Enc(pk,m) m (or ⊥)← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and
c is a ciphertext of a plaintext m under pk. We say that a PKE scheme satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from PKG(1k), and all
plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Detectable PKE. In this paper, we use the notion of detectable PKE as defined in
[16]. It is a PKE scheme that has a predicate F that tests whether two ciphertexts
c and c′ are “related” in the sense that to decrypt c, the information of the
decryption result of c′ is useful (and hence, revealing the decryption result of c′

is “dangerous”). This predicate F is used to define multiple security notions of
the primitive, and hence we explicitly define it as a part of the syntax of the
primitive (this approach is also taken in [16] and [19]).

Formally, a tuple of PPTAs Π = (PKG,Enc,Dec,F) is said to be a detectable
PKE scheme if (PKG,Enc,Dec) constitutes PKE, and F is a predicate that takes
a public key pk and two ciphertexts c, c′ as input, and outputs either 0 or 1.
We require that for all k ∈ N, all public keys pk output by PKG(1k), and all
ciphertexts c output by Enc(pk, ·), we have F(pk, c, c) = 1. 1

Security Notions. Here we recall chosen ciphertext security (CCA security) for
PKE, and detectable CCA (DCCA) security and unpredictability for detectable
PKE [16].

Let ATK ∈ {CCA, DCCA}. For a (detectable) PKE scheme Π and an adversary
A = (A1,A2), consider the ATK experiment ExptATKΠ,A(k) described in Fig. 1 (left-
top). In the experiment, it is required that |m0| = |m1|, and A2 is not allowed to
submit the “prohibited” queries to the decryption oracle: If ATK = CCA, then the
prohibited query is c∗, and if ATK = DCCA, then the prohibited queries are c sat-
isfying F(pk, c∗, c) = 1. We say that a (detectable) PKE scheme Π is ATK secure
if for all PPTAs A, AdvATKΠ,A(k) := 2 · |Pr[ExptATKΠ,A(k) = 1]− 1/2| is negligible.

For a detectable PKE scheme Π (with predicate F) and an adversary A,
consider the unpredictability experiment ExptUNPΠ,A(k) described in Fig. 1 (left-
bottom). We say that a detectable PKE scheme Π is unpredictable if for all
PPTAs A, AdvUNPΠ,A(k) := Pr[ExptUNPΠ,A(k) = 1] is negligible.

1 This requirement is not explicitly defined in [16], but is actually necessary for DCCA
security to be meaningful. Without this requirement, DCCA security is unachievable,
as an adversary can submit the challenge ciphertext to the decryption oracle.
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ExptATKΠ,A(k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← AO(·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

b′ ← AO(·)
2 (st, c∗)

Return (b′
?
= b)

ExptATKΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1 )← Encap(pk)
K∗

0 ← K
b← {0, 1}
b′ ← AO(·)(pk, c∗,K∗

b )

Return (b′
?
= b)

ExptUNPΠ,A(k) :

(pk, sk)← PKG(1k)

(m, c)← AO(·)(pk)
c∗ ← Enc(pk,m)
Return F(pk, c∗, c)

ExptUNPΓ,A(k) :

(pk, sk)← KKG(1k)

c← AO(·)(pk)
(c∗,K∗)← Encap(pk)
Return F(pk, c∗, c)

ExptF-NM
C,A (k) :

(f,m0,m1, st)← A1(1
k)

b← {0, 1}
s∗ ← E(1k,mb)
s′ ← f(s∗)

m′ ← D(1k, s′)
If m′ ∈ {m0,m1} then

m′ ← same
b′ ← A2(st,m

′)

Return (b′
?
= b)

Fig. 1. The experiments for defining the security of detectable PKE (left-top/bottom),
of detectable KEM (center-top/bottom), and of an F-non-malleable code (right). In
the ATK(∈ {CCA, DCCA}) and UNP experiments for PKE (resp. KEM), O(·) is the de-
cryption oracle Dec(sk, ·) (resp. decapsulation oracle Decap(sk, ·)). In the CCA (resp.
DCCA) experiment for PKE, A2 is not allowed to query c∗ (resp. ciphertexts c such that
F(pk, c∗, c) = 1). Similar restrictions apply to A in the CCA/DCCA experiment for KEMs.

2.2 (Detectable) Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) Γ consists of the three PPTAs (KKG,
Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or ⊥)← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair
that defines a session-key space K, and c is a ciphertext of a session-key K ∈ K
under pk. We say that a KEM satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from KKG(1k) and all ciphertext/session-key pairs (c,K) output
from Encap(pk), it holds that Decap(sk, c) = K.

We also define a KEM-analogue of detectable PKE, which we call detectable
KEM, as a KEM that has an efficiently computable predicate F whose interface
is exactly the same as that of detectable PKE.

Security Notions. Here we review the definition of CCA security for a KEM, and
the definitions of DCCA security and unpredictability for a detectable KEM.

Let ATK ∈ {CCA, DCCA}. For a (detectable) KEM Γ and an adversary A,
consider the ATK experiment ExptATKΓ,A(k) described in Fig. 1 (center-top). In the
experiment, A is not allowed to submit the “prohibited” queries that are defined
in the same way as those for the PKE case. We say that a (detectable) KEM Γ
is ATK secure if for all PPTAs A, AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1]− 1/2| is
negligible.

For a detectable KEM Γ (with predicate F) and an adversary A, consider the
unpredictability experiment ExptUNPΓ,A(k) described in Fig. 1 (center-bottom). We
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say that a detectable KEM Γ is unpredictable if for all PPTAs A, AdvUNPΓ,A(k) :=

Pr[ExptUNPΓ,A(k) = 1] is negligible.

2.3 Non-malleable Codes

Here, we recall the definition of non-malleable codes [13].

A code C with message length κ = κ(k) and codeword length n = n(k)
(called also an (n, κ)-code) consists of the two PPTAs (E,D): E is the encoding
algorithm that takes 1k and a message m ∈ {0, 1}κ as input, and outputs a
codeword c ∈ {0, 1}n.; D takes 1k and c as input, and outputs m ∈ {0, 1}κ or
the special symbol ⊥ indicating that c is invalid. We require for all k ∈ N and
all messages m ∈ {0, 1}κ, it holds that D(1k,E(1k,m)) = m.

Non-malleability. Non-malleability for codes, formalized by Dziembowski et al.
[13], is defined with respect to a class of tampering functions F . Intuitively, non-
malleability guarantees that if an encoding c of a message m is modified into c′ =
f(c) by a function f ∈ F , then the decoded value m′ of c′ is either the original
message m itself, or a completely unrelated message (or ⊥). Here we recall the
indistinguishability-based definition which is most convenient for us to work
with, which is called the “alternative-non-malleability” in [14, Definition A.1].
It was shown in [14] that this definition is equivalent to the original simulation-
based definition for codes whose message length κ is superlogarithmic in k.

Let n, κ : N → N be positive polynomials of k such that n(k) ≥ κ(k). For
an (n, κ)-code C = (E,D), a class of functions F = {Fk : {0, 1}k → {0, 1}k}k∈N,
and an adversary A = (A1,A2), consider the F-NM experiment ExptF-NM

C,A (k)
described in Fig. 1 (right). In the experiment, “same” is the special symbol
indicating that the decoded message m′ was either m0 or m1, and it is required
that f ∈ Fn and |m0| = |m1| = κ(k). We say that C is non-malleable with
respect to the function class F (F-non-malleable, for short) if for all PPTAs2 A,
AdvF-NM

C,A (k) := 2 · |Pr[ExptF-NM
C,A (k) = 1]− 1/2| is negligible. We also say that C is

an F-non-malleable code.

Classes of Tampering Functions. In this paper, we consider the following classes
of functions.

Composition of “Bitwise Tampering” and “Bit-Level Permutation” P:
Let set, reset, forward, toggle : {0, 1} → {0, 1} be the functions over a bit,
defined by set(x) := 1, reset(x) := 0, forward(x) := x, and toggle(x) :=
1− x. We define FBIT := {set, reset, forward, toggle}.
Let P = {Pn}n∈N be the class of functions which first perform “bitwise
tampering” to an input, followed by a “bit-level permutation.” Namely, Pn

is the set of all functions f : {0, 1}n → {0, 1}n that can be described by

2 The original definition [13] considered security against computationally unbounded
adversaries. In this paper, however, we only need security against PPTAs.
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using n bitwise-tampering functions f1, . . . , fn ∈ FBIT and a permutation
π : [n]→ [n], as follows:

x = (x1∥ . . . ∥xn)
f7→

(
fπ−1(1)(xπ−1(1)) ∥ . . . ∥ fπ−1(n)(xπ−1(n))

)
.

“Bit-Fixing” or “Quoting an Input without Duplicated Positions” Q:
Let one : {0, 1}n → {0, 1} and zero : {0, 1}n → {0, 1} be the constant func-
tions that output 1 and 0 for any n-bit inputs, respectively. Furthermore, for
j ∈ [n], let quotej : {0, 1}n → {0, 1} be the “quoting” function that always
outputs the j-th bit of its input.

Let Q = {Qn}n∈N be the class of functions each of whose output bits is
either a “fixed value” or “quoting the input without duplicated positions.”
More formally, Qn is the set of all functions f : {0, 1}n → {0, 1}n that
can be decomposed to n functions f1, . . . , fn : {0, 1}n → {0, 1} so that
f(x) = (f1(x)∥ . . . ∥fn(x)) for all x ∈ {0, 1}n, and furthermore it holds that
for every i ∈ [n]:

fi ∈ {one, zero} ∪
(
{quotej}j∈[n]\{fj}j∈[i−1]

)
.

Note that the above guarantees that there exist no indices i, i′, j ∈ [n] such
that fi = fi′ = quotej and i ̸= i′. We call this condition the no duplicated
quoting condition.

Agrawal et al. [1] showed the following elegant result, which is crucial for the
efficiency of our proposed KEM:

Lemma 1. ([1]) There exists an explicit (n, k)-code such that (1) it is P-non-
malleable, and (2) its “rate”, defined by k/n, asymptotically approaches to 1 as
k increases (and hence n = k + o(k)).

Furthermore, the following is implicitly used by Agrawal et al. [2], and also is
useful for our purpose. (Although it is almost straightforward from the definitions
of P and Q, we will show its formal proof in the full version.)

Lemma 2. For all n ∈ N, Qn ⊆ Pn. (This holds even if FBIT does not contain
toggle.) Hence, any P-non-malleable code is also Q-non-malleable.

2.4 Other Standard Primitives

In this paper we also use a pseudorandom generator (PRG) G, and a CCA se-
cure deterministic symmetric key encryption (SKE) E = (SEnc,SDec): For no-
tation, encryption of a plaintext m using a key K ∈ {0, 1}k is denoted by
“c ← SEnc(K,m)” where c is a ciphertext, and decryption of c using K is
denoted by “m ← SDec(K, c)” where m could be the invalid symbol ⊥. Since
their security definitions are standard, we omit them in the proceedings version.
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3 New Security Notions for Detectable PKE and KEM

In this section, we introduce new security notions for detectable PKE: wNM-DCCA
security and wRNM-DCCA security in Section 3.1, and randomness-inextractability
in Section 3.2. We also show some useful facts regarding the new security notions
in Section 3.3.

We also define wNM-DCCA security and randomness-inextractability for de-
tectable KEMs. Since their definitions are straightforward KEM-analogues of
those for detectable PKE in this section, we omit them here and formally pro-
vide them in the full version.

3.1 “Weak” Non-malleability under DCCA and Its “Replayable”
Variant

Here, we define a “weak” form of non-malleability against DCCA for detectable
PKE, which we call wNM-DCCA security, that captures the intuition that a DCCA

adversary who works in the DCCA experiment cannot come up with a cipher-
text that is “meaningfully related” to the challenge ciphertext. Recall that the
original definitions of non-malleability for PKE [12, 3, 22] ensure that an adver-
sary cannot come up with even a vector of ciphertexts that are “meaningfully
related” to the challenge ciphertext, while our notion here only requires that
it cannot come up with only a single related ciphertext. Technically, following
the formalizations in [3, 22, 20], we formalize wNM-DCCA security by modifying
the original DCCA experiment (in which originally the usage of the decryption
oracle is restricted according the predicate F of detectable PKE), so that at the
end of the experiment an adversary is allowed to make a single “unrestricted”
decryption query, regardless of F. Thus, it is like “1-bounded” CCA security [7],
albeit an adversary has additionally access to DCCA decryption oracle. Myers
and Shelat [20] defined a security notion for PKE-to-PKE constructions called
“q-wise-non-malleability under UCCA.” Our definition of wNM-DCCA security is
a detectable-PKE-analogue of their 1-wise-non-malleability.

We also define a weaker variant of wNM-DCCA security, in the security ex-
periment of which the final “unrestricted” decryption query is answered like a
decryption query in the “replayable” CCA experiment [4], namely, if the decryp-
tion result is one of the challenge plaintexts that an adversary uses, then the
adversary is only informed so and is not given the actual decryption result. Due
to the lack of a better name, we call it wRNM-DCCA security (where R stands for
“Replayable”).

Fomally, for a detectable PKE scheme Π = (PKG,Enc,Dec,F) and an adver-
sary A = (A1,A2,A3), we define the wNM-DCCA experiment ExptwNM-DCCAΠ,A (k) and

the wRNM-DCCA experiment ExptwRNM-DCCAΠ,A (k) described in Fig. 2 (left and center,
respectively). In both of the experiments, it is required that |m0| = |m1|, and
as in the DCCA experiment, A2 is not allowed to submit a decryption query c
satisfying F(pk, c∗, c) = 1 to the decryption oracle. The adversary’s final “unre-
stricted” decryption query is captured by the ciphertext c′ that is finally output
by A2, and naturally it is required that c′ ̸= c∗. However, we allow c′ to be such
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ExptwNM-DCCAΠ,A (k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← AO(·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

(c′, st′)← AO(·)
2 (st, c∗)

m′ ← Dec(sk, c′)
b′ ← A3(st

′,m′)

Return (b′
?
= b).

ExptwRNM-DCCAΠ,A (k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← AO(·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

(c′, st′)← AO(·)
2 (st, c∗)

m′ ← Dec(sk, c′)
If m′ ∈ {m0,m1} then

m′ ← same
b′ ← A3(st

′,m′)

Return (b′
?
= b).

ExptR-InextΠ,A (k) :

(m, st)← A1(1
k)

(pk, sk)← PKG(1k)
c∗ ← Enc(pk,m)

(m′, r′)← AO(·)
2 (st, pk, c∗)

c′ ← Enc(pk,m′; r′)
Return F(pk, c∗, c′).

Fig. 2. Security experiments for wNM-DCCA security (left), wRNM-DCCA security (center),
and randomness-inextractability (right). In the experiments, O(·) is the decryption
oracle Dec(sk, ·), and in the wNM/wRNM-CCA experiments, the decryption oracle for A2

has the same restriction as in the DCCA experiment.

that F(pk, c∗, c′) = 1. In the wRNM-DCCA experiment, “same” is the special symbol
(which is distinguished from ⊥) that indicates that Dec(sk, c′) ∈ {m0,m1}.

Definition 1. We say that a detectable PKE scheme Π is wNM-DCCA secure if
for all PPTAs A, AdvwNM-DCCAΠ,A (k) := 2·|Pr[ExptwNM-DCCAΠ,A (k) = 1]−1/2| is negligible.
We define wRNM-DCCA security analogously.

3.2 Randomness-Inextractability

Here we introduce another security notion for detectable PKE that we call
randomness-inextractability. Roughly, this security notion ensures that given the
challenge ciphertext c∗ (which is an encryption of a plaintext of an adversary’s
choice), an adversary cannot come up with a pair (m′, r′) of a plaintext and a
randomness such that F(pk, c∗,Enc(pk,m′; r′)) = 1. If the predicate F(pk, c∗, c′)

tests the equality (c∗
?
= c′), then this notion exactly demands that the random-

ness used in c∗ cannot be recovered, and hence we use the name “randomness-
inextractability” (although we allow more general predicates for F).

Formally, for a detectable PKE scheme Π = (PKG,Enc,Dec,F) and an ad-
versary A = (A1,A2), consider the R-Inext experiment described in Fig. 2
(right).

Definition 2. We say that a detectable PKE scheme Π satisfies randomness-
inextractability if for all PPTAs A, AdvR-InextΠ,A (k) := Pr[ExptR-InextΠ,A (k) = 1] is
negligible.

Remark. We could have defined the randomness-inextractability experiment so
that we let an adversary choose its challenge message m after given a public
key pk. This makes the security stronger. However, we do not need this stronger
variant for our results.
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PKGHYB(1
k) :

(pk, sk)← PKG(1k)
Return (pk, sk).

EncHYB(pk,m;R) :
Parse R as (r,K)

∈ {0, 1}ℓ × {0, 1}k.
c← Enc(pk,K; r)
ĉ← SEnc(K,m)
C ← (c, ĉ)
Return C.

DecHYB(sk, C) :
(c, ĉ)← C
K ← Dec(sk, c)
If K = ⊥ then

return ⊥.
m← SDec(K, ĉ)
Return m.

FHYB(pk, C
∗, C′) :

(c∗, ĉ∗)← C∗

(c′, ĉ′)← C′

b← F(pk, c∗, c′)
Return b.

Fig. 3. Hybrid encryption ΠHYB for detectable PKE.

3.3 Useful Facts

Stretching a Session-Key. As in the case of ordinary KEMs, for a detectable
KEM, session-keys can be stretched by using a PRG. More formally, let Γ =
(KKG,Encap,Decap,F) be a detectable KEM whose session-key space is {0, 1}k.
Let G : {0, 1}k → {0, 1}ℓ be a PRG with ℓ = ℓ(k) > k, where for convenience
we define G(⊥) := ⊥. Then, consider the detectable KEM Γ ′ = (KKG,Encap′,
Decap′,F) whose session-key space is {0, 1}ℓ, which is naturally constructed by
combining Γ and G: Encap′(pk) runs (c,K)← Encap(pk) and outputs a cipher-
text/session key pair (c,G(K)).; We define Decap′(sk, c) := G(Decap(sk, c)). The
following is straightforward, and thus its proof is omitted.

Lemma 3. If the detectable KEM Γ satisfies randomness-inextractability (resp.
unpredictability), then so does the detectable KEM Γ ′. Furthermore, if Γ is DCCA
(resp. wNM-DCCA) secure and G is a PRG, then Γ ′ is DCCA (resp. wNM-DCCA)
secure.

Hybrid Encryption. For a detectable PKE scheme, a straightforward appli-
cation of hybrid encryption preserves w(R)NM-DCCA security and randomness-
inextractability, when combined with a CCA secure SKE scheme. Since a CCA se-
cure SKE scheme with “zero” ciphertext overhead can be realized from a strong
pseudorandom permutation [23] (which is in turn realized based on any one-way
function), the ciphertext overhead of a detectable PKE scheme with w(R)NM-DCCA
security and randomness-inextractability, can be as small as the ciphertext size
of the scheme for encrypting a random session-key (usually a k-bit string).

Formally, let Π = (PKG,Enc,Dec,F) be a detectable PKE scheme where the
randomness space of Enc is {0, 1}ℓ, and let E = (SEnc, SDec) be a deterministic
SKE scheme (i.e. its encryption algorithm SEnc is deterministic). Then, we natu-
rally construct the detectable PKE scheme ΠHYB = (PKGHYB,EncHYB,DecHYB,FHYB)
via hybrid encryption, as in Fig. 3. (We describe the randomness of EncHYB ex-
plicitly so that it is convenient to consider its randomness-inextractability.) The
randomness space of EncHYB is {0, 1}ℓ+k.

Regarding the security of the hybrid encryption construction, the following
lemma is straightforward to see.

Lemma 4. If the detectable PKE scheme Π is wNM-DCCA secure (resp. wRNM-DCCA
secure) and the SKE scheme E is CCA secure, then the detectable PKE scheme
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ΠHYB in Fig. 3 is wNM-DCCA secure (resp. wRNM-DCCA secure). Furthermore, if Π
satisfies randomness-inextractability (resp. unpredictability), then so does ΠHYB.

From wRNM-DCCA Security to wNM-DCCA Security. Canetti, Krawczyk, and Nielsen
[4] showed how to convert a “replayable” CCA secure PKE scheme into an ordi-
nary CCA secure KEM, using a message authentication code (MAC), with almost
no overhead. This method can be used for converting a wRNM-DCCA secure de-
tectable PKE scheme into a wNM-DCCA secure detectable KEM. We review this
transformation in the full version.

On the Non-triviality of Randomness-Inextractability. One might wonder whether
there is an implication from randomness-inextractability to unpredictability and/or
vice versa (especially in case if a detectable PKE scheme already satisfies wNM-DCCA
security). We show that this is not the case, for both directions. Specifically, (via
artificial counterexamples) we can show the following lemma that shows the non-
triviality of these notions, which we formally show in the full version.

Lemma 5. A detectable PKE scheme satisfying wNM-DCCA security and unpre-
dictability simultaneously does not necessarily satisfy randomness-inextractability.
Furthermore, a detectable PKE scheme satisfying wNM-DCCA security and randomness-
inextractability simultaneously does not necessarily satisfy unpredictability.

4 Chosen Ciphertext Security of the Double-Layered
Construction

In this section, we show our main result: two new CCA security proofs for the
“double-layered” construction ΓDL (of a KEM) constructed from the “inner”
detectable KEM Γin and the “outer” detectable PKE scheme Πout. We also show
a partial evidence that we need to rely on “non-malleability” that we defined in
the previous section.

The Double-Layered Construction. Let Πout = (PKGout,Encout,Decout,Fout) be
a detectable PKE scheme. We assume the plaintext space of Πout to be {0, 1}n
(where n = n(k) is determined below), and the randomness space of Encout to
be {0, 1}ℓ for some positive polynomial ℓ = ℓ(k). Let Γin = (KKGin,Encapin,
Decapin,Fin) be a detectable KEM such that the ciphertext length is n bit, and
the session-key space is {0, 1}ℓ+k. Then we construct the “double-layered” KEM
ΓDL = (KKGDL,EncapDL,DecapDL) as in Fig. 4. For convenience, we occasionally
call Γin the inner KEM and Πout the outer PKE scheme.

Our First Security Proof. The CCA security of ΓDL can be shown as follows.

Theorem 1. Assume that the “outer” PKE scheme Πout is a detectable PKE
scheme satisfying wRNM-DCCA security and randomness-inextractability, and the
“inner” KEM Γin is a detectable KEM satisfying DCCA security and unpredictabil-
ity. Then, the KEM ΓDL in Fig. 4 is CCA secure.
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KKGDL(1
k) :

(pkin, skin)← KKGin(1
k)

(pkout, skout)← PKGout(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK,SK).

EncapDL(PK) :
(pkin, pkout)← PK
(cin, α)← Encapin(pkin)
Parse α as (r,K) ∈ {0, 1}ℓ × {0, 1}k.
c← Encout(pkout, cin; r)
Return (c,K).

DecapDL(SK, c) :
(skin, skout, PK)← SK
(pkin, pkout)← PK
cin ← Decout(skout, c)
If cin = ⊥ then return ⊥.
α← Decapin(skin, cin)
If α = ⊥ then return ⊥.
Parse α as (r,K) ∈ {0, 1}ℓ × {0, 1}k.
If Encout(pkout, cin; r) = c

then return K else return ⊥.

Fig. 4. The double-layered KEM construction ΓDL from a detectable PKE scheme Πout

and a detectable KEM Γin.

The structure of the proof is similar to the security proofs for the constructions
by Hohenberger et al. [16] and by Matsuda and Hanaoka [19]. However, the
details differ due to the difference in the construction and the used assumptions.

We explain the ideas for the proof of Theorem 1. (Here, the values with as-
terisk (*) represent those related to the challenge ciphertext c∗.) As the first
step, note that since a session-key K of ΓDL is part of a session-key α = (r∥K)
of the DCCA secure inner KEM Γin, unless a CCA adversary A submits a decap-
sulation query c that simultaneously satisfies (1) Decout(skout, c) = cin ̸= ⊥ and
(2) Fin(pkin, c

∗
in, cin) = 1, A has no chance in distinguishing the real session-key

K∗
1 from a random K∗

0 . Following [16, 19], we call this type of decapsulation
query a dangerous query. If the probability that A comes up with a dangerous
query is negligible, then we can finish the proof. Furthermore, observe that since
Γin satisfies unpredictability, if we can ensure that the information of the inner
ciphertext c∗in is hidden from A’s view, then the probability that A comes up
with a dangerous query is negligible.

To show that the probability that A comes up with a dangerous query in the
original security game is negligibly close to that in the security game in whichA’s
view does not contain c∗in at all (and hence we can invoke the unpredictability
of Γin), we rely on the security properties of the outer PKE scheme Πout to
gradually change the security game for A so that in the final game, c∗ as well as
other values in A’s view contain no information on c∗in. Note that in the actual
encapsulation algorithm EncapDL, the randomness r used for outer encryption is
also a part of the session-key α of the inner KEM. Thus, once we invoke the DCCA
security of the inner KEM Γin (which we have already done as the first step),
not only the real session-key K∗

1 but also the randomness r∗ used to generate
the challenge ciphertext c∗ are made uniformly random values, which enables us
to rely on the security properties of Πout from that point on.

Now, intuitively, the DCCA security (which is implied by wRNM-DCCA secu-
rity) of Πout guarantees that c∗in is hidden from A’s view as long as A only
submits a decapsulation query c such that Fout(pkout, c

∗, c) = 0. However, A
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is free to choose its own decapsulation query, and may submit c such that
Fout(pkout, c

∗, c) = 1. As mentioned in Section 1.2, this is another type of “dan-
gerous” query, in the sense that the condition Fout(pkout, c

∗, c) = 1 prevents us
from relying on the DCCA security of the outer PKE scheme Πout. To distinguish
this from the above mentioned type of dangerous queries with respect to the in-
ner KEM, let us use the names “inner-dangerous queries” and “outer-dangerous
queries” which are associated with the inner KEM and the outer PKE scheme,
respectively.

In the full proof, we will show that the randomness-inextractability of the
outer PKE scheme allows us to reject decapsulation queries c satisfying Fout(pkout,
c∗, c) = 1, without being noticed by A. Intuitively, this is possible because in
order for A to notice the difference between a security game in which a de-
cryption query c with Fout(pkout, c

∗, c) = 1 is not rejected and a security game
in which such c is rejected, A has to come up with a “valid” query c satisfy-
ing Fout(pkout, c

∗, c) = 1 and DecapDL(SK, c) ̸= ⊥. However, the latter condi-
tion implies Decout(skout, c) = cin ̸= ⊥, Decapin(skin, cin) = (r∥K) ̸= ⊥, and
Encout(pkout, cin; r) = c, among which the combination of Fout(pkout, c

∗, c) = 1
and Encout(pkout, cin; r) = c is exactly the condition of violating randomness-
inextractability, and thus such a valid query c must be hard to find.

If we can safely reject an outer-dangerous query, one might wonder why
we need non-malleability for the outer PKE scheme, and why ordinary DCCA

security is not sufficient. The reason is that although DCCA security of Πout

intuitively ensures that A cannot “see” the inner challenge ciphertext c∗in, it does
not prevent A from coming up with an inner-dangerous decapsulation query
c such that Fout(pkout, c

∗, c) = 1. From the viewpoint of the security proof,
we may be able to come up with a DCCA adversary (a reduction algorithm)
for Πout that perfectly simulates the security game (in which queries c with
Fout(pkout, c

∗, c) = 1 are rejected) for A. However, such DCCA adversary cannot
check if A’s query satisfying Fout(pkout, c

∗, c) = 1 is an inner-dangerous query
due to the restriction on the decryption oracle.

This is the place where the non-malleability of the outer PKE scheme comes
into play. Note that an inner ciphertext is a “plaintext” of the outer PKE scheme,
and the notion of “inner-dangerous queries” is a “meaningful relation” between
c∗in and another inner ciphertext. Therefore, the wRNM-DCCA security of Πout

ensures that A cannot come up with even a single inner-dangerous query c,
as long as A can only observe the decapsulation results of queries c′ satisfying
Fout(pkout, c

∗, c′) = 0. From the viewpoint of the security proof, if a reduction
algorithm is a wRNM-DCCA adversary for Πout, it can check if A’s query c is inner-
dangerous by its final “unrestricted” decryption query, even if Fout(pkout, c

∗, c) =
1 holds. This enables us to finally show that the probability that A comes up
with an inner-dangerous query in the original security game, is negligibly close
to the probability that A does so in the game in which A’s view does not contain
the information on c∗in.

Hence, combining all the security properties of the building blocks leads to
CCA security. However, the explanation so far hides some technical subtleties that
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arise due to the “replayable-CCA”-like nature of wRNM-DCCA security, and the
treatment of the cases whereA’s decapsulation query c satisfies Decout(skout, c) =
c∗in, etc. For the details, see the proof in the full version.

Our Second Security Proof. We show an alternative security proof for the double-
layered construction based on slightly different assumptions on the building
blocks.

Theorem 2. Assume that the “outer” PKE scheme Πout is a detectable PKE
scheme satisfying DCCA security and randomness-inextractability, and the “in-
ner” KEM Γin is a detectable KEM satisfying wNM-DCCA security and unpre-
dictability. Then, the KEM ΓDL in Fig. 4 is CCA secure.

Recall that Myers and Shelat’s original double-layered construction uses an “un-
quoted” CCA (UCCA) secure construction of a PKE scheme for the outer PKE
scheme and a construction of a KEM which is “1-wise-non-malleable under
UCCA” for the inner KEM, where UCCA security and its non-malleable variant
are security notions considered for PKE-to-PKE constructions (i.e. constructions
that use another PKE scheme as a building block). Recall also that DCCA security
is an abstraction of UCCA security [16], from a security notion for a PKE-to-
PKE construction to that of a wider notion of detectable PKE. Analogously,
our definition of wNM-DCCA security can be seen as an abstraction of Myers and
Shelat’s “1-wise non-malleability under UCCA”. Furthermore, we can easily see
that the actual instantiations of the inner KEM and the outer PKE scheme
used in the original Myers-Shelat construction [20], when respectively seen as
a detectable KEM and a detectable PKE scheme, satisfy unpredictability and
randomness-inextractability. Therefore, Theorem 2 can be seen as a generaliza-
tion of Myers and Shelat’s result.

The structure of the proof of Theorem 2 is similar to our first proof. However,
there are several subtle but crucial differences. In particular, the definitions of
“inner/outer-dangerous queries” are different from those used in the proof of
Theorem 1, and correspondingly we consider a different ordering of the sequence
of games for this proof. Furthermore, the role of the “non-malleability” in this
proof and that of the proof of Theorem 1 are different. Informally speaking,
in this proof, the wNM-DCCA security of the inner detectable KEM Γin is used
to ensure that the probability that a CCA adversary comes up with an outer-
dangerous query is not noticeably different between the games in which we invoke
(the indistinguishability property of) the DCCA security of the inner KEM.

Can We Avoid w(R)NM-DCCA Security? Both of our security proofs for the CCA

security of the double-layered construction require either the inner detectable
KEM or the outer detectable PKE scheme to be “non-malleable” under DCCA.

Looking ahead, in the next section, we will see that the simplest “bitwise-
encrypt” construction based on CCA secure 1-bit PKE satisfies DCCA security, un-
predictability, and randomness-inextractability. Thus, a natural question would
be whether we can prove the CCA security of the double-layered construction
without using the non-malleability notions for both of the building blocks (and

18



instead only requiring DCCA security). If such a security proof were possible, then
one can use the bitwise-encrypt-based construction both for the inner KEM and
the outer PKE scheme, and the resulting CCA secure KEM would be fairly simple.

Unfortunately, however, we show that such a security proof for the double-
layered construction is impossible, as there is a counterexample.

Theorem 3. Assume there exists a detectable PKE scheme which is DCCA secure
and unpredictable. Then, there exist a detectable KEM Γin and a detectable PKE
scheme Πout such that the following simultaneously hold: (1) Γin is DCCA secure
and unpredictable. (2) Πout is DCCA secure and randomness-inextractable. (3)
The double-layered KEM ΓDL constructed using Γin as the inner KEM and Πout

as the outer PKE scheme, is not CCA secure (in fact, not secure in the sense of
one-wayness under 1-bounded CCA).

Our counterexample is based on an observation that the combination of DCCA
security, unpredictability, and randomness-inextractability, does not rule out a
double-layered KEM with the following property: A ciphertext C is of the form
C = (c1, c2) and the corresponding session-key K is of the form K = (K1,K2),
and furthermore it is “blockwise” consistent, meaning that each pair (ci,Ki)
is individually consistent as a ciphertext/session-key pair of the double-layered

construction. Thus, the decapsulation result of the “swapped” ciphertext Ĉ =
(c2, c1) is the “swapped” session-key K̂ = (K2,K1). Such a KEM is clearly
malleable, and its one-wayness is broken by just a single decapsulation query.

5 Concrete Instantiations of Building Blocks

In this section, we show how to construct a detectable PKE scheme, which we
call “encode-then-bitwise-encrypt” (EtBE) construction, that uses a CCA secure
1-bit PKE scheme and a Q-non-malleable code as building blocks and simulta-
neously satisfies wRNM-DCCA security and randomness-inextractability. Since it is
much easier to understand it if we first review the simple “bitwise-encrypt” con-
struction, we first review it in Section 5.1 together with its security properties,
and then we show the EtBE construction in Section 5.2.

5.1 Bitwise-Encrypt Construction

Here, we show that the “bitwise-encrypt” construction of a detectable PKE
scheme based on a 1-bit PKE scheme, in which each bit of a plaintext is en-
crypted in a bit-by-bit fashion by the underlying 1-bit scheme, can be shown
to satisfy randomness-inextractability, DCCA security, and unpredictability, if the
underlying 1-bit PKE scheme is CCA secure.

Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme, and the randomness
space of whose encryption algorithm Enc1 is {0, 1}ℓ (where ℓ = ℓ(k) is some pos-
itive polynomial). Then, for a polynomial n = n(k) > 0, consider the “bitwise-
encrypt” construction Πn

BE = (PKGn
BE := PKG1,Enc

n
BE,Dec

n
BE,F

n
BE) of an n-bit

detectable PKE scheme described in Fig. 5 (left). The key generation algorithm
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EncnBE(pk,m; r) :

Parse r as (r1, . . . , rn) ∈ ({0, 1}ℓ)n.
View m as (m1∥ . . . ∥mn) ∈ {0, 1}n.
∀i ∈ [n] : ci ← Enc1(pk,mi; ri)
Return C ← (c1, . . . , cn).

DecnBE(sk, C) :
(c1, . . . , cn)← C
∀i ∈ [n] : mi ← Dec1(sk, ci)
If ∃i ∈ [n] : mi = ⊥ then return ⊥.
Return m← (m1∥ . . . ∥mn).

Fn
BE(pk, C

∗, C′) :
(c∗1, . . . , c

∗
n)← C∗

(c′i, . . . , c
′
n)← C′

If ∃i, j ∈ [n] : c∗i = c′j
then return 1 else return 0.

EncEtBE(pk,m;R) :

Parse R as (r, r̂) ∈ {0, 1}ℓ·n × {0, 1}ℓ̂.
s = (s1∥ . . . ∥sn)← E(1k,m; r̂)
C = (c1, . . . , cn)← EncnBE(pk, s; r)
If DUPCHK(C) = 1 then return ⊥.†
Return C.

DecEtBE(sk, C) :
If DUPCHK(C) = 1 then return ⊥.
s← DecnBE(sk, C)
If s = ⊥ then return ⊥.
Return m← D(1k, s).

FEtBE(pk, C
∗, C′) :

If (a) ∧ (b) then return 1 else return 0:
(a) DUPCHK(C∗) = DUPCHK(C′) = 0
(b) Fn

BE(pk, C
∗, C′) = 1

Fig. 5. The “bitwise-encrypt” (n-bit) construction Πn
BE (left), and the “encode-then-

bitwise-encrypt” (EtBE) construction ΠEtBE (right), both based on a 1-bit PKE scheme
Π1. The key generation algorithms for Πn

BE and ΠEtBE are the key generation algorithm
PKG1 of the underlying scheme Π1.

† Regarding the case in which EncEtBE returns ⊥,
see the explanation in the text.

PKGn
BE is actually PKG1 itself, and we do not show it in the figure. The random-

ness space of EncBE is {0, 1}ℓ·n. In the figure, we make the randomness used by
EncnBE explicit so that it is convenient to consider randomness-inextractability.

The following result was shown by Hohenberger et al. [16]:

Lemma 6. ([16]) Let n = n(k) > 0 be a polynomial. If the 1-bit PKE scheme
Π1 is CCA secure, then the detectable PKE scheme Πn

BE scheme satisfies DCCA

security and unpredictability.

We show a similar statement regarding randomness-inextractability.

Lemma 7. Let n = n(k) > 0 be a polynomial. If the PKE scheme Π1 is CCA se-
cure, then the detectable PKE scheme Πn

BE satisfies randomness-inextractability.

Here we explain an intuition why Lemma 7 is true, which is quite straightfor-
ward: Suppose an adversaryA, given a public key pk and the challenge ciphertext
C∗ = (c∗1, . . . , c

∗
n) and access to the decryption oracle, succeeds in outputting a

plaintext m′ = (m′
1∥ . . . ∥m′

n) and a randomness r′ = (r′1, . . . , r
′
n) such that

Fn
BE(pk, C

∗, C ′) = 1 with C ′ = (c′1, . . . , c
′
n) = EncnBE(pk,m

′; r′). Then, by def-
inition, there must be a position i ∈ [n] such that c∗i = c′j holds for some
j ∈ [n], where c′a = Enc1(pk,m

′
a; r

′
a) for each a ∈ [n]. Note that such A is in fact

“extracting” the randomness used for generating c∗i . Note also that extracting
a randomness used for generating a ciphertext is a harder task than breaking
indistinguishability. Thus, it is easy to construct another CCA adversary (a reduc-
tion algorithm) B for Π1 that initially guesses the position i such that c∗i = c′j
holds with some j, embeds B’s challenge ciphertext into the i-th position of the
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challenge ciphertext for A, and has the CCA advantage at least 1/n times that
of A’s advantage in breaking randomness-inextractability.

5.2 Encode-then-Bitwise-Encrypt Construction

Here, we show the construction of detectable PKE that we call “Encode-then-
Bitwise-Encrypt” (EtBE) construction, which simultaneously achieves wRNM-DCCA
security and randomness-inextractability, based on the security properties of the
bitwise-encrypt construction (which are in turn based on the underlying CCA se-
cure 1-bit scheme) and a Q-non-malleable code. Our construction is actually a
direct “PKE”-analogue of the transformation of a CCA secure 1-bit commitment
scheme into a non-malleable string commitment scheme by Agrawal et al. [2].
We adapt their construction into the (detectable) PKE setting.

Let C = (E,D) be a code with message length k and codeword length n =
n(k) ≥ k. Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme. Let Πn

BE =
(PKGn

BE = PKG1,Enc
n
BE,Dec

n
BE,F

n
BE) be the bitwise-encrypt construction based on

Π1. For convenience, we introduce the procedure “DUPCHK(·)” which takes a
ciphertext C = (c1, . . . , cn) of Π

n
BE as input, and returns 1 if there exist distinct

i, j ∈ [n] such that ci = cj , and returns 0 otherwise. (That is, DUPCHK(C) checks
a duplication in the component ciphertexts (ci)i∈[n].)

Using C,Πn
BE (andΠ1), and DUPCHK, the EtBE constructionΠEtBE = (PKGEtBE

:= PKG1,EncEtBE,DecEtBE,FEtBE) is constructed as in Fig. 5 (right). Like Πn
BE, the

key generation algorithm PKGEtBE is PKG1 itself, and we do not show it in the
figure. The plaintext space of ΠEtBE is {0, 1}k.

On the Correctness of ΠEtBE. Note that the encryption algorithm EncEtBE returns
⊥ if it happens to be the case that DUPCHK(C) = 1. This check is to ensure that
a valid ciphertext does not have “duplicated” components, which is required
due to our use of a Q-non-malleable code whose non-malleability can only take
care of a “non-duplicated” quoting. Since the probability (over the randomness
of EncEtBE) that EncEtBE outputs ⊥ is not zero, our construction ΠEtBE does not
satisfy correctness in a strict sense. (The exactly same problem arises in the con-
struction of string commitments in [2].) However, it is easy to show that if Π1

satisfies CCA security (or even CPA security), the probability of EncEtBE outputting
⊥ is negligible, and thus it does not do any harm in practice. (In practice, for ex-
ample, in case ⊥ is output, one can re-execute EncEtBE with a fresh randomness.
The expected execution time of EncEtBE is negligibly close to 1.) Furthermore, if
one needs standard correctness, then instead of letting EncEtBE output ⊥ in case
DUPCHK(C) = 1, one can let it output a plaintext m (being encrypted) as an “ir-
regular ciphertext”, so that if the decryption algorithm DecEtBE takes an irregular
ciphertext C as input, it outputs C as a “decryption result” of C. (In order to
actually implement this, in case DUPCHK(C) = 1 occurs, m ∈ {0, 1}k needs to be
padded to the length n · |c| of an ordinary ciphertext, and we furthermore need
to put a prefix for every ciphertext that tells the decryption algorithm whether
the received ciphertext should be treated as a normal ciphertext or an irregular
one.) Such a modification also does no harm to the security properties of ΠEtBE
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(it only contributes to increasing an adversary’s advantage negligibly), thanks
to the CCA security of the building block Π1. For simplicity, in this paper we
focus on the current construction of ΠEtBE.

Security of ΠEtBE. The security properties of the EtBE construction is guaran-
teed by the following lemmas.

Lemma 8. Assume that Π1 is CCA secure and C is a Q-non-malleable code.
Then, the detectable PKE scheme ΠEtBE in Fig. 5 (right) is wRNM-DCCA secure.

Lemma 9. If Π1 is CCA secure, then the detectable PKE scheme ΠEtBE scheme
in Fig. 5 (right) satisfies unpredictability and randomness-inextractabilty.

The proof of Lemma 9 is straightforward given the unpredictability (Lemma 6)
and randomness-inextractability (Lemma 7) of the bitwise-encrypt construction
Πn

BE, and thus omitted.
The proof of Lemma 8 follows essentially the same story line as the security

proof of the non-malleable string commitment by Agrawal et al. [2]. A high-level
idea is as follows: In the wRNM-DCCA experiment, an adversary A = (A1,A2,A3)
is allowed to submit a single “unrestricted” decryption query C ′ = (c′1, . . . c

′
n),

which is captured by the ciphertext finally output by A2. In order for this query
to be valid, however, C ′ has to satisfy DUPCHK(C ′) = 0, which guarantees that C ′

does not have duplicated components. Thus, since each component is a ciphertext
of the CCA secure scheme Π1, the best A can do to generate C ′ that is “related”
to the challenge ciphertext C∗ = (c∗1, . . . , c

∗
n) is to “quote” some of c∗i ’s into C ′ in

such a way that no c∗i appears more than once. However, such “quoting without
duplicated positions” is exactly the function class Q with respect to which the
code C is non-malleable. Specifically, the Q-non-malleability of C guarantees
that even if an adversary observes the decryption result of such C ′ that quotes
some of components of C∗ without duplicated positions, A gains essentially no
information of the original content mb of the encoding s∗ encrypted in C∗, and
hence no information of the challenge bit b. Actually, it might be the case that
A succeeds in generating C ′ so that DecnBE(sk, C

′) is s∗ itself (and hence its
decoded value is exactly the challenge plaintext mb). According to the rule of
the wRNM-DCCA experiment, however, in such a case A is not given the actual
decryption result DecEtBE(sk, C

′) directly but is given the symbol same which
only informs that the decryption result is either m0 or m1. Furthermore, all
other queries without quoting do not leak the information of the challenge bit b
because of the DCCA security of the bitwise-encrypt construction Πn

BE (Lemma 6).
These ideas lead to wRNM-DCCA security of ΠEtBE. For the details, see the proof
in the full version.

6 Full Description of Our 1-bit-to-Multi-bit Conversion

Given the results in the previous sections, we are now ready to describe our
proposed 1-bit-to-multi-bit conversion, i.e. a CCA secure KEM from a CCA secure
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1-bit PKE scheme. Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme whose
public key size is “|pk|”, the ciphertext size is “|c|”, and the randomness space of
whose encryption algorithm Enc1 is {0, 1}ℓ. Let C = (E,D) be a Q-non-malleable
(n, k)-code with n = n(k) ≥ k, and the randomness space of whose encoding

algorithm E is {0, 1}ℓ̂. Let ℓ′ = n ·ℓ+ ℓ̂+2k, and G : {0, 1}k → {0, 1}ℓ′ be a PRG.
Finally, let E = (SEnc, SDec) be a deterministic SKE scheme whose plaintext
space is {0, 1}k·|c|, and it has zero ciphertext overhead (i.e. its ciphertext size is
the same as that of a plaintext).

From these building blocks, consider the following detectable KEM Γin and
detectable PKE scheme Πout:

Γin: Consider the bitwise-encrypt construction Πk
BE (Fig. 5) based on the PKE

scheme Π1, and regard it as a detectable KEM by encrypting a random k-
bit string as a session-key. For this detectable KEM, use the PRG G with
the method explained in the first paragraph of Section 3.3 to stretch its
session-key into ℓ′ bits. Γin is the resultant KEM.
The public key size of Γin is |pk|, its ciphertext size is k · |c|, and its session-
key space is {0, 1}ℓ′ . Due to Lemmas 3 and 6, Γin satisfies DCCA security and
unpredictability based on the CCA security of Π1 and the security of G.

Πout: Consider the EtBE constructionΠEtBE based on the code C and the bitwise-
encrypt construction Πn

BE (which is in turn based on Π1) (Fig. 5). Combine
this detectable PKE scheme with the SKE scheme E by the method ex-
plained in the second paragraph of Section 3.3 (see Fig. 3). Πout is the
resultant PKE scheme.
The public key size of Πout is |pk|, its ciphertext overhead (the difference be-
tween the total ciphertext size minus the plaintext size) is n · |c|, its plaintext
space is {0, 1}k·|c|, and the randomness space of its encryption algorithm is
{0, 1}ℓ′−k. Due to Lemmas 4, 6, 7, 8, and 9, Πout satisfies wRNM-DCCA se-
curity and randomness-inextractability, based on the CCA security of Π1,
Q-non-malleability of C, and the CCA security of E.

Our proposed KEM Γ̃ = (K̃KG, Ẽncap, D̃ecap) is then obtained from the double-
layered construction ΓDL in which the inner KEM is Γin and the outer PKE
scheme is Πout explained above. More concretely, the description of Γ̃ is as in
Fig. 6.

The public key size of Γ̃ is 2 · |pk|, and its ciphertext size is (n+k) · |c| (where
Γin contributes k · |c| and Πout contributes n · |c|). Using the P-non-malleable
code with “optimal rate” (Lemma 1) by Agrawal et al. [1] which also satisfies
Q-non-malleability by Lemma 2, we have n = k+o(k). Thus, the ciphertext size

of Γ̃ can be made asymptotically (2k + o(k)) · |c|.
The following statement is obtained as a corollary of the combination of

Theorem 1 and Lemmas 1, 2, 3, 4, 6, 7, 8, and 9.

Theorem 4. Assume that the PKE scheme Π1 is CCA secure, C is a Q-non-
malleable code, G is a PRG, and the SKE scheme E is CCA secure. Then, the
KEM Γ̃ in Fig. 6 is CCA secure.
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K̃KG(1k) :
(pkin, skin)← PKG1(1

k)

(pkout, skout)← PKG1(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK,SK).

Ẽncap(PK) :
(pkin, pkout)← PK

Kin = (K
(1)
in ∥ . . . ∥K

(k)
in )← {0, 1}k

∀i ∈ [k] : c
(i)
in ← Enc1(pkin,K

(i)
in )

α← G(Kin)
Parse α as (r1, . . . , rn, r̂, Kout,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
s = (s1∥ . . . ∥sn)← E(1k,Kout; r̂)
∀i ∈ [n] : ci ← Enc1(pkout, si; ri)
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
ĉ← SEnc(Kout, (c

(1)
in ∥ . . . ∥c

(k)
in ))

C ← (c1, . . . , cn, ĉ)
Return (C,K).

D̃ecap(SK,C) :
(skin, skout, PK)← SK
(pkin, pkout)← PK; (c1, . . . , cn, ĉ)← C
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
∀i ∈ [n] : si ← Dec1(skout, ci)
If ∃i ∈ [n] : si = ⊥ then return ⊥.
Kout ← D(1k, s = (s1∥ . . . ∥sn))
If Kout = ⊥ then return ⊥.
(c

(1)
in ∥ . . . ∥c

(k)
in )← SDec(Kout, ĉ)

If SDec has returned ⊥ then return ⊥.
∀i ∈ [k] : K

(i)
in ← Dec1(skin, c

(i)
in )

If ∃i ∈ [k] : K
(i)
in = ⊥ then return ⊥.

α← G(Kin = (K
(1)
in ∥ . . . ∥K

(k)
in ))

Parse α as (r1, . . . , rn, r̂,K
′
out,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
If (a) ∧ (b) ∧ (c) then return K

else return ⊥:
(a) ∀i ∈ [n] : Enc1(pkout, si; ri) = ci
(b) E(1k,K′

out; r̂) = s

(c) SEnc(K′
out, (c

(1)
in ∥ . . . ∥c

(k)
in )) = ĉ

Fig. 6. The proposed “1-bit-to-multi-bit” construction (KEM) Γ̃ .

2-bit-to-multi-bit Construction with a Single Key Pair. Note that our proposed
1-bit-to-multi-bit conversion Γ̃ uses two key pairs. It turns out that if we can
use a 2-bit PKE scheme as a building block instead of a 1-bit scheme, then we
can construct a CCA secure KEM that uses only one key pair of the underlying
2-bit scheme, with a very similar way to Γ̃ . The idea of this 2-bit-to-multi-bit
conversion is to use the additional 1-bit of the plaintext space as the “indicator
bit” that indicates whether each component ciphertext is generated for the inner

layer or the outer layer. That is, each inner ciphertext c
(i)
in is an encryption of

(1∥K(i)
in ), and each outer ciphertext ci is an encryption of (0∥si), and in the

decapsulation algorithm, we check whether the component ciphertexts {ci}i∈[n]

and {c(i)in }i∈[k] have appropriate indicator bits (“1” for the inner layer and “0”
for the outer layer). This additional indicator bit and its check prevent a quoting
of an inner ciphertext into the outer layer and vice versa, and thus make the
encryption/decryption operations for the inner layer and those of the outer layer
virtually independent, as if each layer has an individual key pair. This enables
us to conduct the security proof in essentially the same way as that of Γ̃ . Due
to the lack of space, we detail it in the full version.

On the Necessity of Two Key Pairs. As mentioned in Introduction, our positive
results on the 1-/2-bit-to-multi-bit constructions for CCA security raise an in-
teresting question in terms of the number of public keys: Is it necessary to use
two key pairs in 1-bit-to-multi-bit constructions for CCA security? Motivated
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by this question, in the full version we consider the one-key variant of our pro-
posed KEM Γ̃ , and show that it is vulnerable to a CCA attack. Hence, using two
key pairs of the underlying 1-bit scheme is essential for our proposed construc-
tion Γ̃ . Clarifying the optimality of the number of key pairs in 1-bit-to-multi-bit
constructions would be an interesting open problem.

7 Comparison

Table 1 compares the public key size and ciphertext size of the existing “1-
bit-to-multi-bit” constructions that achieve CCA security (or related security).
Specifically, in the table, “MS” represents the construction by Myers and She-
lat [20].; “HLW” represents the construction by Hohenberger et al. [16] which
uses a CPA secure PKE scheme, a 1-bounded CCA secure [7] PKE scheme, and
a detectable PKE scheme satisfying DCCA security and unpredictability. We as-
sume that for the 1-bounded CCA secure scheme, the construction by Dodis and
Fiore [11, Appendix C] is used, which constructs such a scheme from a CPA secure
scheme and a one-time signature scheme, and we also assume that its detectable
scheme and the CPA secure scheme are realized by the bitwise-encrypt construc-
tion Πk

BE. (If we need to encrypt a value longer than k-bit, then we assume that
hybrid encryption is used everywhere possible by encrypting a k-bit random
session-key and using it as a key for SKE (where the length of SKE ciphertexts
are assumed to be the same as a plaintext [23]), which we do the same for the
constructions explained below.); “MH” represents the construction by Matsuda
and Hanaoka [19], which can be seen as an efficient version of HLW [16] due to
hybrid encryption techniques, and we assume that the building blocks similar
to HLW are used.; “CMTV” represents the construction by Coretti et al. [6],
the size parameters of which are taken from the introduction of [6].; “CDTV”
represents the construction by Coretti et al. [5], where the size parameters are
estimated according to the explanations in [5, Sections 4.2 & 4.3].; “Ours” is the

KEM Γ̃ shown in Fig. 6 in Section 6.

As is clear from Table 1, if one starts from a CCA secure 1-bit PKE scheme
(and assuming that building blocks implied by one-way functions are available
for free), then “Ours” achieves asymptotically the best efficiency. Notably, the
public size and the ciphertext size of “Ours” are asymptotically “optimal” in the
sense that they are asymptotically the same as the bitwise-encrypt construction
Πk

BE that works as a 1-bit-to-multi-bit conversion for the CPA and non-adaptive
CCA (CCA1) settings. Note also that all the previous constructions that achieve
ordinary CCA security have the public key size Ω(k) · |pk|, and the ciphertext size
Ω(k2) · |c|.

We note that, as mentioned in Section 1.3, CMTV [6] and CDTV [5] achieve
only indistinguishability under self-destruct CCA (SDA) and non-malleability
under self-destruct CCA (NM-SDA), respectively, which are both implied by ordi-
nary CCA security but are strictly weaker than it. Nonetheless, “Ours” actually
achieves better asymptotic efficiency than them.
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Table 1. Comparison among the 1-bit-to-multi-bit constructions for CCA
(and related) security. In the columns “PK Size” and “Ciphertext Size”, |pk| and
|c| denote the public key size and the ciphertext size of the underlying 1-bit PKE
scheme Π1, respectively, and |vk| and |σ| denote the size of a verification key and that
of a signature of the one-time signature scheme used as a building block, respectively.
The column “Sec. on Π1” shows the assumption on the security of the underlying
1-bit PKE scheme required to show the CCA (or the related) security of the entire
construction. Here, “SDA” and “NM-SDA” denote “(indistinguishability against) self-
destruct CCA” [6] and “non-malleability against SDA” [5], respectively. The column
“Add. Bld. Blk.” shows the additional building blocks (used in each construction) that
can be realized only from the existence of a one-way function. Here, “Sig” stands for a
one-time signature scheme. (†) As explained in Introduction, CMTV [6] and CTDV [5]
only achieve SDA security and NM-SDA security, respectively, which are both implied by
ordinary CCA security but are strictly weaker than it.

Scheme PK Size Ciphertext Size Sec. of Π1 Add. Bld. Blk.
MS [20] (20k2 + 1)|pk| (10k3|c|+ |vk|+ |σ|)|c| CCA Sig., PRG
HLW [16] (2k + 2)|pk| (k2 + 3k)|c|+ |vk|+ |σ|+ 6k DCCA & UNP Sig., PRG, SKE
MH [19] (2k + 2)|pk| (k2 + 2k)|c|+ |vk|+ |σ| DCCA & UNP Sig., PRG, SKE
CMTV† [6] ≈ k|pk| ≈ 5k|c| SDA —
CDTV† [5] O(k)|pk| O(k)|c| NM-SDA —
Ours (§ 6) 2|pk| (2k + o(k))|c| CCA PRG, SKE

However, for fairness we note that our construction requires CCA security for
the underlying 1-bit PKE scheme Π1, while HLW [16] and MH [19] only require
DCCA security and unpredictability, and the constructions CMTV [6] and CDTV
[5] only require SDA and NM-SDA security for Π1, respectively, and thus there is
a tradeoff among the assumptions on the building block Π1.
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