Multiple Discrete Logarithm Problems with
Auxiliary Inputs

Taechan Kim

NTT Secure Platform Laboratories, Japan
taechan.kim@lab.ntt.co.jp

Abstract. Let g be an element of prime order p in an abelian group
and let a1,...,ar € Z, for a positive integer L. First, we show that,
if g, g%, and g"‘? (i=1,...,L) are given for d | p — 1, all the discrete
logarithms «;’s can be computed probabilistically in 6(\ /L-p/d++VL-d)
group exponentiations with O(L) storage under the condition that L <
min{(p/d)/*, d/1}.

Let f € Fplx] be a polynomial of degree d and let ps be the number
of rational points over F,, on the curve determined by f(x) — f(y) = 0.
Second, if g,g‘“,ga?7 e ,ga? are given for any d > 1, then we propose
an algorithm that solves all a;’s in O(max{+/L - p?/ps, L - d}) group ex-
ponentiations with 6(\/L -p?/py) storage. In particular, we have explicit
choices for a polynomial f when d | p £ 1, that yield a running time of

O(\/L - p/d) whenever L < %= for some constant c.

Keywords: Discrete Logarithm Problem; Multiple Discrete Logarithm;
Birthday Problem; Cryptanalysis.

1 Introduction

Let G be a cyclic group of prime order p with a generator g. A discrete logarithm
problem (DLP) aims to find the element « of Z, when g and ¢g* are given. The
DLP is a classical hard problem in computational number theory, and many
encryption schemes, signatures, and key exchange protocols rely on the hardness
of the DLP for their security.

In recent decades, many variants of the DLP have been introduced. These in-
clude the Weak Diffie-Hellman Problem [13], Strong Diffie-Hellman Problem [2],
Bilinear Diffie-Hellman Inversion Problem [1], and Bilinear Diffie-Hellman Expo-
nent Problem [3], and are intended to guarantee the security of many cryptosys-
tems, such as traitor tracing [13], short signatures [2], ID-based encryption [1],
and broadcast encryption [3]. These problems incorporate additional information
to the original DLP problem. Although such additional information could weaken
the problems, and their hardness is not well understood, these variants are
widely used because they enable the construction of cryptosystems with various
functionalities.

These variants can be considered as the problem of finding a when g, g*™*, ..., g*™
are given for some eq,...,eq € Z. This problem is called the discrete logarithm
problem with auxiliary inputs (DLPwAI).

On the other hand, in the context of elliptic curve cryptography, because of
large computational expense of generating a secure elliptic curve, a fixed curve is
preferred to a random curve. One can choose a curve recommended by standards
such as NIST. Then this causes an issue with the multiple DLP/DLPwAI and
leads the following question. Can it be more efficient to solve them together than
to solve each of instances individually when needed, if an adversary collects many
instances of DLP/DLPwALI from one fixed curve?

In multiple discrete logarithm problem, an algorithm [11] computes L discrete
logarithms in time 5(\/L p) for L < p'/*. Recently, it is proven that this
algorithm is optimal in the sense that it requires at least £2(y/L -p) group
operations to solve the multiple DLP in the generic group model [19].

On the other hand, an efficient algorithm for solving the DLPwALI is proposed
by Cheon [5,6]. If g,¢%, and go‘d € G (resp. g,g“,...,g"‘zd € @) are given,
then one can solve the discrete logarithm a € Z, in O(y/p/d + V/d) (resp.
O(+/p/d + d)) group operations in the case of d | p — 1 (resp. d | p + 1). Since
solving the DLPwAT in the generic group model requires at least £2(+/p/d) group
operations [2], Cheon’s algorithm achieves the lower bound complexity in the
generic group model when d < p'/? (resp. d < p'/3). Brown and Gallant [4]
independently investigated an algorithm in the case of d | p — 1.

However, as far as we know, the DLPwAI algorithm in the multi-user setting
has not been investigated yet. This paper proposes an algorithm to solve the
multiple DLPwAI better than O(L - \/W) group operations in the case of
d | p+1, where L denotes the number of the target discrete logarithms.

Our Contributions. We propose two algorithms for the multiple DLPwALI
Our first algorithm is based on Cheon’s (p — 1)-algorithm [5,6]. If g, g%, and go‘?
(1=1,2,...,L) are given for d | p— 1, our algorithm solves L discrete logarithms
probabilistically in 6(\/L -p/d + VL -d) group operations with storages for
O(L) elements whenever L < min{c,/q(p/d)'/*, cqd*/*} (for some constants
0 <cprarca < 1). We also show a deterministic variant of this algorithm which

applies for any L > 0 and has the running time of 6(\/L-p/d +vVL-d+ L),
although it requires as large amount of the storage as the time complexity.
However, an approach based on Cheon’s (p + 1)-algorithm does not apply to
improve an algorithm in multi-user setting.

Our second algorithm is based on Kim and Cheon’s algorithm [10]. The
algorithm basically works for any d > 0. Let f(x) € Fp[z] be a polynomial
of degree d over F, and define p; := |(z,y) € F, x F, : f(z) = f(y)|. If

g, go‘i,g“?, . ,ga"il (i=1,2,...,L) are given, the algorithm computes all a;’s in
O(max{\/L-p*/ps,L-d}) group operations with the storage for O(/L - p?/py)
elements.

In particular, if L-d < \/L-p%/py (i.e. L < %), the time complexity is given

by 6(\/L -p?/py). Since p < py < dp, this value is always between 6(L-p/d)
and 6(\/L -p). Explicitly, if d | p— 1, one can choose the polynomial by f(z) = z¢
and in the case the complexity is given by the lower bound 6(L - p/d) whenever
L < p/d3. Similarly, in the case of d | p + 1, if one takes the polynomial
f(x) = D4(x,a), where Dg(z,a) is the Dickson polynomial of degree d for some
nonzero a € F,, then it also has the running time of O(\/L - p/d) for L < p/(2d%).

As far as the authors know, these two algorithms extend all existing DLPwAI-
solving algorithms to the algorithms for multi-user setting.

Organization. This paper is organized as follows. In Section 2, we introduce
several variants of DLP including a problem called discrete logarithm problem
in the exponent (DLPX). We also show that several generic algorithms can be
applied to solve the DLPX. In Section 3, we propose an algorithm solving the
multiple DLPwAT based on Cheon’s algorithm. In Section 4, we present another
algorithm to solve the multiple DLPwAI using Kim and Cheon’s algorithm. We
conclude with some related open questions in Section 5.

2 Discrete Logarithm Problem and Related Problems

In this section, we introduce several problems related to the discrete logarithm
problem. Throughout the paper, let G = (g) be a cyclic group of prime order p.
Let IF, be a finite field with ¢ elements for some prime power ¢ = p". Let Zy be
the set of the residue classes of integers modulo an integer N.

— The Discrete Logarithm Problem (DLP) in G is: Given g, g® € G, to solve

o € ZLy.

— The]Vzljultiple Discrete Logarithm Problem (MDLP) in G is: Given g, g**, ..., g% €
G, tosolve all ay,...,ar € Zp.

— The (ey, ..., eq)-Discrete Logarithm Problem with Auziliary Inputs (DLPwAI)
in G is: Given ¢, g%, 9%7,..., 9% € G, to solve a € L.

— The (eq,...,eq)-Multiple Discrete Logarithm Problem with Auxiliary In-
puts (MDLPwAI) in G is: Given g,g"‘:l,g“;‘z2 o, gut eGfori=1,2,...,L,
to solve ai,...,ar € Zp.

In the case of (ej,ea,...,eq) = (1,2,...,d), we simply denote (1,2,...,d)-
(M)DLPwAI by d-(M)DLPwAL

We also introduce the problem called Fy,-discrete logarithm problem in the
ezponent (F,-DLPX).

— The F,-Discrete Logarithm Problem in the Ezponent (F,-DLPX) in G is
defined as follows: Let x € IF, be an element of multiplicative order N, i.e.
N |p—1. Given g,¢gX" € G and x € F,, compute n € Zy.

— The F,-Multiple Discrete Logarithm Problem in the Ezponent (F,-MDLPX)
in G is: Given ¢, g% *,...,gX" € G and € F,, to solve ny,...,ng € Zy.
In both cases, the F,-(M)DLPX is said to be defined over Zy.

Algorithm for DLPX. Observe that several DL-solving algorithms can be
applied to solve the DLPX with the same complexity. For example, the baby-
step-giant-step (BSGS) algorithm works as follows: Suppose that the DLPX
is defined over Zy. Set an integer K ~ /N and write n = ngK + ny, where
0<ng <N/K=+N and 0<n; < K. For given g,g¥X" € G and x € F,,

i 1) K
compute and store the elements gX F = (gX(Y K)X foralli=0,1,...,N/K.

Then compute (gxn)x " for all j =0,1,..., K —1 and find a match between the
stored elements. Then the discrete logarithm is given by n = ¢K + j for the indices
1 and j corresponding to the match. It costs O(\/]V) group exponentiations by
elements in F, and O(V/N) storage.

In a similar fashion, it is easy to check that the Pollard’s lambda algorithm [15]
also applies to solve the DLPX. It takes O(\/N) group operations to solve the
problem with small amount of storage. Also, check that the other algorithms such
as Pohlig-Hellman algorithm [14] or the distinguished point method of Pollard’s
lambda algorithm [17] apply to solve the DLPX. The above observation was a
main idea to solve the DLPwAI in [5,6].

3 Multiple DLPwAI: Cheon’s algorithm

In this section, we present an algorithm of solving the (1, d)-MDLPwAI based on
Cheon’s algorithm [5,6] when d | p — 1.

Workflow of this section. Description of our algorithm is presented as follows.
First, we recall how Cheon’s algorithm solves the DLPwAI In Section 3.1, we
observed that the DLPwAT actually reduces to the DLPX (defined in Section 2)
by Cheon’s algorithm. It is, then, easy to check that to solve the MDLPwAI
reduces to solve the MDLPX. So, we present an algorithm to solve the MDLPX
in Section 3.2. Combined with the above results, we present an algorithm to solve
the MDLPwATI in Section 3.3.

3.1 Reduction of DLPwAI to DLP in the exponent using Cheon’s
algorithm

We briefly remind Cheon’s algorithm in the case of d | p— 1. The algorithm solves

(1,d)-DLPwAL Let g, g%, and go‘d be given. Let ¢ be a primitive element of I,
and H = (£) = (¢%) be a subgroup of F} of order %' Since a? € H, we have
a = £F for some k € Zp—1y/a- Our first task is to find such k. This is equivalent
to solve the F)-DLPX defined over Z,_1)/q, that is, to compute k € Z,_1)/q
for given g,gEk € G and ¢ € [F),. Note that gfk = go‘d is given from an instance
of the DLPwAI and we know the value of &, since a primitive element in F,
can be efficiently found. As mentioned before, solving the DLPX over Z,_1)/q
takes O(\/m) group exponentiations using BSGS algorithm or Pollard’s lambda
algorithm.

Continuously, if we write o € F,, as a = ¢¥, then since a? = (% = (I = ¢k,
it satisfies £ = k (mod (p—1)/d), i.e. al™F = (§%)m for some m € Z4. Now we
know the value of k, it remains to recover m. This is equivalent to solve F,-DLPX
over Zg4, that is, to solve m € Zg given the elements g, g = (ga)gfk € G and
€ Fp,, where = ¢ 27" is known. This step costs O(\/g) group exponentiations.
Overall, Cheon’s (p — 1) algorithm reduces of solving two instances of DLP in
the exponent with complexity O(\/pﬁ + \/E)

3.2 Algorithm for Multiple DLP in the Exponent

In this section, we describe an algorithm to solve L-multiple DLP in the exponent:
Let L be a positive integer. Let x be an element in F,, of multiplicative order N.
The problem is to solve all k; € Zy for given g,y1 1= gX ", ...,y := gX * and .

We use Pollard’s lambda-like algorithm. Define pseudo-random walk f from
y:=g*" (k € Zy) as follows. For an integer I, define a pseudo-random function
vi{gX" :neZn} —{1,2,...,1} and set S := {x*',...,x*'} for some random
integers s;. For y = ng, a pseudo-random walk f is defined by f:y — yXSL(y) =

kts.(y)
gX

Notice that Pollard’s rho-like algorithm does not apply to solve the DLPX.!
For instance, it seems hard to compute ngk from ng for unknown k if the
Diffie-Hellman assumption holds in the group G. This is why we take Pollard’s
lambda-like approach.

The proposed algorithm is basically the same with the method by Kuhn and
Struik [11]. It uses the distinguished point method of Pollard’s rho (lambda)
method [17]. Applying their method in the case of the DLPX, we describe the
algorithm as follows.

Step 1. For yo := gxlCO for kg = N — 1, compute the following chain until it
reaches to a distinguished point dy.

Co Yo = f(yo) = f(f(y0)) = -+ > do.
Step 2. For y; = ngl, compute a chain until a distinguished point d; found.

Criy e fly) = f(f(yr)) = - da.

If we have a collision d; = dy, then it reveals a discrete logarithm k.
Otherwise, set yj = y; - gX~ for known z and use it as a new starting point
to compute a new chain to obtain a collision.

Step 3. Once we have found the discrete logarithm k1, . . ., k;, then one iteratively
computes the next discrete logarithm k;;; as follows: Compute a chain as
Step 2 with a starting point y; 1 until a distinguished point d;; is found.
Then try to find a collision d;y; = d; for some 1 < j < 4. It reveals the

! In the paper [16], they indeed consider Pollard’s lambda algorithm rather than rho
algorithm.

discrete logarithm of y;41. If it fails, compute a chain again with a new

randomized starting point y/.; = y;41 - g% for known 2’.

By the analysis in [11], this algorithm has a running time of 6(\/L -N)
operations for L < ¢y N/4 (where 0 < ¢y < 1 is some constant depending on
N) with storage for O(L) elements of the distinguished points.

Remark 1. If we allow large amount of storage, then we have a deterministic
algorithm solving the DLPX based on the BSGS method.? It works for any
L > 0 as follows. First, choose an integer K = [1/N/L] and compute gXK't =

(t— K
(gXK (1))X forallt < +/L- N using O(v/L - N) group exponentiations and store

all of the elements. Then, for each i = 1,2,..., L, compute gxkr8 = (gxki)X for
all s < /N/L and find a collision with the stored elements. It takes O(L-+/N/L)
operations for all. If one has a collision, then we have k; = s+t - K for the indices
s and t corresponding to the collision.

Remark 2. There is a recent paper by [7] that claims that the MDLP can be
solved in O(vVL-N) for any L with small amount of storage. However, their
analysis (Section 2, [7]) seems somewhat questionable.

In their analysis, they essentially assumed that a collision occurs independently
from each different chains. The pseudo-random function, however, once it has
been fixed, it becomes deterministic and not random. For example, assume that
we have a collision between two chains, say C7 and Cs. If a new chain Cj3 also
collides with C, then it deterministically collides with Cs, too. This contradicts
with independency assumption. The event that the chain Cs connects to the
chain C5 should be independent whether C'5 is connected to C or not. This kind
of heuristic might be of no problem when L is much smaller than compared to
N. However, this is not the case for large L.

Several literatures focus on this rigour of pseudo-random function used in
Pollard’s algorithm. For further details on this, refer to [9].

3.3 Solving Multiple DLPwAI using Cheon’s algorithm

Combined with the results from Section 3.1 and Section 3.2, we propose an
algorithm solving the (1,d)-MDLPwALI in the case of d | p— 1. In Appendix A,
we explain that Cheon’s (p + 1)-algorithm does not help to solve the MDLPwALI
in the case of d | p+ 1.

Theorem 1 (Algorithm for (1,d)-MDLPwALI, d | p—1). Let the notations
as above. Let ai,...,ar be randomly chosen elements from Z,. Assume that
d|p—1. For L < min{cp/d(p/d)1/4,cdd1/4} (where 0 < cp/q,cq < 1 are some

constants on p/d and d respectively), given the elements g,g9% and gai‘j fori =

1,2,..., L, we have an algorithm that computes o; ’s in 6(\/L -p/d+VL - d) group
exponentiations with storage for O(L) elements in the set of the distinguished
points.

2 The proof is contributed by Mehdi Tibouchi.

Proof. Similarly as in Section 3.1, let H = (¢) = ((?) C G for a primitive element
¢ € F,. Since af € H, we have o = ¢~ for some ki, ..., k1, where k; € Z(p-1y/d>
and if we write oy = (%, then we have a;(™% = p™ for m; € Zy. Thus the
problem reduces of solving two multiple DLP in the exponent with instances
5,0 =g, gt = got and gt gt = (gon)¢ T, gh T = (gon)< T,
where £ and p are known. We compute a;’s as follows:

1. Given gi,gail = gikl et ,ga% = gka for k; € Z(p—1y/4, compute k;’s using
the algorithm in Section 3.2. It takes time O(+/L - p/d) with storage for O(L)
elements.

2. Given g®,..., g% and ki, ..., kg, compute ("*1,... (" in O(L) exponen-
tiations in IF,, and compute

—k m —k
= () g = ()

in O(L) exponentiations in G. ’
3. Compute my,...,mr € Zg from gt .., g""" using the algorithm in
Section 3.2. It takes time O(v/ L - d) with storage for O(L) elements.

The overall complexity is given by 5(\/L -p/d+VL -d+L).Since L < min{p/d, d}
by the assumption, i.e. L < min{\/L - p/d, V'L - d}, it is equivalent to O(+/L - p/d+
VI-d). 0

Remark 3. Note that we can replace the algorithm to solve the MDLPX used
in Step 1 and Step 3 with any algorithm solving the MDLPX. In that case,
the complexity solving the MDLPwAI totally depends on that of the algorithm
solving the MDLPX. For example, if we use the BSGS method described in
Remark 1, then the proposed algorithm solves the MDLPwAI for any L in time
complexity O(v/L - p/d+ v L -d+ L) with the same amount of storage.

mi

gll«

4 Multiple DLPwAI: Kim and Cheon’s algorithm

In this section, we propose an approach to solve the d-MDLPwAI. The idea is
basically based on Kim and Cheon’s algorithm [10]. To analyze the complexity,
we also need some discussion on non-uniform birthday problem.

4.1 Description of Algorithm

Let G = {(g) be a group of prime order p. For i = 1,2,..., L, let g, g™, ... ,g“f be
given. We choose a polynomial f(x) € Fp[z] of degree d and fix a positive integer
¢ which will be defined later. The proposed algorithm is described as follows:

Step 1. For each i, given g,gai,...,ga? and f(z), we compute and store a
constant number of sets each of which is of form

S; = {gf(m,lcu)7 o 7gf(7“i,z0¢i)}7

where 7; ;’s are randomly chosen from IF),.

Step 2. We also compute and store a constant number of sets each of which
consists of
S i= {g V)L T,

where sj’s are known random values from F,,.

Step 3. We construct a random graph with L vertices: we add an edge between
vertices ¢ and j, if S; and S; collide.

Step 4. If f(r; jo;) = f(sk) for some ¢, j and k, then «; is one of d roots of the
equation of degree d in variable «;:

f(rijou) — f(sk) = 0.

Step 5. If f(rijo;) = f(ry jroaq), for some ¢, 7,7 and j’, where o; is known,
then «; is one of d roots of the following equation of degree d in variable v :

Flair) = f(rijai) = frav jair) = 0.

We recover all o;’s when they are connected into a component with known
discrete logs. In the next subsection, we analyze the complexity of the proposed
algorithm more precisely.

4.2 Complexity Analysis
We analyze the complexity of the proposed algorithm.

Theorem 2 (Algorithm for d-MDLPwAI). Let the notations as above. Let
f(x) be a polynomial of degree d over F,. Define py = |{(z,y) € Fp x F, :
f(z) = f(y)}. Given g,g*,... g% fori=1,2,...,L, we have an algorithm
that computes all o;’s in O(max{~/L - p*/ps, L - d}) group exponentiations with
storage for O(/L -p?/py) elements in G.

Proof. Consider the complexity of each step in the proposed algorithm. Through-
out the paper, we denote M (d) by the time complexity multiplying two poly-
nomials of degree d over F,, (typically, we will take M (d) = O(dlog dloglog d)
using the Schénhage-Strassen method).

In Step 2, we compute f(s1),...,f(s¢) using fast multipoint evaluation
method. Tt takes O(¢/d - M(d)logd) = O(£log®dloglogd) operations in F,
if ¢ > d. Otherwise, the cost is bounded by O(M (d)logd) = O(dlog® dloglog d)
operations in F,. Then compute gl gf0) in O(¥¢) exponentiations in G.

In Step 1, we use fast multipoint evaluation method in the exponent as
described in [10, Theorem 2.1], which is the following: given g, ... g where
F; is the coefficient of z* of a polynomial F'(z) € F,[z], and given random elements
r1,...,rq € Fp, it computes gt . gFra) in O(M(d)logd) operations in G.

In our case, for given g, g%, ... ,go‘g and f(x) = ap+- - -+aqr?, we set fi(z) =
flaiz) = ap + (a1a)z + - - + (agad)z? and compute g, (g%)4, ..., (go‘f)ad in
O(d) exponentiations in G for each i. It totally costs O(L - d) exponentiations

forall i = 1,..., L. Applying Theorem 2.1 in [10] to each polynomial f;(x), if
¢ > d, we compute

S; = {gfi(T‘i,l)7 o 7gfi(7"i,é)} _ {gf(""i,lai)’ . 7gf(7"i,e0m:)}

in O(¢/d - M(d)logd) operations in G for each i. It costs O(L - £log? dloglog d)
operations overall for all ¢ = 1,..., L. Otherwise, if ¢ < d, then this step costs
O(L - dlog?loglog d) operations.

In Step 4 and Step 5, the cost takes O(M (d) log dlog(dp)) field operations on
average [18] to compute roots of equation of degree d over F,,. For each equation,
we need to find «; among at most d possible candidates. It takes O(d) operations.
These steps need to be done L times since we have L equations to be solved.

Consequently, to recover all a;’s, it takes overall O(max{L-¢, L-d}) operations
with O(L - ¢) storage. Now it remains to determine the value of ¢. To this end,
we need to clarify the probability of a collision between S; and S; (for i # j) in
Step 3. It leads us to consider non-uniform birthday problem of two types. We
will discuss on details for this in Appendix B.

We heuristically assume that the probability of a collision between S; and
S; in Step 3 is equiprobable for any ¢ # j and we denote this probability by
w.? By Corollary 1 in Appendix B, the probability is given by w = ©(¢% - ps/p*)
for large p. Then the expected number of edges in the graph in Step 3 will be

(é) W R %‘“ R % . ;—5. We require this value to be larger than 2L1n L to

connect all connected components in the graph (see [7]), i.e.

2
(> P L
pr L

If we take £ = 2,/ % . l“TL, the overall time complexity becomes (without log
terms) O(max{L - (,L - d}) = O (max{\/L -p?/ps, L+ d}) with storage for
O(L-) = O(\/T - p*/py) elements in G. O

Remark 4. In general, the computation of p; seems relatively not so obvious.
However, for some functions f which are useful for our purpose, it can be efficiently
computable. See Section 4.3.

IfL < %, then the time complexity of the algorithm is given by 6(\ /L-p?/py).

Note that this value is always between 5(L-E) and O(vVL-p). In the next
subsection, we observe that one can find polynomials f with py ~ C'- dp for some

constant C' in the case of d | p £ 1. In such cases, the proposed algorithm has a

running time of 5(L -p/d) whenever L < &

It should be compared that application of Cheon’s (p + 1)-algorithm failed

to achieve the lower bound complexity O(y/L - p/d) in the case of d | p+ 1 (see
Appendix A).

3 The assumption is reasonable, since every exponents of the elements in S;’s are
randomly chosen from [y, i.e. the sets S;’s are independent from each other. Observe
that this does not conflict with Remark 2.

4.3 Explicit Choices of Polynomials for Efficient Algorithms in the
Caseofd|p+£1

For efficiency of the algorithm, we require a polynomial f(x) with large py. In
particular, py becomes larger as the map x — f(z), restricted on F,, or a large
subset of I, has a smaller value set. See the examples below. For details on
choices of these polynomials, refer to [10].

d|p—1 Case. Let f(r) = 2% Then the map by f is d-to-1 except at = = 0.
Then we have py = 1+d(p—1) ~ dp. In this case, the complexity of our algorithm

becomes 6(\/L -p/d) for L < p/d>.

d| p+ 1 Case. Let f(x) = Dg(z,a) be the Dickson polynomial for a nonzero
element a € F),, where

Ld/2]
d d—k _
D D (i (ST

k=0

If d | p+ 1, then by [8,12], we have py = % +O(d?) ~ . In this case, our
algorithm has the complexity of O(y/L - p/d) for L < p/(2d?).

5 Conclusion

In this paper, we proposed algorithms for the MDLPwAI based on two different
approaches. These algorithms cover all extensions of existing DLPwAI-solving
algorithms, since, up to our knowledge, there are only two (efficient) approaches
solving the DLPwAI: Cheon’s algorithm and Kim and Cheon’s algorithm.

_ Our analysis shows that our algorithms have the best running time of either
O(max{\/L-p/d,V'L-d}) when d | p — 1, or O(max{\/L-p/d,L - d}) when
d | p+ 1. It shows that the choice of the prime p should be chosen carefully so
that both of p+ 1 and p — 1 have no small divisors. Readers might refer to [5,6]
for careful choices of such prime p.

However, our second algorithm is based on some heuristics and requires
relatively large amount of memory. Thus, it would be a challenging question
either to reduce the storage requirement in the algorithm, or to make the algorithm
more rigorous.

It would be also interesting to determine the lower bound complexity in the
generic group model for solving the multiple DLPwAI. A very recent result [19]
showed that at least £2(v/L - p) group operations are required to solve the L
multiple DLP in the generic group model. Recall that the generic lower bound
for the DLPwAI is 2(1/p/d). Then it is natural to ask the following questions.
What is the lower bound complexity in the generic group model to solve the
multiple DLPwAI? Do we need at least £2(\/L - p/d) operations for solving the
multiple DLPwAI?

10

A A Failed Approach for MDLPwAI when d | p+ 1

Fp2-Discrete Logarithm Problem in the Exponent To define Fj2-(M)DLPX,
we introduce the following definition.*

Definition 1. Let G = (g) be a group of prime order p. Let F,. = F,[0] =
Fplz]/(2* — k) for some quadratic non-residue r € F,. For v =~y + 116 € Fz,
we define g7 = (g7, g"*) with abuse of notations. For g := (go,g1) € G X G, we
define

g’ =" = (g5°97™" 95" 91°), where 6% = .

One can readily check that (g7)% = (g7°, g7)% = (g70do+r7d groditydoe) — g7
where § = 09 + 616. Now we define [F,2-(M)DLPX.

— The Fy2-Discrete Logarithm Problem in the Exponent (F,2-DLPX) in G is
defined as follows: Let x €)2 be an element of multiplicative order N, i.e.
N |p?—1. Given g € G and ¢X" € G x G and x € F,2, compute n € Zy.

— The Fp2-Multiple Discrete Logarithm Problem in the Exponent (F,2-MDLPX)
in G is: Given g € G, ¢X"',...,gX"" € G x G and y € Fp2, to solve
ni,...,ny € Zy. In both cases, the Fj2-(M)DLPX is said to be defined
over Zy.

Observe that generic approaches to solve the (M)DLPX described in Section 2
and Section 3.2 also apply to solve the F,2-(M)DLPX.

A failed approach when d | p + 1 We consider the MDLPwALI in the case
of d | p+ 1. Recall Cheon’s (p + 1) algorithm [5,6] which solves 2d-DLPwAL
Let g,go"i,...,ga?d, for i = 1,2,...,L, be given. We try to solve the prob-
lem as follows: For each i = 1,2,...,L, let 3; := (1 4+ a;0)P~' € F,2 = F,[0]
and let £ € Fp2 an element of multiplicative order (p + 1)/d. We compute
gi = g(lf"af)d and giki = gfg = (glol@i) gfo(@i)y for the given elements
g,9%,...,g°" where B = W{fo(ai) + f1(a;)0}. The remaining task
is to solve k1,...,kr € Z(pi1)/a- This translates to solve L instances of the
F,2-DLPX, say (gl,gfkl), (gg,gng), ce (gL,gikL). Note that, however, these L
instances cannot be solved efficiently in a batch computation based on our
MDLPX algorithms, since all the bases of the instances are not the same.

B Non-Uniform Birthday Problem: Girls and Boys

In this section, we consider the probability of a collision in Step 3, Section 4.1.
More generally, we consider non-uniform birthday problem of two types. The
main goal in this section is to prove the following theorem.

4 This notion can be found in [5,6] when he solves DLPwAI using Pollard’s lambda
algorithm. We simply formalize them.

11

Theorem 3. For a positive integer N and i € {1,2,..., N}, assume that the
probability of a randomly chosen element from the set {1,2,... N} to be i is w;.
Let Ty (respectively, Ts) be a set consisting of €1 (reps. l3) elements randomly
chosen from {1,2,..., N}. Then the probability w that Ty and Ty have an element
in common satisfies

€1€22w52w2€1€22w5—(€1<22)+€2(21>>wa
=1 =1 =1
0\ (6 [
G) o
i=1 1<i<j<N

Proof. For each i € {1,2,...,N}, let Bylh) be the event that two sets T7 and
T have the element ¢ in common. Then the probability w that T; and T5 have
at least one element in common is given by

w="Pr[B{"* y...uB{).

From now on, we shall omit superscript in Bi(llb) and simply denote it by B;.
To bound the value w, we use Bonferroni inequality,

iPr[Bi] - Y PrBinBj<w< ZN:Pr[Bi].‘E

1<i<j<N

We shall investigate bounds on Pr[B;] and Pr[B; N B,] in the followings.

For each i, the set T} with ¢; elements has the element ¢ with probability
1— (1 —w;)® and similarly for T,. Thus both of T} and T have the element i
with probability Pr[B;] = (1 —-(1- wi)él) . (1 -(1- wi)é"‘). Using the inequality
l—-nz<(1—-2)"< 1—nx+(;‘)x2 for 0 <z <1andn > 1, we have

(flwi — (£21)W12> . <€2wi — <€22>wl2) S PI‘[BJ S 5162 . w?.

Furthermore, we have Pr[B; N B;] < (g) (%’)w?w?, since Ty has the element 4

and j with probability at most (521)%% and similarly for T5.

® It is easy to check the lower bound inequality. Assume that Pr[B1 U Ba] > Pr[Bi] +
Pr[B;:] — Pr[B1 N Bz] (indeed the equality holds in this case). Then to see that

Pr[(B1 U BQ) U Bg] = PI"[B1 U Bz] + Pr[Bg] — Pl“[(Bl U BQ) N B3]
> PI”[Bl] + PI"[BQ] + Pr[Bg} . PI‘[Bl N BQ] . PI‘[B1 N B3] — PI"[BQ N Bg],

it is enough to check that
PI‘[(Bl U Bg) n Bg] = PI‘[(Bl n Bg) U (B2 N Bg)] S PI‘[Bl N B3] + PI‘[Bz N B3]

Now apply the induction on N.

12

Then the upper bound for w directly comes from the upper bound for Pr[B;]
and the lower bound comes from

w > XN:Pr[Bi] -) PiB;nB

1<i<j<N
N
2 2 2 2 4 2 2, 2
ZZ(Elwi—(2>wi)-<£2wi—<2)wi —Z 9 9 w; wj -
i=1 1<]
This concludes the proof. a

Corollary 1. Let W := Ef\il wf in Theorem 3. If £ =1 =4y = O (%) and

W — 0, we have

(PW)?
8

+O(¢%) <w < OCW.

Proof. Evaluating ¢ = ¢1 = {5 in the right most side of eq. (1), we have

N 200 1\2
wZEQW—KQ(E—l)Zw?—i—% (22(,()?—;1/‘/2)

=1

W —

N
1
> W -0 P (W)
> WY - ew)
i=1
In the first inequality, we used that >, wiw? = 3 [(Zz w?)z - wﬂ. To
see that 3> w? < O (ﬁ) it is enough to check that >, w? = Y, wiw; =
Siwi > wi— Dt wiw; <3, w? =W (recall that >, w; = 1). O
Return to our interest. Intrinsically, in our application (Section 4), we consider
the intersection between two sets Ty := {t1,...,t¢e} = {f(r1),..., f(re)} and
Ty = {th,....t;} = {f(r}),.... f(ry)} for a degree d polynomial f(z) € F,[z].

This can be regarded as non-uniform birthday problem described in Theorem 3
similarly as in [10]: An element ¢ € T (or ¢’ € T5) is randomly chosen from F,

with the probability ‘f%(t)l. Let R; := |{t € F, : |f~1(¢)| = i} for a non-negative
integer i. We have R; = 0 for ¢ > d since deg(f) = d. Then we might say that an
element in Ty (or T3) is drown by following the probability distribution (with
proper rearrange)

(wi,...,wp) = (’
Ro —_— —— —_—
Ry Ra Rq
4 i’R;
Then W =30 w? = 2**1}7; = Z—é, where py == [{(z,y) € FpxF, : f(z) =

F(@)}- In our case, we usually take £ = 2,/ % L — O(/1/W) (see the proof

13

of Theorem 3), where L is the constant given by the number of the target discrete
2 2

logarithms. Then, by Corollary 1, we roughly have ¢2W — % <w< 2w

for large enough p, i.e. w = O(FPW) (using x — 22/8 > (7/8)x for 0 < x < 1).

Consequently, this gives what we want for the analysis.

Acknowledgement. The author would like to thank Pierre-Alain Fouque, Soojin
Roh, Mehdi Tibouchi, and Aaram Yun for their valuable discussion. He also would
like to extend his appreciation to anonymous reviewers who further improved
this paper.

References

1.

10.

11.

12.

D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In C. Cachin and J. Camenisch, editors, Advances in
Cryptology - EUROCRYPT 2004, volume 3027 of LNCS, pages 223-238. Springer,
2004.

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume
3027 of LNCS, pages 56—73. Springer, 2004.

D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In V. Shoup, editor, Advances in Cryptology -
CRYPTO 2005, volume 3621 of LNCS, pages 258-275. Springer, 2005.

D. R. L. Brown and R. P. Gallant. The static Diffie-Hellman problem. IACR
Cryptology ePrint Archive, 2004. http://eprint.iacr.org/2004/306.

J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In S. Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, volume 4004 of LNCS, pages
1-11. Springer, 2006.

J. H. Cheon. Discrete logarithm problems with auxiliary inputs. J. Cryptology,
23(3):457-476, 2010.

P. Fouque, A. Joux, and C. Mavromati. Multi-user collisions: Applications to
discrete logarithm, even-mansour and PRINCE. In P. Sarkar and T. Iwata, editors,
ASIACRYPT 2014, volume 8873 of Lecture Notes in Computer Science, pages
420-438. Springer, 2014.

J. Gomez-Calderon and D. J. Madden. Polynomials with small value set over finite
fields. Journal of Number Theory, 28:167-188, 1988.

S. Kijima and R. Montenegro. Collision of random walks and a refined analysis of
attacks on the discrete logarithm problem. In J. Katz, editor, PKC 2015, volume
9020 of Lecture Notes in Computer Science, pages 127-149. Springer, 2015.

T. Kim and J. H. Cheon. A new approach to discrete logarithm problem with
auxiliary inputs. TACR Cryptology ePrint Archive, 2012. http://eprint.iacr.
org/2012/609.

F. Kuhn and R. Struik. Random walks revisited: Extensions of pollard’s rho
algorithm for computing multiple discrete logarithms. In S. Vaudenay and A. M.
Youssef, editors, Selected Areas in Cryptography 2001, volume 2259 of Lecture Notes
in Computer Science, pages 212-229. Springer, 2001.

D. A. Mit’kin. Polynomials with minimal set of values and the equation f(z) = f(y)
in a finite prime field. Matematicheskie Zametki, 38(1):3 —14, 1985.

14

http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2012/609
http://eprint.iacr.org/2012/609

13

14.

15.

16.

17.

18.

19.

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE transactions
on fundamentals of electronics, communications and computer sciences, 85(2):481—
484, 2002.

S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (corresp.). IEEE Transactions on
Information Theory, 24(1):106-110, 1978.

J. M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology,
13(4):437-447, 2000.

Y. Sakemi, T. Izu, M. Takenaka, and M. Yasuda. Solving a DLP with auxiliary
input with the p-algorithm. In S. Jung and M. Yung, editors, WISA 2011, volume
7115 of Lecture Notes in Computer Science, pages 98—108. Springer, 2011.

P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1-28, 1999.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2003.

A. Yun. Generic hardness of the multiple discrete logarithm problem. In E. Oswald
and M. Fischlin, editors, EUROCRYPT 2015, volume 9057 of Lecture Notes in
Computer Science, pages 817-836. Springer, 2015.

15

	Multiple Discrete Logarithm Problems with Auxiliary Inputs

