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Abstract. We construct both randomizable and strongly existentially
unforgeable structure-preserving signatures for messages consisting of
many group elements. To sign a message consisting of N = mn group el-
ements we have a verification key size of m group elements and signatures
contain n+2 elements. Verification of a signature requires evaluating n+1
pairing product equations.
We also investigate the case of fully structure-preserving signatures where
it is required that the secret signing key consists of group elements only.
We show a variant of our signature scheme allowing the signer to pick
part of the verification key at the time of signing is still secure. This
gives us both randomizable and strongly existentially unforgeable fully
structure-preserving signatures. In the fully structure preserving scheme
the verification key is a single group element, signatures contain m+n+1
group elements and verification requires evaluating n+1 pairing product
equations.

Keywords: Digital signatures, pairing-based cryptography, full structure-
preservation.

1 Introduction

Structure-preserving signatures are pairing-based signatures where verification
keys, messages and signatures all consist solely of group elements and the ver-
ification algorithm relies on generic group operations such as multiplications
and pairings to verify a signature. Structure-preserving signatures are interest-
ing because they compose well with other structure-preserving primitives such
as ElGamal encryption [ElG85] and Groth-Sahai proofs [GS12] for instance. By
combining different structure-preserving components it is possible to build ad-
vanced cryptographic schemes in a modular manner. Applications of structure-
preserving signatures include blind signatures [AFG+10,FV10], group signa-
tures [AFG+10,FV10,LPY12], homomorphic signatures [LPJY13,ALP13], del-
egatable anonymous credentials [Fuc11], compact verifiable shuffles [CKLM12],
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network encoding [ALP12], oblivious transfer [GH08,CDEN12], tightly secure
encryption [HJ12,ADK+13] and anonymous e-cash [ZLG12].

Since structure-preserving signatures are basic components when building
cryptographic schemes it is crucial to make them as efficient as possible. All
cryptographic protocols built on top of a structure-preserving signature scheme
will be affected by its efficiency. There has therefore been a significant amount
of research into finding barriers for how efficient structure-preserving signatures
can be and constructing schemes achieving these bounds. Abe et al. [AGHO11]
demonstrated a lower bound of 3 group elements for structure-preserving sig-
natures (using Type III pairings, which is the most efficient type) and found
matching constructions with 3 element signatures.

While the case of signing a single group element has been well studied, the
question of signing larger messages has received less attention. Most structure-
preserving schemes offering to sign many elements do so by increasing the size
of the verification key linearly in the message to be signed. One could of course
imagine chopping a large message into smaller pieces and signing each of them
individually and then sign the resulting signatures to bind them together. How-
ever, this approach incurs a multiplicative overhead proportional to the size of
the signatures we use, which due to the lower bound will be at least a factor 3.
Also, such constructions would require the use of many pairing product equations
in the verification of a signature.

Recently Abe et al. [AKOT15] introduced the notion of fully structure-
preserving signatures. In a fully structure-preserving signature scheme also the
secret key is required to consist of group elements only, which stands in contrast
to most current structure-preserving signature schemes where the secret key con-
sists of field elements. Fully structure-preservation is useful in several contexts, it
is for instance often the case in a PKI that to get a public key certified one must
demonstrate possession of a matching secret key. When the secret key consists
of group elements it becomes possible to use Groth-Sahai proofs to give efficient
proofs of knowledge of the secret key.

Abe et al. [AKOT15] also considered the question of signing messages that
consist of many group elements. Surprisingly they showed that one can give fully
structure-preserving signatures that only grow propotionately to the square root
of the message size. The reason this is remarkable is that in structure-preserving
signatures one cannot use collision-resistant hash-functions to reduce the mes-
sage size since they are structure-destroying and furthermore it is known that
size-reducing strictly structure-preserving commitments do not exist [AHO12].
They also showed a lower bound that says the combined length of the verifica-
tion key and the signature size must be at least the square root of the message
size, which holds regardless of whether the structure-preservation is full or not.

1.1 Our contribution

As we said earlier it is crucial to optimize efficiency of structure-preserving sig-
natures. In this paper we investigate the case of signing large messages and
present very efficient structure-preserving signature schemes for signing many



elements at once. Our signature schemes will be designed directly with large
messages in mind and therefore be more efficient than constructions relying on
the combination of multiple signature schemes.

We construct a structure-preserving signature scheme for messages consist-
ing of N = mn group elements. The verification key contains m elements and
the signature size is n+ 2 elements. This matches the best structure-preserving
signature schemes for a single group element, in which case we would have a
single group element verification key and a 3 element signature but unlike prior
constructions our signature scheme scales very well for large messages. The ver-
ification process involves n + 1 pairing product equations, so also this matches
state of the art for signing a single group element but scales well to handle larger
messages.

Depending on the context, it may be desirable to use a strong signature
scheme where it is not only infeasible to forge signatures on messages that have
not been seen before but it is also infeasible to create a new different signatures on
messages that have already been signed. In other circumstances, however, quite
the opposite may be the case and it may be desirable to have signatures that can
be randomized. In particular, when combining structure-preserving signatures
with Groth-Sahai proofs, randomizability may be desirable since some of the
signature elements can be revealed in the clear after being randomized.

Our signature scheme is very flexible in the sense that the same verification
key can be used for both strong signatures and randomizable signatures at the
same time. We define the notion of a combined signature scheme where the signer
can choose for each message whether to make the signature strongly unforgeable
or randomizable.

We also present a modified construction that is fully structure-preserving.
In order to get full structure-preservation it is necessary for the signer to know
discrete logarithms of group elements that are paired with the message since
she does not know the discrete logarithms of the group elements in the message.
Surprisingly this can be achieved in a simple way in our signature scheme by
letting the signer pick most of the verification key herself. Due to this property
we now get a fully structure-preserving signature scheme where the verification
key is just a single group element and the signature consists of m+ n+ 2 group
elements.

1.2 Related work

The name “structure-preserving signature” was coined by Abe et al. [AFG+10]
but there are earlier works giving structure-preserving signatures with the first
being [Gro06].

Abe et al. [AGHO11] gave the first 3 element signature scheme for fully
asymmetric pairings (Type III) and also proved that this is optimal. Abe et
al. [AGOT14] give 2 element signatures based on partially asymmetric pairings
(Type II) but Chatterjee and Menezes [CM15] showed that structure preserving
signatures in the partially asymmetric setting are less efficient than signatures
based on fully asymmetric pairings. In this paper we therefore only consider the



fully asymmetric setting, which gives the best efficiency and thus is the most
relevant case to consider.

A line of research [HJ12,ACD+12,ADK+13,LPY15,BCPW15] has worked on
basing structure-preserving signatures on standard assumptions such as the de-
cision Diffie-Hellman or the decision linear assumptions. The fully structure-
preserving signatures by Abe et al. [AKOT15] is based on the natural double
pairing assumption, which is implied by the DDH assumption. However, Abe et
al. [AGO11] has showed that 3 element signatures cannot be proven secure under
a non-interactive assumption using black-box reductions, so strong assumptions
are needed to get optimal efficiency. We will therefore base the security of our sig-
natures on the generic group model [Nec94,Sho97] instead of aiming for security
under a well-established assumption.

The signature scheme in Abe et al. [AGOT14] can be seen to be fully structure-
preserving. It is a 3 group element signature scheme and is selectively randomi-
azable. Selective randomizability means that signatures are strong but the signer
can choose to release a randomization token to make a signature randomizable.
This notion is different from our notion of a combined signature scheme where
the signer can choose to create randomizable or strong signatures. The advantage
of selective randomizable signatures is that all signatures are verified with the
same verification equation; the disadvantage is the need to issue randomization
tokens when making a signature randomizable.

As discussed earlier the most directly related work is by Abe et al. [AKOT15]
who introduced the notion of fully structure-preserving signatures and con-
structed a square root complexity scheme based on the double pairing assump-
tion. We give a detailed performance comparison in Table 1. If we use m ≈
n ≈

√
N their verification key contains 11 + 6

√
N group elements, signatures

contain 11 + 4
√
N group elements, and they require 5 +

√
N pairing product

equations to verify a signature. In comparison, our fully structure-preserving
signature scheme has a verification key with 1 group element, signatures consist
of 2 + 2

√
N group elements, and we use 1 +

√
N pairing product equations to

verify signatures.

Scheme Parameters Verification key Signature PPE

[AKOT15] 4 G1, 4 G2 1 G1, 10 + 3m+ 3n G2 7 +m+ n G1, 4 + 2n G2 5 + n
Our SPS 1 G1, n+ 1 G2 m G1 1 G1, 1 + n G2 1 + n

Our fully SPS 1 G1, n+m G2 1 G1 m G1, 1 + n G2 1 + n

Table 1. Comparison of structure-preserving signature schemes for messages consisting
of N = mn elements in G2. We display public parameter, verification key and signature
sizes measured in group elements in G1 and G2 and number of pairing product equations
required for verifying a signature. The public parameters also contain a description
of the bilinear group. The public parameters can be reused for other cryptographic
schemes so their cost can be amortized.



2 Preliminaries

2.1 Bilinear groups

Throughout the paper we let G be an asymmetric bilinear group generator that
on security parameter λ returns (p,G1,G2,GT , e,G,H) ← G(1λ) with the fol-
lowing properties:

– G1,G2,GT are groups of prime order p

– e : G1 ×G2 → GT is a bilinear map

– G generates G1, H generates G2 and e(G,H) generates GT
– There are efficient algorithms for computing group operations, evaluating

the bilinear map, comparing group elements and deciding membership of
the groups

In a bilinear group we refer to deciding group membership, computing group
operations in G1,G2 or GT , comparing group elements and evaluating the bilin-
ear map as the generic group operations. In the signature schemes we construct
we only use generic group operations.

Galbraith, Paterson and Smart [GPS08] distinguish between 3 types of bilin-
ear group generators. In the Type I setting (also called the symmetric setting)
G1 = G2, in the Type II setting there is an efficiently computable isomorphism
ψ : G2 → G1, and in the Type III setting no isomorphism that is efficiently
computable in either direction between the source groups exists. Throughout
the paper we will work in the Type III setting, which gives the most efficient
operations and therefore is most important setting.

It will be useful to use the notation of Escala et al. [EHK+13] that keeps track
of the discrete logarithm of group elements. They represent a group element X
in G1 by [x]1 when X = Gx and a group element Y in G2 as [y]2 when Y = Hy

and a group element Z ∈ GT as [z]T when Z = e(G,H)z. In this notation the
source group generators G and H are [1]1 and [1]2.

The advantage of using this notation is that it highights the underlying linear
algebra performed on the exponents when we do group operations. Multiplying
two group elements X,Y ∈ G1 to get XY for instance corresponds to [x]1+[y]1 =
[x + y]1. Exponentiation of X ∈ G1 with y ∈ Zp to get Xy can be written
y[x]1 = [yx]1. Using the bilinear map on X ∈ G1 and Y ∈ G2 to get e(X,Y ) can
be written as [x]1[y]2 = [xy]T .

We can represent vectors of group elements X = (X1, . . . , Xn) in G1 as [x]1.
The operations taking place in the groups have natural linear algebra equivalents,
e.g., exponentiation of a vector of group elements to a matrix of exponents to
get a new vector of group elements can be written [x]1A = [xA]1. A pairing
product

∏n
i=1 e(Xi, Yi) can be written [x]1 · [y]2 = [x · y]T . Exponentiation of

a number of group elements to the same exponent to get (Xa
1 , . . . , X

a
n) can be

written [x]1a = [xa]1.



2.2 Signature schemes

Our signature schemes work over an asymmetric bilinear group generated by G.
This group may be generated by the signer and included in the public verification
key. In many cryptographic schemes it is convenient for the signer to work on top
of a pre-existing bilinear group though. We will therefore in the description of our
signatures explicitly distinguish between a setup algorithm Setup that produces
public parameters pp and a key generation algorithm the signer uses to generate
her own keys. The setup algorithm we use in our paper generates a bilinear
group (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ). It then extends the description of the
bilinear group with additional randomly selected group elements. Our signature
scheme does not rely on knowledge of the discrete logarithms of these random
group elements, so the setup may be reused for many different signature schemes
and other cryptographic schemes.

A signature scheme (with setup algorithm Setup) consists of efficient algo-
rithms (Setup,Gen,Sign,Vfy).

Setup(1λ)→ pp: The setup algorithm generates public parameters pp. They
specify a message space Mpp.

Gen(pp)→ (vk, sk): The key generation algorithm takes public parameters pp
as input and returns a public verification key vk and a secret signing key sk.

Sign(pp, sk,m)→ σ: The signing algorithm takes a signing key sk and a mes-
sage m ∈Mpp as input and returns a signature σ.

Vfy(pp, vk,m, σ)→ 1/0: The verification algorithm takes the verification key
vk, a message m and a purported signature σ as input and returns either 1
(accept) or 0 (reject).

Definition 1 (Correctness). The signature scheme (Setup,Gen,Sign,Vfy)
is (perfectly) correct if for all security parameters k ∈ N

Pr

[
pp← Setup(1λ); (vk, sk)← Gen(pp)
m←Mpp;σ ← Sign(pp, sk,m)

: Vfy(pp, vk,m, σ) = 1

]
= 1.

2.3 Structure-preserving signature schemes

In this paper, we study structure-preserving signature schemes [AFG+10]. In a
structure-preserving signature scheme the verification key, the messages and the
signatures consist only of group elements from G1 and G2 and the verification
algorithm evaluates the signature by deciding group membership of elements in
the signature and by evaluating pairing product equations, which are equations
of the form ∏

i

∏
j

e(Xi, Xj)
aij = 1,

where X1, X2, . . . ∈ G1 are group elements appearing in pp, vk,m and σ and
a11, a12, . . . ∈ Z are constants.

Structure-preserving signatures are extremely versatile because they mix well
with other pairing-based protocols. Groth-Sahai proofs [GS12] are for instance



designed with pairing product equations in mind and can therefore easily be
applied to structure-preserving signatures.

Definition 2 (Structure-preserving signatures). A signature scheme is said
to be structure preserving over bilinear group generator G if

– public parameters include a bilinear group (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ),
– verification keys consist of group elements in G1 and G2,
– messages consist of group elements in G1 and G2,
– signatures consist of group elements in G1 and G2, and
– the verification algorithm only needs to decide membership in G1 and G2 and

evaluate pairing product equations.

Fully structure preserving signatures. Abe et al. [AKOT15] argue that in
several applications it is desirable that also the secret signing keys only contain
source group elements. They define a structure-preserving signature scheme to
be fully structure preserving if the signing key sk consists of group elements in
G1 and G2 and the correctness of the secret signing key with respect to the
public verification key can be verified using pairing product equations.

3 Randomizable and strongly unforgeable signatures

A signature scheme is said to be existentially unforgeable if it is infeasible to
forge a signature on a message that has not previously been signed. The standard
definition of existential unforgeability allows the adversary to modify an existing
signature on a message to a new signature on the same message. We say a
signature scheme is randomizable if it is possible to randomize a signature on a
message to get a new random signature on the same message. On the other hand,
we say a signature scheme is strongly unforgeable when it is also infeasible to
modify a signature, or more precisely it is infeasible to construct a valid message
and signature pair that has not previously been seen.

Both strong signatures and randomizable signatures have many uses. We
will therefore construct both strongly existentially unforgeable signatures and
randomizable signatures. To capture the best of both worlds, we will define a
combined signature scheme where the signer can decide whether a signature
should be randomizable or strongly unforgeable. Randomizable signatures are
constructed using signing algorithm Sign0 and verified by verification algorithm
Vfy0. Strongly unforgeable signatures are constructed using signing algorithm
Sign1 and verified by verification algorithm Vfy1.

A näıve combined signature scheme would have a verification key containing
two verification keys, one for randomizable signatures and one for strong signa-
tures. However, this solution has the disadvantage of increasing key size. Instead
we will in this paper construct a combined signature scheme where the verifi-
cation key is just a single group element that can be used to verify either type
of signature. This dual use of the verification key means that we must carefully



consider the security implications of combining two signature schemes though,
so we will now define a combined signature scheme.

A combined signature scheme (Setup,Gen,Sign0,Vfy0,Rand,Sign1,Vfy1)
consists of 7 probabilistic polynomial time algorithms as described below.

Setup(1λ, size)→ pp: The setup algorithm takes the security parameter λ and
description of the size of messages to be signed and generates public param-
eters. It defines a message space Mpp of messages that can be signed.

Gen(pp)→ (vk, sk): The key generation algorithm given public parameters gen-
erates a public verification key vk and a secret signing key sk.

Sign0(pp, sk,m)→ σ: The randomizable signature algorithm given the signing
key and a message m returns a randomizable signature σ.

Vfy0(pp, vk,m, σ)→ 1/0: The randomizable signature verification algorithm given
a message and a purported randomizable signature on it returns 1 if accept-
ing the signature and 0 if rejecting the signature.

Rand(pp, vk,m, σ)→ σ′: The randomization algorithm given a valid random-
izable signature on a message returns a new randomized signature on the
same message.

Sign1(pp, sk,m)→ σ: The strong signature algorithm given the signing key and
a message m returns a strongly unforgeable signature σ.

Vfy1(pp, vk,m, σ)→ 1/0: The strong signature verification algorithm given a
message and a purported strong signature on it returns 1 if accepting the
signature and 0 if rejecting the signature.

We say a combined signature scheme has perfect correctness if the constituent
randomizable and strongly unforgeable signature schemes (Setup,Gen,Sign0,Vfy0)
and (Setup,Gen,Sign1,Vfy1) both are perfectly correct.

The combined signatures are perfectly randomizable if a randomized signa-
ture looks exactly like a fresh signature on the same message.

Definition 3 (Perfect randomizability). The combined signature scheme is
perfectly randomizable if for all λ ∈ N and all stateful adversaries A

Pr

pp← Setup(1λ); (vk, sk)← Gen(pp)
m← A(pp, vk, sk);σ, σ0 ← Sign0(pp, sk,m)
σ1 ← Rand(pp, vk,m, σ); b← {0, 1}

: A(σ, σb) = b

 =
1

2
,

where A outputs m ∈Mpp.

To capture the attacks that can occur against a combined signature scheme,
we assume the adversary may arbitrarily query a signer for randomizable or
strong signatures. We want the signature scheme to be combined existentially
unforgeable in the sense that even seeing randomizable signatures does not help
in breaking strong existential unforgeability and on the other hand seeing strong
signatures does not help in producing randomizable signatures.

Definition 4 (Combined existential unforgeability under chosen mes-
sage attack). The combined signature scheme is combined existentially unforge-
able under adaptive chosen message attack (C-EUF-CMA) if for all probabilistic



polynomial time adversaries A

Pr

[
pp← Setup(1λ); (vk, sk)← Gen(pp)
(m,σ)← ASign0(pp,sk,·),Sign1(pp,sk,·)(pp, vk)

:
Vfy0(pp, vk,m, σ) = 1 ∧m /∈ Q0 or
Vfy1(pp, vk,m, σ) = 1 ∧ (m,σ) /∈ Q1

]
is negligible, where A outputs m ∈Mpp and always queries on messages inMpp

and Q0 is the set of messages that have been queried to Sign0 to get randomizable
signatures and Q1 is the set of message and signature pairs from queries to Sign1

to get strongly unforgeable signatures.

4 Structure-preserving combined signature scheme

Fig. 1 describes a structure-preserving combined signature scheme that can be
used to sign messages consisting of N = mn group elements in G2. It has a
verification key size of m group elements, a signature size of n+2 group elements,
and verification involves evaluating n+ 1 pairing product equations.

Setup(1λ,m, n)

gk = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ)
[y]2 ← Gn2
Return pp = (gk,m, n, [y]2)

Gen(pp)
u← Zm−1

p , v ← Zp
vk = ([u]1, [v]1)
sk = (u, v)
Return (vk, sk)

Signb(pp, sk, [M ]2)
z ← Z∗p
r = 1

z

[s]2 = z([y1]2 + [v]2)
[t]2 = z ((u, 1)[M ]2 + v[y]2 + bv[s]21)
Return σ = ([r]1, [s]2, [t]2)

Vfyb(pp, vk, [M ]2, σ)
Parse σ = ([r]1, [s]2, [t]2)
Return 1 if and only if

[M ]2 ∈ Gm×n2

[r]1 ∈ G1

[s]2 ∈ G2

[t]2 ∈ Gn2
[r]1[s]2 = [1]1[y1]2 + [v]1[1]2
[r]1[t]2 = [(u, 1)]1[M ]2 + [v]1[y]2 + b[v]1[s]21

Rand(pp, vk,M, σ)
Parse σ = ([r]1, [s]2, [t]2)
β ← Z∗p
[r′]1 = 1

β
[r]1

[s′]2 = β[s]2
[t′]2 = β[t]2
Return σ′ = ([r′]1, [s

′]2, [t
′]2)

Fig. 1. Structure-preserving combined signature scheme. The signature and verification
algorithms for randomizable and strongly unforgeable signatures, respectively, are quite
similar. We have there described them at the same time indicating the choice by b = 0
for randomizable signatures and b = 1 for strongly unforgeable signatures.

In order to explain some of the design principles underlying the construction,
let us first consider the special case where the message space is G2, i.e., we are
signing a single group element and N = m = n = 1. The setup includes a
random group element [y]2, the verification key consists of a single group element



[v]1, and both randomizable and strongly unforgeable signatures are of the form
σ = ([r]1, [s]2, [t]2).

For a randomizable signature there are two verification equations

[r]1[s]2 = [1]1[y]2 + [v]1[1]2 [r]1[t]2 = [1]1[m]2 + [v]1[y]2.

It is easy to see that we can randomize the factors in [r]1[s]2 and [r]1[t]2 into
( 1
β [r]1)(β[s]2) and ( 1

β [r]1)(β[t]2) without changing the products themselves, which
gives us randomizability of the signatures.

The first verification equation is designed to prevent the adversary from cre-
ating a forged signature from scratch after seeing the verification key only. An
adversary using only generic group operations can do no better than computing
[r]1 = ρ[1]1+ρv[v]1 and [s]2 = σ[1]2+σy[y]2 using known scalars ρ, ρv, σ, σy ∈ Zp.
Looking at the underlying discrete logarithms, the first verification equation then
corresponds to the polynomial equation

(ρ+ ρvv)(σ + σyy) = y + v

in the unknown discrete logarithms v and y. This equation is not solvable: Look-
ing at the ρvσv = v terms we see σ 6= 0. Looking at the ρσyy = y terms we see
ρ 6= 0. But this would leave us with a constant term ρσ 6= 0.

Now, what if the adversary instead of creating a signature from scratch tries
to modify an existing signature or combine many existing signatures? Well, due
to the randomness in the choice of z ← Z∗p in the signing protocol each signature
query will yield a signature with a different random [ri]1. As it turns out this
randomization used in each signature makes it hard for the adversary to combine
multiple signatures, or even modify one signature, in a meaningful way with
generic group operations. The intuition is that generic group operations allow
the adversary to take linear combinations of elements it has seen, however, the
verificaction equations are quadratic.

In order to prevent randomization and get strong existential unforgeabil-
ity the combined signature scheme modifies the latter verification equation by
adding a [v]1[s]2 term. This gives us the following verification equations for
strongly unforgeable signatures

[r]1[s]2 = [1]1[y]2 + [v]1[1]2 [r]1[t]2 = [1]1[m]2 + [v]1[y]2 + [v]1[s]2.

Now the randomization technique fails because a randomization of [s]2 means we
must change [t]2 in a way that counteracts this change in the second verification
equation. However, [t]2 is paired with [r]1 that also changes when [s]2 changes.
The adversary is therefore faced with a non-linear modification of the signatures
and gets stuck because generic group operations only enable it to do linear
modifications of signature elements.

We can extend the one-element signature scheme to sign a vector [m]2 with
m group elements in G2 by extending the verification key by m − 1 random
group elements [u]1 = [(u1, . . . , um−1)]1. Now the verification equations become

[r]1[s]2 = [1]1[y1]2 + [v]1[1]2 [r]1[t]2 = [(u, 1)]1 · [m]2 + [v]1[y]2 + b[v]1[s]2,



where b = 0 for a randomizable signature and b = 1 for a strong signature. The
idea is that the discrete logarithms of the elements in [u]1 are unknown to the
adversary making it hard to change either group element in a previously signed
message to get a new message that will verify under the same signature.

Finally, to sign mn group elements in G2 instead of m group elements we
keep the first verification equation, which does not involve the message, but add
n− 1 extra verification equations similar to the second verification equation for
a vector of group elements described above. This allows us to sign n vectors in
parallel. In order to avoid linear combinations of message vectors and signature
components being useful in other verification equations, we give each verification
equation a separate [v]1[yk]2 term, where k = 1, . . . , n is the number of the
verification equation.

Theorem 1. Fig. 1 gives a structure-preserving combined signature scheme that
is C-EUF-CMA secure in the generic group model.

Proof. Perfect correctness, perfect randomizability and structure-preservation
follows by inspection. What remains now is to prove that the signature scheme
is C-EUF-CMA secure in the generic group model. In the (Type III) generic
bilinear group model the adversary may compute new group elements in either
source group by taking arbitrary linear combinations of previously seen group
elements in the same source group. We shall see that no such linear combination
of group elements, viewed as formal Laurent polynomials in the variables picked
by the key generator and the signing oracle, yields an existential forgery. It fol-
lows along the lines of the Uber assumption of Boneh, Boyen and Goh [BBG05]
from the inability to produce forgeries when working with formal Laurent poly-
nomials that the signature scheme is C-EUF-CMA secure in the generic bilinear
group model.

Suppose the adversary makes q queries [Mi]2 ∈ Gm×n2 to get signatures

[ri]1 = [
1

zi
]1 [si]2 = [zi(y1+v)]2 [ti]2 = [zi ((u, 1)Mi + vy + biziv(y1 + v))]2,

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is
for a strong signature, and where Mi may depend on previously seen signature
elements in [sj ]2, [tj ]2 for j < i.

Viewed as Laurent polynomials we have that a signature ([r]1, [s]2, [t]2) gen-
erated by the adversary on [M ] ∈ Gm×n2 is of the form

r = ρ+ vρv + uρ>u +
∑
i

1

zi
ρri

s = σ + σyy
> +

∑
j

σsjzj(y1 + v) +
∑
j

σtjzj ((u, 1)Mj + vy + bjzjv(y1 + v)1)

t = τ + yTy +
∑
j

zj(y1 + v)τ sj +
∑
j

zj ((u, 1)Mj + vy + bjzjv(y1 + v)1)Ttj



Similarly, all mn entries in M can be written on a form similar to s and all
entries in queried matrices Mi can be written on a form similar to s where the
sums are bounded by j < i.

For the first verification equation to be satisfied we must have rs = y1 + v,
i.e.,(

ρ+ uρ>u
+vρv +

∑
i

1
zi
ρri

)(
σ + σyy

> +
∑
j σsjzj(y1 + v)

+
∑
j σtjzj

(
(u, 1)Mj + vy + bjvzj(y1 + v)1

)>) = y1+v

We start by noting that r 6= 0 since otherwise rs cannot have the term y1.
Please observe that it is only in G1 that we have terms including indeterminates
with negative power, i.e., 1

zi
. In G2 all indeterminates have positive power, i.e., so

sj , tj ,Mj only contain proper multi-variate polynomials. Now suppose for a mo-
ment that ρri = 0 for all i. Then in order not to have a terms involving zj ’s in rs

we must have
∑
j σsjzj(y1 +v) +

∑
j σtjzj ((u, 1)Mj + vy + bjvzj(y1 + v)1)

>
=

0. The term y1 now gives us ρσy,1 = 1 and the term v gives us ρvσ = 1. This
means ρ 6= 0 and σ 6= 0 and therefore we reach a contradiction since the con-
stant term should be ρσ = 0. We conclude that there must exist some ` for which
ρr` 6= 0.

Now we have the term ρr`σ
1
z`

= 0, which shows us σ = 0. The terms
ρr`σy,k

yk
z`

= 0 for k = 1, . . . , n give us σy = 0.
The polynomials corresponding to sj and tj contain the indeterminate zj

in all terms, so no linear combination of them can give us a term where the
indeterminate component is vyk for some k ∈ {1, . . . , n}. Since Mj is constructed
as a linear combination of elements in the verification key and components in
G2 from previously seen signatures, it too cannot contain a term where the
indeterminate component is vyk. The coefficient of

zj
z`
vyk is therefore ρr`σtj ,k = 0

and therefore σtj ,k = 0 for every j 6= ` and k ∈ {1, . . . , n}. This shows σtj = 0
for all j 6= `. Looking at the coefficients for vyk for k = 1, . . . , n we see that
σt` = 0 too.

The terms ρr`σsj
zj
zl
v give us σsj = 0 for all j 6= `. In order to get a coefficient

of 1 for the term y1 we see that σs` = 1
ρr`

, which is non-zero. Our analysis has

now shown that

s =
1

ρr`
z`(y1 + v).

Let us now analyze the structure of r. The term ρvσ`v
2z` = 0 gives us ρv = 0.

We know from our previous analysis that if there was a second i 6= ` for which
ρri 6= 0 then also σρ` = 0, which it is not. Therefore for all i 6= ` we have ρri = 0.
The term ρσs`z`y1 gives ρ = 0. The terms in σs`uz`vρ

>
u give us ρu = 0. Our

analysis therefore shows

r = ρr`
1

z`
.

We now turn to the second verification equation, which is rt1 = (u, 1)m> +
vy1 + bvs, where m> is the first column vector of M . The message vector is of



the form

m =
µ+ yMy +

∑
j µsjzj(y1 + v)

+
∑
j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)Mtj

where µ,Myµsj and Mtj are suitably sized vectors and matrices with entries
in Zp chosen by the adversary. Similarly, we can write out t1 = τ + τ yy

> +∑
j τsjzj(y1 + v) +

∑
j τ tjzj ((u, 1)Mj + vy + bjvzj(y1 + v)1) for elements and

suitably sized vectors τ, τ y, τsj , τ tj with entries in Zp chosen by the adversary.
Writing out the second verification equation we have

ρr`
1

z`

(
τ + τ yy

> +
∑
j τsjzj(y1 + v)

+
∑
j τ tjzj ((u, 1)Mj + vy + bjvzj(y1 + v)1)

)
= vy1 + bv

(
1

ρr`
z`(y1 + v)

)
+ (u, 1)

(
µ+ yMy +

∑
j µsjzj(y1 + v)

+
∑
j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)Mtj

)>
.

Looking at the coefficients of terms involving 1
z`

and yk
z`

we get τ = 0 and

τ y = 0. Looking at the terms in ρr`τ tj
zj
z`
vy we get τ tj = 0 for all j 6= `.

Similarly, the terms ρr`τsj
zj
z`
v give us τsj = 0 for all j 6= `. We are now left with

ρr` (τs`(y1 + v) + τ t` ((u, 1)M` + vy + b`vz`(y1 + v)1))

= vy1 + bv
1

ρr`
z`(y1 + v)

+ (u, 1)

(
µ+ yMy +

∑
j µsjzj(y1 + v)

+
∑
j zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)Mtj

)>
.

Terms involving zj and z2j must cancel out, so we can assume µsj = 0 and
Mtj = 0 for j > `. Since M` does not involve z` in any of its terms, we get from
the terms in (u, 1)z`vµ

>
s`

that µs` = 0. Since there can be no terms involving z2`
we get b`1M

>
t`

= 0. Looking at the coefficients for v we get τs` = 0. This leaves
us with

ρr`τ t` ((u, 1)M` + vy + b`vz`(y1 + v)1)
>

= vy1 + bv
1

ρr`
z`(y1 + v) + (u, 1)z` ((u, 1)M` + vy)Mt`)

>

+ (u, 1)

(
µ+ yMy +

∑
j<` µsjzj(y1 + v)

+
∑
j<` zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)Mtj

)>
.

Looking at the terms involving z`v
2 we see ρr`τ t`b`1

> = b 1
ρr`

. This cancels

out the first two parts involving z`. The only remaining terms involving z` now
give us Mt` = 0. This gives us

ρr`τ t` ((u, 1)M` + vy)
> − y1

= (u, 1)

(
µ+ yMy +

∑
j<` µ

(`)
sj zj(y1 + v)

+
∑
j<` zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)Mtj

)>



Looking at the terms in vy we now get ρr`τ t` = (1, 0, . . . , 0). Let the first
column vector of M` be m>` then we now have

(u, 1)m>` = (u, 1)m>.

Writing

m′ =
m` −m = µ′ + yM ′y +

∑
j<` µ

′
sjzj(y1 + v)

+
∑
j<` zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)M ′tj

we now have

(u, 1)

(
µ′ + yM ′y +

∑
j<` µ

′
sjzj(y1 + v)

+
∑
j<` zj ((u, 1)Mj + vy + bjvzj(y1 + v)1)M ′tj

)>
= 0.

The terms in (u, 1)µ′> tell us µ′ = 0. Looking at terms involving uiyk or yk
gives us M ′y = 0. Terms with z2j tell us bj1M

′
tj = 0 for all j. Terms in (u, 1)zjvµ

′
sj

tell us µ′sj = 0 for all j. Finally, terms in (u, 1)(vyM ′tj ) give us M ′tj = 0.
We have now deduced that m′ = 0 and therefore m` = m. This means the

first column in M for which the adversary has produced a signature is a copy of
the first column in the queried message M`. Using the same analysis on the last
n − 1 verification equations gives us that the other n − 1 columns also match.
This means a generic adversary can only produce valid signatures for previously
queried messages, so we have EUF-CMA security.

Finally, let us consider the case where b = 1, i.e., we are doing a strong
signature verification. We saw earlier that ρr`τ t`b`1

> = b` = b 1
ρr`

which can only

be satisfied if b` = 1 and ρr` = 1. This means s = s` and r = r` and M = M` and
therefore t = t`. So the generic adversary can only satisfy the strong verification
equation with b = 1 by copying both the message and signature from a previous
query with b` = 1.

On the other hand, if b = 0, i.e., we are verifying a randomizable signature,
we see from ρr`τ t`bl1

> = b` = b 1
ρr`

that b` = 0. So the adversary has randomized

a signature intended for randomization. ut

5 Fully structure-preserving combined signature scheme

The earlier structure-preserving signature scheme uses knowledge of the dis-
crete logarithms of [u]1 in a fundamental way since [t]2 contains a z(u, 1)[M ]2
component that could not be computed without these discrete logarithms. This
situation is common for all structure-preserving signature schemes for messages
that are vectors of group elements. The need to specify such discrete logarithms
in the signing key therefore prevents them from being fully structure-preserving.

Abe et al. [AKOT15] get around this problem by only pairing message group
elements with signature group elements where the signer knows the discrete
logarithms. Inspired by their work, we will let the signer pick [u]1 and include
it in the signature.



To make this idea work we first make a minor modification to our signature
scheme from before. We include a vector of m − 1 group elements [x]2 in the
setup and we modify [s]2 to have the form [s]2 = z([y1]2 + u · [x]2 + [v]2). The
first verification equation then becomes

[r]1[s]2 = [1]1[y1]2 + [u]1 · [x]2 + [v]1[1]2.

If this was the only modification we made it is not hard to see that the same
security proof we gave earlier will work again, we are only modifying the verifi-
cation equation by a random constant [u · x]T . The surprising thing though is
that the signature scheme remains secure if we let the signer pick the [u]1 part
of the verification key herself and include it in the signature.

Letting the signer pick [u]1 as part of the verification key means that she
can know their discrete logarithms. Since she also picks z ← Z∗p herself she can
now use linear operations to compute the z(u, 1)[M ]2 part of [t]2. Furthermore,
we have designed the scheme such that the rest can be computed with linear
operations as well. To make randomizable signatures the signer just needs to
know [v]2 and [vy]2. To make strong signatures she additionally needs to know
[vx]2 and [v2]2.

The resulting fully structure-preserving signature scheme is presented in
Fig. 2 and can be used to sign messages consisting of N = mn group elements
in G2. It has a verification key size of 1 group elements, a signature size of
m + n + 1 group elements, and verification involves evaluating n + 1 pairing
product equations.

Theorem 2. Fig. 2 gives a fully structure-preserving combined signature scheme
that is C-EUF-CMA secure in the generic group model.

Proof. Perfect correctness, perfect randomizability and structure-preservation
follows by inspection. The secret key sk = ([v]2, [vx]2, [vy]2, [v

2]2) consists of
m+ n+ 1 group elements and we can verify that it matches the verification key
vk = [v]1 by checking the pairing product equations

[v]1[1]2 = [1]1[v]2 [v]1[x]2 = [1]1[vx]2 [v]1[y]2 = [1]1[vy]2 [v]1[v]2 = [1]1[v2]2,

so the signature scheme is fully structure preserving.
What remains now is to prove that the signature scheme is C-EUF-CMA se-

cure in the generic group model. In the (Type III) generic bilinear group model
the adversary may compute new group elements in either source group by tak-
ing arbitrary linear combinations of previously seen group elements in the same
source group. We shall see that no such linear combination of group elements,
viewed as formal Laurent polynomials in the variables picked by the key genera-
tor and the signing oracle, yields an existential forgery. It follows along the lines
of the Uber assumption in [BBG05] this that the signature scheme is C-EUF-
CMA secure in the generic bilinear group model.

Suppose the adversary makes q queries [Mi]2 ∈ Gm×n2 to get signatures

[ui]1 [ri]1 = [
1

zi
]1 [si]2 = [zi(y1 + ui · x+ v)]2

[ti]2 = [zi ((ui, 1)Mi + vy + biziv(y1 + ui · x+ v))]2,



Setup(1λ,m, n)

gk = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ)
[x]2 ← Gm−1

2

[y]2 ← Gn2
Return pp = (gk, [x]2, [y]2)

Gen(pp)
v ← Zp
vk = [v]1
sk = ([v]2, [vx]2, [vy]2, [v

2]2)
Return (vk, sk)

Signb(pp, sk, [M ]2)
u← Zm−1

p , z ← Z∗p , r = 1
z

[s]2 = z([y1]2 + u · [x]2 + [v]2)

[t]2 = z

(
(u, 1)[M ]2 + [vy]2

+bz([vy1]2 + u · [vx]2 + [v2]2)1

)
Return σ = ([u]1, [r]1, [s]2, [t]2)

Vfyb(pp, vk, [M ]2, σ)
Parse σ = ([u]1, [r]1, [s]2, [t]2)
Return 1 if and only if

[M ]2 ∈ Gm×n2

[r]1 ∈ G1 , [u]1 ∈ Gm−1
1

[s]2 ∈ G2 , [t]2 ∈ Gn2
[r]1[s]2 = [1]1[y1]2 + [u]1 · [x]2 + [v]1[1]2
[r]1[t]2 = [(u, 1)]1[M ]2 + [v]1[y]2 + b[v]1[s]21

Rand(pp, vk,M, σ)
Parse σ = ([u]1, [r]1, [s]2, [t]2)
α← Zm−1

p

β ← Z∗p
[u′]1 = [u]1 +α[r]1
[r′]1 = 1

β
[r]1

[s′]2 = β([s]2 +α[x]2)
[t′]2 = β([t]2 + (α, 0)[M ]2)
Return σ′ = ([u′]1, [r

′]1, [s
′]2, [t

′]2)

Fig. 2. Fully structure-preserving combined signature scheme. Since they are quite sim-
ilar we have described the randomizable signature and the strongly unforgable signature
algorithms jointly. Setting b = 0 gives the algorithms for randomizable signatures and
setting b = 1 gives the algorithms for strongly unforgeable signatures.

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is
for a strong signature, and where Mi may depend on previously seen signature
elements in [sj ]2, [tj ]2 for j < i.

Viewed as Laurent polynomials we have that a signature ([u]1, [r]1, [s]2, [t]2)
generated by the adversary on [M ] ∈ Gm×n2 is of the form

u = α+ vαv +
∑
i

uiAi +
∑
i

1

zi
αri

r = ρ+ vρv +
∑
i

uiρ
>
ui

+
∑
i

1

zi
ρri

s = σ + σxx
> + σyy

> +
∑
j

σsjzj(y1 + ujx
> + v)

+
∑
j

σtjzj
(
(uj , 1)Mj + vy + bjzjv(y1 + ux> + v)1

)
t = τ + xTx + yTy +

∑
j

zj(y1 + ujx
> + v)τ sj

+
∑
j

zj
(
(uj , 1)Mj + vy + bjzjv(y1 + ux> + v)1

)
Ttj



Similarly, all mn entries in M can be written on a form similar to s and all
entries in queried matrices Mi can be written on a form similar to s where the
sums are bounded by j < i.

For the first verification equation to be satisfied we must have rs = y1 +
ux> + v, i.e.,(

ρ+
∑
i uiρ

>
ui

+vρv +
∑
i

1
zi
ρri

)
·

(
σ + σxx

> + σyy
> +

∑
j σsjzj(y1 + ujx

> + v)

+
∑
j σtjzj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)>)

= y1 +

(
α+ vαv +

∑
i

uiAi +
∑
i

1

zi
αri

)
x> + v

We start by noting that r 6= 0 since otherwise rs cannot have the term y1.
Please observe that it is only in G1 that we have terms including indeterminates
with negative power, i.e., 1

zi
. In G2 all indeterminates have positive power, i.e.,

so sj , tj ,Mj only contain proper multi-variate polynomials. Now suppose for a
moment that ρri = 0 for all i. Then in order not to have a terms involving zj ’s
in rs we must have∑
j

σsjzj(y1+ujx
>+v)+

∑
j

σtjzj
(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)>

= 0.

The term y1 now gives us ρσy,1 = 1 and the term v gives us ρvσ = 1. This means
ρ 6= 0 and σ 6= 0 and therefore we reach a contradiction since the constant term
should be ρσ = 0. We conclude that there must exist some ` for which ρr` 6= 0.

Now we have the term ρr`σ
1
z`

= 0, which shows us σ = 0. The terms
ρr`σy,k

yk
z`

= 0 for k = 1, . . . , n give us σy = 0.
The polynomials corresponding to sj and tj contain the indeterminate zj

in all terms, so no linear combination of them can give us a term where the
indeterminate component is vyk for some k ∈ {1, . . . , n}. Since Mj is constructed
as a linear combination of elements in the verification key and components in
G2 from previously seen signatures, it too cannot contain a term where the
indeterminate component is vyk. The coefficient of

zj
z`
vyk is therefore ρr`σtj ,k = 0

and therefore σtj ,k = 0 for every j 6= ` and k ∈ {1, . . . , n}. This shows σtj = 0
for all j 6= `. Looking at the coefficients for vyk for k = 1, . . . , n we see that
σt` = 0 too.

The terms ρr`σsj
zj
zl
v give us σsj = 0 for all j 6= `. In order to get a coefficient

of 1 for the term y1 we see that σs` = 1
ρr`

, which is non-zero. Our analysis has

now shown that

s = σxx
> +

1

ρr`
z`(y1 + u`x

> + v).

Let us now analyze the structure of r. The term ρvσ`v
2z` = 0 gives us ρv = 0.

We know from our previous analysis that if there was a second i 6= ` for which
ρri 6= 0 then also σρ` = 0, which it is not. Therefore for all i 6= ` we have ρri = 0.
The term ρσs`z`y1 gives ρ = 0. The terms in ρuiσs`uiz`v give us ρui = 0 for all



i. Our analysis therefore shows

r = ρr`
1

z`
.

Finally, having simplifed r and s analysing the terms in u gives us

u = u` + ρr`σx
1

z`
.

We now turn to the second verification equation, which is rt1 = (u, 1)m> +
vy1 + bvs, where m> is the first column vector of M . The message vector is of
the form

m =
µ+ xMx + yMy +

∑
j µsjzj(y1 + ujx

> + v)

+
∑
j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)
Mtj

,

where µ,Mx,Myµsj and Mtj are suitably sized vectors and matrices with entries
in Zp chosen by the adversary. Similarly, we can write out t1 = τ+τxx

>+τ yy
>+∑

j τsjzj(y1 + ujx
> + v) +

∑
j τ tjzj

(
(u, 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)

for elements and suitably sized vectors τ, τx, τ y, τsj , τ tj with entries in Zp chosen
by the adversary.

Writing out the second verification equation we have

ρr`
1

z`

(
τ + τxx

> + τ yy
> +

∑
j τsjzj(y1 + ujx

> + v)

+
∑
j τ tjzj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)>)

= vy1 + bv

(
σxx

> +
1

ρr`
z`(y1 + u`x

> + v)

)
+

(
u` + ρr`σx

1

z`
, 1

)(
µ+ xMx + yMy +

∑
j µsjzj(y1 + ujx

> + v)

+
∑
j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)
Mtj

)>
.

Looking at the coefficients of terms involving 1
z`

we get the following equalities

for all j 6= `: τ = σxµ
> ( 1

z`
), τx = σxM

>
x (xk

z`
), τ y = σxM

>
y (ykz` ), τsj =

σxµ
>
sj (

vzj
z`

), τ tj = σxT
>
tj (

vykzj
z`

). Cancelling out these terms we are left with

ρr`

(
τs`(y1 + u`x

> + v) + τ t`
(
(u`, 1)M` + vy + b`vz`(y1 + u`x

> + v)1
)>)

= vy1 + bv

(
σxx

> +
1

ρr`
z`(y1 + u`x

> + v)

)
+ ρr`σx

(
µs`(y1 + u`x

> + v) +
(
(u`, 1)M` + vy + b`vz`(y1 + u`x

> + v)1
)
Mt`

)>
+ (u`, 1)

(
µ+ xMx + yMy +

∑
j µsjzj(y1 + ujx

> + v)

+
∑
j zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)
Mtj

)>
.

Terms involving zj and z2j must cancel out, so we can assume µsj = 0 and
Mtj = 0 for j > `. Since M` does not involve z` in any of its terms, we get from



the terms in (u`, 1)z`vµ
>
s`

that µs` = 0. Since there can be no terms involving

z2` we get b`1M
>
t`

= 0. Looking at the coefficients for v we get τs` = σxµs` . This
leaves us with

ρr`τ t`
(
(u`, 1)M` + vy + b`vz`(y1 + u`x

> + v)1
)>

= vy1 + bv

(
σxx

> +
1

ρr`
z`(y1 + u`x

> + v)

)
+ ρr`σx (((u`, 1)M` + vy)Mt`)

>

+ (u`, 1)

(
µ+ xMx + yMy +

∑
j<` µsjzj(y1 + ujx

> + v)

+
∑
j<` zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)
Mtj

)>
+ (u`, 1)z` ((u`, 1)M` + vy)Mt`)

>
.

Looking at the terms involving z`v
2 we see ρr`τ t`b`1

> = b 1
ρr`

. The only

remaining terms involving z` now give us Mt` = 0. This gives us

ρr`τ t` ((u`, 1)M` + vy)
>

= vy1 + bvσxx
>

+ (u`, 1)

(
µ+ xMx + yMy +

∑
j<` µsjzj(y1 + ujx

> + v)

+
∑
j<` zj

(
(uj , 1)Mj + vy + bjvzj(y1 + ujx

> + v)1
)
Mtj

)>
Looking at the terms in vy we now get ρr`τ t` = (1, 0, . . . , 0). This means

(u`, 1)m>` = bσxx
>+ (u`, 1)m>, where m>` is the first column of M`. Looking

at the coefficients of vxk we see that if bσx = 0. Sincem` andm are independent
of u` this means m = m`.

A similar argument can applied to the remaining n−1 verification equations
showing us that in all columns M and M` match. This means M = M`, so the
signature scheme is existentially unforgeable both for randomizable signatures
and strong signatures.

Finally, let us consider the case where b = 1, i.e., we are doing a strong
signature verification. We have already seen that bσx = 0 so when b = 1 this
means σx = 0. Since ρr`τ t`b`1

> = b` = b 1
ρr`

we see that b` = 1 and ρr` = 1.

This means s = s` and r = r` and u = u` and M = M` and therefore t = t`.
So the generic adversary can only satisfy the strong verification equation with
b = 1 by copying both the message and signature from a previous query with
b` = 1.

On the other hand, if we have b = 0, i.e., we are verifying a randomizable
signature, we see from ρr`τ t`bl1

> = b` = b 1
ρr`

that b` = 0. So the adversary has

randomized a signature intended for randomization. ut
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[ALP13] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient com-
pletely context-hiding quotable and linearly homomorphic signatures. In
PKC, volume 7778 of Lecture Notes in Computer Science, pages 386–404,
2013.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-
cryption with constant size ciphertext. Cryptology ePrint Archive, Report
2005/015, 2005.

[BCPW15] Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck
Wee. Implicit zero-knowledge arguments and applications to the malicious
setting. In CRYPTO, volume 9216 of Lecture Notes in Computer Science,
pages 107–129, 2015.



[CDEN12] Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, and Gregory
Neven. Oblivious transfer with hidden access control from attribute-based
encryption. In SCN, volume 7485 of Lecture Notes in Computer Science,
pages 559–579, 2012.

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. Malleable proof systems and applications. In EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, pages 281–300, 2012.

[CM15] Sanjit Chatterjee and Alfred Menezes. Type 2 structure-preserving signa-
ture schemes revisited. In ASIACRYPT, 2015.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Vil-
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