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Abstract. It is well known that three and four rounds of balanced Feis-
tel cipher or Luby-Rackoff (LR) encryption for two blocks messages are
pseudorandom permutation (PRP) and strong pseudorandom permuta-
tion (SPRP) respectively. A block is n-bit long for some positive integer
n and a (possibly keyed) block-function is a nonlinear function map-
ping all blocks to themselves, e.g. blockcipher. XLS (eXtended Latin
Square) encryption defined over two block inputs with three blockcipher
calls was claimed to be SPRP. However, later Nandi showed that it is not
a SPRP. Motivating with these observations, we consider the following
questions in this paper: What is the minimum number of invocations of
block-functions required to achieve PRP or SPRP security over ` blocks
inputs? To answer this question, we consider all those length-preserving
encryption schemes, called linear encryption mode, for which only
nonlinear operations are block-functions. Here, we prove the following
results for these encryption schemes:

1. At least 2` (or 2`− 1) invocations of block-functions are required to
achieve SPRP (or PRP respectively). These bounds are also tight.

2. To achieve the above bound for PRP over ` > 1 blocks, either we
need at least two keys or it can not be inverse-free (i.e., need to apply
the inverses of block-functions in the decryption). In particular, we
show that a single-keyed inverse-free PRP needs 2` invocations of
block functions.

3. We show that 3-round LR using a single-keyed pseudorandom func-
tion (PRF) is PRP if we xor a block of input by a masking key.

Keywords: XLS, CMC, Luby-Rackoff, PRP, SPRP, Blockcipher.

1 Introduction

Block function. For all symmetric key algorithms, domains (sometimes, also
ranges) are desired to be sets of bit-strings of variable sizes. However, almost
all known methodologies, known as modes, use one or more (usually keyed)
functions defined over small and fixed lengths (e.g., blockcipher, compression
function, permutations in sponge constructions etc.) in a black-box manner. We
call a function from In := {0, 1}n (elements of the set are called blocks) to
itself a block function. Throughout the paper we fix a positive integer n. A
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keyed blockcipher is a popular example of block function. Multiplying (as a field
multiplication over In) an element by a secret key K can also be considered
to be a block function as it maps a block input x to K · x ∈ In. Outputs
of a streamcipher with one block seed, can also be viewed as a sequence of
execution of different block functions. In fact, any function mapping one block
to multiple blocks can be viewed as a sequence of executions of block functions.
Whereas, a function mapping multiple blocks to a single block can not be in
general expressed through block functions. For example, compression function,
or mapping (x, y) to (x + K) · (y + K) (known as pseudo dot-product) are not
examples of block functions as they take more than one block as an input.

Length-Preserving Encryption. An encryption algorithm is called length-
preserving if the the number of blocks in a plaintext and its corresponding ci-
phertext are same. A length-preserving encryption is called an enciphering
scheme. In addition with the theoretical interest, an enciphering scheme has
some practical applications. Among others, a popular application is disk-sector
encryption addressed by the “IEEE Security in Storage” Work Group P1619.
An enciphering scheme is said to be (S)PRP or (strong) pseudorandom permu-
tation [34, 35] if it is secure against adversaries making only plaintext queries (or
both plaintext, ciphertext queries respectively). The building block keyed block
function is assumed to be PRP or PRF (pseudorandom function [12]).

Linear Mode. In this paper we consider a wide class of enciphering schemes and
pseudorandom functions based on linear mode. Informally, a linear mode (LM)
is defined by an oracle algorithm which interacts with block functions (usually
keyed) as oracles such that all inputs of the block functions are computed through
some public linear functions (determined in the design) of the previous obtained
responses. Finally, the output is also computed through a public linear function
of all responses of block functions and the input.

This class is indeed a wide class of encryption algorithms. Most of the
known symmetric key encryptions, e.g., Luby-Rackoff (LR) [23, 28], Feistel type
Encryption Schemes [6, 17] CMC [15], EME [16, 13] HCTR [51, 9], TET [14],
HEH [47] etc. are some examples of enciphering schemes based on linear mode.
Almost all pseudorandom functions (e.g., CBC-MAC [5], PMAC [8], TMAC [22],
OMAC [18], DAG-based constructions [20], a sub-class of affine domain exten-
sion or ADE [29] etc.) are also based on linear mode. Thus, the linear mode
based keyed construction includes a wide class of symmetric key algorithms.

1.1 Brief Literature Survey

Now we briefly revisit the related results. Feistel structure is used to define dif-
ferent blockciphers e.g., Lucifer [50], DES etc. Later, Luby-Rackoff provides the
PRP and SPRP security analysis of this type of ciphers and since then it is
also popularly known as Luby-Rackoff (LR) cipher. In particular it was shown
that three and four round LR cipher are PRP and SPRP secure respectively.
Each round invokes exactly one block function. There are many results known
for security analysis of different rounds of LR and for different forms of Feistel
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structures [6, 40, 39, 28, 48]. Many results are known for reducing the key-sizes
(i.e. reusing the round keys [37, 38, 42, 46]). Nandi [28] has characterized that all
secure LR encryption schemes must have non-palindrome key-scheduling algo-
rithms. Thus, we cannot use one single key.

XLS [43] is proposed to construct a generic encryption scheme which takes
incomplete message blocks given that an encryption which can take complete
message blocks. A particular instantiation of XLS invokes three block functions
and claimed to be SPRP secure. However, the result is shown to be wrong [31]
and some of implications (e.g., COPA [2] which uses XLS) are shown very re-
cently [32]. Among all linear mode based length-preserving SPRP, the CMC and
four-round Luby-Rackoff require only 2` calls for encrypting ` blocks and others
requires more (e.g., EME requires 2`+ 1 calls etc.). Understanding optimality of
SPRP and PRP, in terms of the number of blockcipher or block function calls,
is our main motivation of this paper.

A class of authenticated encryption modes linear over the field was proposed
by Jutla [21]. This class is more restricted than our linear mode as the linearity
is considered over In instead of binary. In other words, only linear operation
is bit-wise xor (without having any rotation or permutation of bit positions,
multiplying by primitive element etc.). Jutla had shown that the number of
invocations of blockcipher calls plus the number of masking keys should be about
`+O(log2 `).

1.2 Our Contribution

(1) Optimality in PRP and SPRP. Lear Bahack in his submission of the
design called Julius [1] stated that 2` − 1 blockcipher encryptions are required
for achieving “simple linear mode” PRP over ` blocks. However, their result
is still unpublished and so formalizing the issue and proving such a statement
is yet to know. Moreover, no such claim is known for SPRP security. In this
paper we provide a formal definition of linear mode in section 3. In section 4, we
formally show that a linear mode based length-preserving PRP (or SPRP) over `
blocks must invoke block functions at least 2`−1 (or respectively, 2`) times. This
justifies why XLS or three rounds of Luby-Rackoff are not SPRP. This bound
is tight as three and four-rounds LR, CMC (for arbitrary block messages) etc.
achieve these bounds.

(2) Optimality in Single-key Inverse-Free PRP. Inverse-free encryptions [6,
17, 23, 19] like LR cipher are useful in terms of implementation as we do not need
to implement the inverse of the building-block for the combined implementation
of encryption and decryption. In section 5, we show that any linear-mode based
inverse-free single key length-preserving PRP over ` blocks requires at least 2`
invocations (which is actually same for SPRP constructions). This shows that
PRP and SPRP becomes equally costly for single-keyed inverse-free encryptions.
Although all distinguishers of our paper are differential distinguishers, the PRP
distinguisher for an inverse-free single key construction is different from the
above SPRP attacks.
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(3) Three-round single-PRF based LR with a masking is PRP. The
above observation says that to achieve inverse-free double-block PRP with three
invocations, we can use two independent PRF (e.g., the constructions in [28]
are such examples). Two independent keyed PRF may be more costly than one
keyed PRF due to key-scheduling or key set-up algorithms [10, 44]. In the later
part of the section 5, we show that the single PRF based three round LR is
indeed PRP if we simply mask one block of the input by a masking key.

Significance. Our above two distinguishing attacks provide a limitation on the
performance of a (inverse-free) length-preserving encryption or pseudorandom
function or permutation. This applies to a wide class of encryption algorithms
including online encryption, authenticated encryption (without any nonce) etc.
and so it has impact on designs and analysis in symmetric key cryptography.

Novelty of The Attack Idea. In [30] the minimum number of multiplica-
tions required to achieve ∆ universal hash has been proposed. Like all other
differential attacks (where zero differences are exploited), our PRP distinguisher
and the ∆U attack from [30] basically finds zero differences in the input of non-
linear functions for some executions. Basic intuition of our SPRP distinguishing
attack is also similar to that of the distinguishing attack of XLS. However, to
make all these applicable for general constructions, we need to find an appropri-
ate difference in queries. For this, we adopt methodologies from linear algebra.
The PRP distinguisher for single keyed inverse-free construction also exploits
zero differential propagation. However, to achieve zero differential in one more
block than expected (for a PRP distinguisher) is the tricky part of the attack.
This essentially allows to achieve a PRP distinguisher even if we invoke one extra
block function compared to usual PRP construction.

2 Preliminaries

A block matrix is a binary square matrix of size n. Let Mn(a, b) denote the set
of all partitioned matrices Ea×b (of size a× b as a block partitioned matrix and
of size an×bn as a binary matrix) whose (i, j)th entry, denoted E[i, j], is a block-
matrix for all i ∈ [1..a] = {1, . . . , a} and j ∈ [1..b]. The transpose of E, denoted
Etr, is applied as a binary matrix. Thus, Etr[i, j] = E[j, i]tr. Conventionally,
any matrix Ea×b is written as the following block-wise partition matrices

E =


E[1, 1] E[1, 2] · · · E[1, b]
E[2, 1] E[2, 2] · · · E[2, b]

...
...

...
...

E[a, 1] E[a, 2] · · · E[a, b]

 :=


E[1, ∗]
E[2, ∗]

...
E[a, ∗]

 :=
(
E[∗, 1] E[∗, 2] · · · E[∗, b]

)

where E[i, ∗] and E[∗, j] denote ith block-row and jth block-column respectively.
For 1 ≤ i ≤ j ≤ a, we also write E[i..j ; ∗] to mean the sub-matrix consisting
of all rows in between i and j. We simply write E[..j ; ∗] or E[i.. ; ∗] to denote
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E[1..j ; ∗] and E[i..a ; ∗] respectively. Similar notation for columns are defined.

Definition 1. A (square) matrix E ∈Mn(a, a) is called (block-wise) strictly
lower triangular if for all 1 ≤ i ≤ j ≤ a, E[i, j] = 0 (zero matrix).

For all x = (x1, . . . , xa) ∈ Ian, we define a linear function mapping a blocks to b
blocks as E ·x = (y1, . . . , yb). Here, we consider x and y as binary column vectors
(we follow this convention which should be understood from the context). So the
block matrix E[i, j] represents the contribution of xj to define yi. More formally,

yi = E[i, 1] · x1 + E[i, 2] · x2 + · · ·+ E[i, a] · xa, 1 ≤ i ≤ b.

If E is a strictly lower triangular matrix then yi is clearly functionally indepen-
dent of xi, . . . , xa, 1 ≤ i ≤ a. So if we associate yi uniquely to each xi (e.g.,
yi = ρ(xi) for some function ρ) then the choice of the vectors x and y satisfying
E ·x = y becomes unique. This observation is useful while we define intermediate
inputs and outputs of a black-box based construction.

2.1 Useful Properties of Matrices

It is well known that the maximum number of linearly independent (binary)
rows and columns of a matrix A ∈ Mn(s, t) are same and this number is called
rank of the matrix, denoted rank(A). So clearly we have rank(A) ≤ min{ns, nt}.
By using Gaussian elimination method, denoted x = solve(A, b), we can solve
for some x (not necessarily unique) of the system of solvable linear equations
A · x = b. By convention, whenever a non-zero solution exists it returns a non-
zero solution. Note that if wtr = solve(Atr, btr) then w · A = b (by applying
transpose). The following results are straightforward and so we skip the proofs.

Lemma 1. Let A ∈Mn(s, t) and r := rank(A).
(1) If r < ns (i.e. presence of row-dependency) then solve(Atr, 0) returns a

non-zero solution.
(2) Similarly for r < nt (i.e. presence of column-dependency) solve(A, 0)

returns a non-zero solution.
(3) Finally, let r = nt (i.e., full column rank) and b := A · w. Then,

solve(A, b) = w (i.e., w is also the unique solution).

Lemma 2. Suppose A ∈Mn(s, s) is a non-singular matrix, i.e., rank(A) = ns.
Let t < s and

B =

 A[..t, ∗] 0
0 A[..t, ∗]

A[t+ 1.., ∗] A[t+ 1.., ∗]


where 0 denotes the zero matrix of appropriate size. Then, rank(B) = n(s + t)
(i.e., full row-rank).
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2.2 Security Definitions and Notation

In this section we quickly recall the security definitions of fixed length keyed con-
structions. One can also extend the definitions for variable length constructions.

PRF. We call an oracle algorithm A (t, q)-algorithm if it makes at most q queries
and runs in time t. Let K be a key-space and f : K × Ian → Ibn be a (keyed)
function. We say that f is (q, t, ε)-PRF if for any (t, q)-algorithm A the prf-
distinguishing advantage

Advprf
f (A) := |Pr[AfK = 1;K

$← K]− Pr[Ag = 1; g
$← Func(a, b)]|

is at most ε where Func(a, b) denotes the set of all functions from Ian to Ibn. We
call randomly chosen g to be the (uniform) random function.

Notation. For notational simplicity, we skip the time parameter t which is
irrelevant in this paper. We also simply write Func := Func(1, 1) and Perm to
mean the set of all functions and permutations over In.

(S)PRP. A keyed permutation g over Ian is a function g : K× Ian → Ian such that
for all key k ∈ K, gk := g(K, ·) ∈ Perm(a) (the set of all permutations over Ian).
We denote the uniformly chosen permutation by Πa and call uniform random
permutation. A keyed permutation g is called (q, ε)-PRP if for any q-algorithm
A the prp-distinguishing advantage

Advprp
g (A) := |Pr[AgK(·) = 1;K

$← K]− Pr[AΠa = 1]|

is at most ε. By PRF-PRP switching lemma [4, 49], it is well known that |Advprf
f (A)−

Advprp
f (A)| ≤

(
q
2

)
2−n. We define the sprp-distinguishing advantage

Advsprp
f (A) := |Pr[AfK ,f−1

K = 1;K
$← K]− Pr[AΠa,Π−1

a = 1]|
and (q, ε)-SPRP.

2.3 Tools for Proving Security

Given a q-algorithm A interacting with an oracle O we denote the transcript
τ(AO) by the random vector ((X1, Y1), . . . , (Xq, Yq)) where Xi ∈ Ian and Yi ∈
Ibn are the ith query made by and response obtained by A respectively. The
following theorem, known as coefficient-H technique [36, 41] is very useful to
show a construction is PRP or SPRP. It has also been adapted in [7, 25]

Theorem 1 (Coefficient-H Technique). Let f : K × Ian → Ibn be a keyed
function and Vbad ⊆ (Ian × Ibn)q. Suppose

1. for all q-algorithm B, Pr[τ(BΓa,b) ∈ Vbad] ≤ ε1 and
2. for all τ = ((x1, y1), . . . , (xq, yq)) 6∈ Vbad,

Pr[fK(x1) = y1, . . . , fK(xq) = yq;K
$← K] ≥ (1− ε2)× 2−nbq.

Then, for all q-algorithm A, Advprf
f (A) ≤ ε1 + ε2.
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3 Linear Mode

3.1 Linear Query and Mode

A block matrix U ∈Mn(`, a+`) is called (a, `)-query function if U [∗ ; a+1..] is
block-wise strictly lower triangular. Here ` represents the number of queries and a
represents the number of blocks in the input. For any such query function, an in-
put X ∈ Ian, (and a tuple of ` functions ρ̃ = (ρ1, . . . , ρ`) over In), we can uniquely
define or associate u and v, called intermediate input and output vector
respectively, satisfying (1) U ·

(
X
v

)
= u and (2) ρ̃(u) := (ρ1(u1), . . . , ρ`(u`)) = v.

This can be easily shown by recursive definitions of ui’s and vi’s. More precisely,
ui is uniquely determined by v1, . . . , vi−1 andX (through the linear function) and
vi is uniquely determined by ui through ρi, for all 1 ≤ i ≤ `. Informally, a (a, b, `)-
linear mode is a mode which takes a blocks input and returns b blocks output
based on executing block functions building blocks (see Fig 1 for an illustration
of a linear mode). Formally, (a, b, `)-linear mode is defined by a block matrix
E ∈Mn(`+ b, `+ a) where E[1..` ; ∗] is a (a, `)-query function. For any `-tuple
of functions ρ̃ ∈ Func`, the corresponding linear-mode function Eρ̃ : Ian → Ibn is
defined as Eρ̃(X) = Y where

E ·
(
X
v

)
=

(
u
Y

)
, ρ̃(u) = v.

ρ1U [1, ∗]

X X

b b b

X

u1 v1
ρ2

v1

uℓ vℓu3
Yρℓ

X

v1 · · · vℓ−1

u2 v2
U [2, ∗] U [3, ∗] U [ℓ + 1.., ∗]

b11 1

Fig. 1: Linear Mode: Here U [i, ∗] means the ith block row which maps
(X, v1, . . . , vi−1, 0

`−i+1) to ui. Finally, U [`+1.. ; ∗] maps the input X and intermediate
output vector v to the output Y consisiting of b blocks.

So v is the intermediate output vector associated to the input X and the final
output Y := E[`+1.. ; ∗]·

(
X
v

)
, a linear function of v and X. Now we state a useful

differential property of linear mode. Note that the functions of ρ̃ are non-linear
and would be secret for the adversaries. So to obtain any information about
the intermediate input and output, we only can equate intermediate outputs
whenever two inputs collide for same function. Given any vectors x, x′ of same
size, we write ∆x to mean x⊕ x′ and ∆a.bx to mean (xa ⊕ x′a, . . . , xb ⊕ x′b). We
simply write ∆tx to mean ∆1..tx (the first t elements of ∆x).

Lemma 3. Suppose E[..t ; ∗] ·X = E[..t ; ∗] ·X ′ (i.e., E[..t ; ∗] ·∆X = 0). Let
Eρ̃(X) = Y , Eρ̃(X ′) = Y ′. Let v, v′ and u, u′ denote intermediate outputs and
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ρ1U [1, ∗] b b b

∆X

∆ = 0
ρt

∆vℓ
ρℓ

∆X

∆vt+1..ℓ−1

U [ℓ + 1.., ∗] ∆Y
b

U [t, ∗]
11

∆v1 = 0

∆X

∆vt−1 = 0

∆v..t−2 = 0

∆ = 0 ∆vt = 0
b b b

Fig. 2: Differential Patterm of the Linear Mode: We choose ∆X such that the first t
input differences of the ρ functions are zero. So the final difference ∆Y can be expressed
as the linear function of the rest of the differences ∆vt+1.. and ∆X.

inputs respectively associated with X and X ′ (for the function tuple ρ̃) respec-
tively. Then, ∆tu = ∆tv = 0t and

∆Y = E[`+ 1.. ; ..a] ·∆X + E[`+ 1.. ; a+ t+ 1..] ·∆vt+1...

Proof. Due to choice of X and X ′, by induction one can show that (u1, v1) =
(u′1, v

′
1), . . . (ut, vt) = (u′t, v

′
t) where u and u′ denote the intermediate inputs

associated with X and X ′ respectively (for the function tuple ρ̃). In other words,
∆tu = ∆tv = 0t. Now, Y = E[`+1.. ; a+1..] ·v+E[`+1.. ; ..a] ·X and similarly
Y ′ = E[`+ 1.. ; a+ 1..] · v′ +E[`+ 1.. ; ..a] ·X ′. The result is followed after we
add these two equations and using that ∆tv = 0t. ut

3.2 Keyed Constructions Based on Linear Mode

Keyed Linear Mode. Let F = F1 × · · · × Ff and k be a non-negative integer
where Fi ⊆ Func. A key-space K for any keyed function is of the form Ikn × F .
We call F the function-key space and Ikn masking-key space. Any function g is
also written as g+1.

Definition 2. Let µ : [1..`] → [1..f ], called key-assignment function, α :=
(α1, . . . , α`) ∈ {+1,−1}`, called inverse-assignment tuple. For any function-key
ρ = (ρ1, . . . , ρf ) ∈ F , we define ραµ := (ρα1

µ1
, . . . , ρα`µ` ). We denote the set of all

functions ραµ by Fαµ .

Here we implicitly assume that whenever αi = −1, ρµi is a permutation. If
α = 1`, we simply skip the notation α. In general, the presence of inverse call of
building blocks may be required when we consider decryption of keyed function.
For the encryption, or a keyed function where decryption is not defined, w.l.o.g.
we may assume that α = 1`.

Definition 3. A (k, a, b) keyed linear mode with key-space K, key-assignment
function µ, is a (a+k, b, `) linear mode E. For each key κ := (L, ρ) ∈ K := Ikn×F ,
we define a keyed function Eκ(P ) := Eρµ(L,P ).
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⊕

u1 = p1

ρ1

ua−1 = pa−1

⊕

ρa−1

v1 va−1

c1 = va

pa

b b b

ua

ρa

Fig. 3: The Simplified Structure of PMAC. The input is (p1, . . . , pa) and the output
is c1.

Keyed linear mode E is actually a linear mode with a part of the input is the
masking key and function tuples are also derived by reusing some keyed block
functions.

Example 1. Consider the simple variant of PMAC [8, 45] defined over Ian (see
Figure 3 above). Let (p1, . . . , pa) be the input.

1 ≤ i ≤ a− 1, ui = pi and ua = pa ⊕ (

a−1⊕
i=1

vi).

Finally the output is defined as c1 = va. Here ` = a and b = 1. There is no
masking key, i.e. k = 0 and f = a (all function-keys are independently chosen).
The key-assignment function µ is an identity function.

In a single function-key version of PMAC (with independent masking key),

we have f = 1 = k. The ui = αi ·L⊕pi for 1 ≤ i < a and ua = pa⊕(
⊕a−1

i=1 vi)⊕L.
Here the key-assignment function maps all indices to the key-index 1 (as there
is only one choice of key).

Affine Domain Extension or ADE [29]. As defined in [29], affine domain
extension over Ian is nothing but a (a, 1, `)-linear mode keyed function E such
that the key-space is K = F ⊆ Func, i.e., f = 1 (single function-key) and k = 0
(no masking key). Moreover, the final output is the response of the last oracle
call, i.e. v`. Like PMAC, the key-assignment function for ADE maps all indices to
the key-index 1. One can consider an injective padding rule and sequence of such
constructions indexed by a to incorporate variable length inputs. CBC-MAC [5],
PMAC [8, 24, 33], TMAC [22], OMAC [18, 27], DAG-based constructions [20]
etc. are some examples of ADE.

Length Preserving Linear Encryption Mode. A keyed linear mode E is
called length-preserving (LP) encryption if Eκ is encryption scheme and a = b.
In addition to these, we also assume that its decryption algorithm D is also a
keyed linear mode which is indeed true for all known linear encryption modes.
We first see an example below.
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Example 2. As an example, consider Luby-Rackoff (LR) keyed function with
three rounds using two random functions ρ1, ρ2, i.e. f = 2, a = b = 2 and
` = 3 (three invocations of the underlying block functions). Consider the key-
assignment function π with π1 = 1, π2 = 1 and π3 = 2. So the function tuple
after applying the key-assignment is (ρ1, ρ1, ρ2). As there is no masking key, we
have k = 0. So the key-space is Func2. Given (p1, p2) ∈ I2n we define

u1 := p1, v1 = ρ1(u1), u2 = v1 + p2, v2 = ρ1(u2), u3 = v2 + p1, v3 = ρ2(u3).

Finally, the output is (c1, c2) where c1 := u3 and c2 = v3 + u2. This is clearly
decryptable. Consider ui’s, vi’s and pi’s as variables. The ciphertext provides
two linear functions of these variables, namely u3 and v3 + u2. So u3 is in the
span. As u3 is in the span, v3 is also computable. Thus u2 is in the span of the
extended ciphertext including v3. Again v2 is computable and hence u1 := p1 is
in the extended span. Finally, p2 is in the span after including v1. So we see that
that decryption algorithm is also linear mode.

⊕u1 = p1
ρ1

p2

ρ1 ⊕

p1

ρ2
u2 u3v1 v2 v3

c1 = u3 c2 = v3 + u2

Fig. 4: LR with three round.

Decryption Algorithm of a Keyed Linear Encryption Mode. From the
above example, it is clear that the intermediate input outputs for the building
blocks would be same if we encrypt and then decrypt as we do in the correctness
condition: Dκ(Eκ(P )) = P . Informally, if some input-output does not arise in
the decryption then either this input-output is redundant in the encryption
computation or the correctness condition does not hold (due to randomness of the
output which has influence in the encryption but is not used in the decryption).
We now describe the details of a length preserving linear encryption mode for
which all invocations of block function calls are not redundant.

Definition 4 (reordering of vectors). Let α := (α1, . . . , α`) ∈ {1,−1}`, and
β = (β1, . . . , β`) be a permutation over [1..`]. A pair of vectors (w, z) ∈ I2`n is
(a, β)-reordering of a pair of vectors (u, v) ∈ I2`n if

(wi, zi) =

{
(uβi , vβi) if αi = 1,

(vβi , uβi) if αi = −1.
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Definition 5. A (k+a, a, `)-linear mode E is called linear-mode length-preserving
encryption with key-space K := Ikn ×F and key-assignment π if the correspond-
ing decryption algorithm D is also a (k + a, a, `)-linear mode with (1) an in-
verse assignment-tuple α := (α1, . . . , α`) ∈ {1,−1}` and (2) key-assignment
π′ := π ◦ β where β = (β1, . . . , β`) is a permutation over [1..`]. Moreover,
∀P ∈ Ian, L ∈ Ikn, ρ = (ρ1, . . . , ρf ) ∈ F ,

E ·

LP
v

 =

(
u
C

)
, ρπ1

(u1) = v1, . . . ρπ`(u`) = v` if and only if

D ·

LC
z

 =

(
w
P

)
, ρα1

π′1
(w1) = z1, . . . , ρ

α`
π′`

(w`) = z`

where (w, z) is (a, β)-reordering of (u, v).

The above definition implies that correctness condition of an encryption
Dρα

π′ (L,Eρ(L,P )) = P . In addition with the correctness condition, the inter-
mediate inputs and outputs for both encryption and decryption are simply re-
ordered. In Example 2 (given above), we have a = b = f = 2, ` = 3. For
the decryption algorithm, we execute the function in the reverse order and so
we set β1 = 3, β2 = 2, β1 = 3. So the key-assignment function for the de-
cryption is π′1 = 2, π′2 = 2, π′3 = 1. We do not need to apply inverse for the
decryption (it is called inverse-free) and so inverse-assignment tuple is 13. So if
(u1, v1), (u2, v2) and (u3, v3) are the intermediate input-output pairs for encryp-
tion then (u2, v3), (u2, v2) and (u1, v1) (reordering of the previous pairs) are the
intermediate input-output pairs for decryption.

Examples. EME [16], ELmE [11], AEZ [1], CMC [15] (these follow Encrypt-
Mix-Encrypt paradigm), Luby-Rackoff with a = b = 2, unbalanced Feistel [48,
17] etc. are some examples of length-preserving linear mode encryptions. HCBC1,
HCBC2 [3], Modified-HCBC’s, ELmD [1], MCBC [26], COPE [2] etc. are some
examples of online computable length-preserving encryptions based on linear
mode.

4 PRP and SPRP Distinguishing Attacks

Consider a length-preserving encryption scheme based on (k+a, a, `) linear mode
E. Now we show two main results in this section. Namely, we provide PRP
and SPRP distinguishing attacks on the encryption scheme if ` ≤ 2a − 2. and
` ≤ 2a− 1 respectively. Thus, it gives lower bound on the number of invocations
of building blocks for achieving PRP and SPRP security.

4.1 PRP Distinguishing Attack on E with ` = 2a − 2

Let us assume ` = 2a − 2. The attack can be trivially extended to all those
constructions with ` < 2a− 2. We recall that Eρ̃L(P ) = C if and only if
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E ·

LP
v

 =

(
u
C

)
, ρ̃(u) = v.

Distinguisher Dprp against (k + a, a, 2a− 2)-linear mode E.

1. step-1 (finding a suitable difference in a pair of plaintext queries): Let d ∈ Ian
be the non-zero solution of solve(E[..a−1 ; k+1..k+a], 0), i.e. E[..a−1 ; k+
1..k+ a] · d = 0. Such a non-zero solution exists as the number of columns is
more than that of rows (see lemma 1).

2. step-2 (make the queries with the difference obtained in step-1): Now the
distinguisher makes two queries 0a and d and obtains corresponding re-
sponses c = Eρ̃L(0) and c′ = Eρ̃L(d). Let

u1, v1, . . . , u2a−2, v2a−2, and u′1, v
′
1, . . . , u

′
2a−2, v

′
2a−2

denote the intermediate inputs outputs for the two queries respectively. By
lemma 2, we have 1 ≤ i ≤ a− 1, ui = u′i, vi = v′i and

∆c = E[2a− 1.. ; k + 1..(a+ k)] · d+ E[2a− 1.. ; 2a+ k..] ·∆va..
while it is interacting with the keyed construction.

3. step-3 (find a nullifier of unknown intermediate values): As the matrix
E[2a − 1.. ; 2a + k..] is a × (a − 1) matrix, we find a non-zero binary vec-
tor w ∈ {0, 1}na such that w · E[2a − 1.. ; 2a + k..] = 0. In particular,
w = solve(E[2a− 1.. ; 2a+ k..]tr, 0).

4. step-4 (the distinguisher event): If w ·∆c = w ·E[2a− 1.. ; k+ 1..(a+k)] ·d
then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

The distinguishing advantage of the above distinguisher D is at least 1/2
since for a random permutation w ·∆c = w ·E[2a− 1.. ; k + 1..(a+ k)] · d with
probability 1/2 whereas we have seen this holds with probability one for the
keyed construction. When a = 2, we know that LR with three rounds is PRP.
This shows the bound is tight at least for a = 2.

A Generalized Distinguisher Dgen
prp against (k + a, a, `)-linear mode E.

Now we define a distinguisher against (k+a, a, `)-linear mode E assuming certain
singularities in the sub-matrices.

Assumption: Suppose there exists an integer t such that

1. rank(E[..t ; ..a]) < na and

2. rank(E[`+ 1.. ; a+ k + t+ 1..]) < na.

Note the above assumption always holds for t = a − 1 when ` ≤ 2a − 2.
However, if ` ≥ 2a − 1, the both conditions not necessarily hold. Whenever
the assumptions hold, we have the following similar distinguisher as mentioned
before. This distinguisher would be used later on while describing SPRP distin-
guishers.

Distinguisher Dgen
prp against (k + a, a, `)-linear mode E.
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1. step-1. Due to the assumptions, we can find d and w such that E[..t ; ..a]) ·
d = 0 and w · E[`+ 1.. ; a+ k + t+ 1..] = 0.

2. step-2. Then we make two queries 0 and d and obtain responses c and c′.

3. step-3. The distinguisher returns 1 if w ·∆c = w ·E[`+1.. ; k+1..(a+k)] ·d,
else 0.

4.2 SPRP Distinguishing Attack on E with ` = 2a − 1

Now we show that if ` < 2a then we have a SPRP distinguisher. In other words,
2a many invocations is minimum to achieve SPRP and which is tight as it is
achieved in CMC. The basic intuition of our attack is similar to that of XLS.
However, to complete the attack for any linear-mode encryption we need to
carefully set the queries and distinguishing event. Consider a length-preserving
(k, a, 2a − 1)-encryption scheme based on (k + a, a, 2a − 1)-linear mode E. Let
us denote the (k+ a, a, 2a− 1)-linear mode for its decryption by D. We describe
three distinguishers depending on cases.

Case 1: rank(E[2a.. ; 2a + k..]) < na

In this case, the two assumptions, mentioned above, hold for t = a − 1. So
we can run the PRP-distinguisher Dgen

prp .

Case 2: rank(D[..a ; k + 1..k + a]) < na

In this case, the two assumptions also hold for t = a for the decryption func-
tion. So we run our general PRP distinguisher Dgen

prp applied to the decryption
function.

Case 3: rank(D[..a ; k+ 1..k+a]) = na, rank(E[2a.. ; 2a+ k..]) = na

Here we describe a SPRP distinguisher. Briefly, it works as follows. It first
makes two queries as in step-2 (the first a − 1 intermediate input and outputs
are identical for two encryption queries). Using the invertible property we can
actually obtain all the differences of intermediate values. As the computation of
decryption algorithm must use same internal input and outputs of the building
blocks, we also know the differences of intermediate inputs and outputs if we
decrypt the first two encryption queries. Now we find another decryption query
for which the first a intermediate input and output differences with one of the
first two queries are fixed. So we can nullify the unknown a− 1 differences and
obtain a distinguishing event. The details are described below.

Distinguisher Dsprp against (k + a, a, 2a− 1)-linear mode E.
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1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d ∈ Ian be the non-zero solution of solve(E[..a− 1 ; k + 1..k +
a], 0), i.e. E[..a− 1 ; k+ 1..k+ a] · d = 0. It makes two queries 0a and d and

obtains corresponding responses c = Eρ̃L(0) and c′ = Eρ̃L(d).

Let u1, v1, . . . , u2a−1, v2a−1 and u′1, v
′
1, . . . , u

′
2a−1, v

′
2a−1 denote the interme-

diate inputs outputs for the two queries respectively. By lemma 3, we have
1 ≤ i ≤ a− 1, ui = u′i, vi = v′i and

∆c = E[2a− 1.. ; k + 1..(a+ k)] · d+ E[2a.. ; 2a+ k..] ·∆va..

while it is interacting with the keyed construction.

2. step-2 (solve for ∆u, ∆v): Using the invertible property of E[2a.. ; 2a+k..],
we can actually solve ∆va.. and hence ∆ua... Thus, we know ∆u and ∆v. Sup-
pose we make two (redundant) decryption queries c and c′ (whose responses
must be 0 and d) and let w1, z1, . . . , w2a−1, z2a−1 and w′1, z

′
1, . . . , w

′
2a−1, z

′
2a−1

denote the intermediate inputs outputs for the two queries respectively. Then
by the definition of decryption algorithm we also know ∆w, ∆z which are
nothing but (β, π)-reordering of (∆u,∆v).

3. step-3 (find a difference for the final decryption query): Now we find a
difference d′ such that

D[..a ; k + 1..k + a+ 1] ·
(
d′

∆z1

)
=

(
∆w1

0a−1

)
.

We can solve for a non-zero d′. This can be solved assuming that ∆w1 6= 0
(see the remark below). Note that the matrix D[..a ; k+1..k+a] is invertible.

Now we make two decryption queries c̄ and c̄′ = c̄ + d′. While we set two
queries we should ensure that none of these have been obtained in the first
two encryption queries (these are also called non-pointless or non-trivial
queries). Let w̄1, z̄1, . . . , w̄2a−1, z̄2a−1 w̄

′
1, z̄
′
1, . . . , w̄

′
2a−1, z̄

′
2a−1 denote the in-

termediate inputs outputs for these two queries respectively and let p̄ and
p̄′ denote the corresponding responses. By choice of d′ we know that z̄1 = z̄′1
and ∆z̄2..a = 0a−1.

4. step-4 (find a nullifier of unknown intermediate values, same as PRP dis-
tinguisher): As D[2a.. ; 2a + k..] is a × (a − 1) matrix, we find a non-zero
binary vector w ∈ {0, 1}nb such that w ·D[2a− 1.., 2a+ k..] = 0.

5. step-5 (the distinguisher event): If w·(p̄⊕p̄′) = w·D[2a−1.. ; k+1..(a+k)]·d′
then it returns 1 (decision for the keyed construction), else returns 0 (decision
for uniform random permutation).

Remark 1. In the above attack we assume that ∆w1 6= 0 since otherwise we
do not get a non-zero d′. Note that ∆w1 can be written as a function of c and
c′. So for a random permutation, a function of c and c′ become zero has low
probability. So we may assume that the ∆w1 6= 0.
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5 Security Analysis of Inverse-free Single Key
Construction

5.1 PRP Attack of Single-Key Inverse-free Constructions without
Masking

In the last section, we have seen that to obtain PRP, we need at least 2a − 1
invocations and this is tight as three rounds of LR achieves this bound. Note
that the three calls of the building block can not have same key. In [28], it is also
shown that three rounds of LR-type rounds with same key building block can
not be PRP. However, their result is applicable to a specific form of encryption
schemes. Now, we generalize this result and show that any inverse-free single
function-key (and no masking key) PRP requires at least 2a calls. In [28], there is
a construction of inverse-free SPRP over two blocks invoking underlying function
(single keyed) four times. So the bound is tight. Interestingly, the cost of PRP and
SPRP become same when we want inverse-free single function-key constructions.

Consider a length-preserving encryption scheme based on (a, a, 2a−1)-linear
mode E. Let us denote the (a, a, 2a−1)-linear mode for its decryption byD. Since
it is inverse-free the inverse-assignment for the decryption is β = (1, 1, . . . , 1).
As it is based on single function-key, the key-assignment is a constant function,
i.e., πi = π′i = 1. However, there exists a permutation β over [1..2a − 1]. such
that w and z are π-reordering of u and v respectively where u, v denote the
intermediate input and output, respectively for Eρ(P ) = C and similarly w, z for
Dρ(C) = P . We first briefly describe how we can construct a PRP-distinguisher
(as like SPRP). The attack is similar to SPRP but we can not make decryption
queries. We see how we can manage even if we are not allowed to make decryption
queries.

We make two encryption queries such that ∆a−1u = ∆a−1v = 0a−1. This is
possible as we have a many plaintext blocks. Assuming some invertible property,
we can find out the whole differences ∆u and ∆v for these two queries. For these
two queries, if we look at the decryption computation then the first inputs, say
w1, w

′
1 and their corresponding output differences ∆z1 (not the exact outputs)

for both decryption are known (as there is no masking key). So now we make
two encryption queries with the the following restrictions on intermediate values
u, v, u′ and v′: u1 = w1, u

′
1 = w′1, ∆2..au = ∆2..au

′, ∆2..av = ∆2..av
′. As we have

obtained differences for the first a inputs in a determined manner, we can nullify
the remaining a − 1 intermediate differences and obtain a distinguishing event.
The more details of the attack is given below depending on different cases. Note
that the matrix E ∈Mn(3a− 1, 3a− 1).

Distinguisher Dprp against (a, a, 2a−1)-linear-mode E (with correspond-
ing decryption mode D.

Case 1: rank(E[2a.. ; 2a..]) < na In this case, the two assumptions, men-
tioned before, hold for t = a− 1. So we have our general PRP distinguisher.
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Case 2: rank(E[1..a ; ..a]) < na In this case, the two assumptions also hold
for t = a. So we have our general PRP distinguisher.

Case 3: rank(E[1..a ; ..a]) = na, rank(E[2a.. ; 2a..]) = na Here we
describe a PRP distinguisher which works similar to SPRP distinguisher and as
described above.

1. step-1 (make two queries with a certain difference, same as PRP distin-
guisher): Let d ∈ Ian be the non-zero solution of solve(E[..a− 1 ; ..a], 0), i.e.
E[..a−1 ; ..a]·d = 0. It makes two queries 0a and d and obtains corresponding
responses c = Eρ(0) and c′ = Eρ(d).
Let u1, v1, . . . , u2a−1, v2a−1 and u′1, v

′
1, . . . , u

′
2a−1, v

′
2a−1 denote the interme-

diate inputs outputs for the two queries respectively. By lemma 3, we have
1 ≤ i ≤ a− 1, ui = u′i, vi = v′i and

∆c = E[2a.. ; ..a] · d+ E[2a.. ; 2a..] ·∆va..
while it is interacting with the keyed construction.

2. step-2 (solve for ∆u, ∆v): Using the invertible property of E[2a.. ; 2a..],
we can actually solve ∆va.. and hence ∆ua... Thus, we know ∆u and ∆v.
Now note that the first input of decryption D is only based on c and c′. Let
β be the permutation corresponding to the reordering of intermediate input
outputs for decryption. So the values of uβ1 and u′β1

are known (as they
depend only on c and c′ due to no masking keys and inverse-free property).
Moreover, we know ∆vβ1

. Here we assume the difference ∆uβ1
is non-zero,

otherwise, we can have a different distinguishing event as zero difference can
occur with low probability for random permutation.

3. step-3 (find a difference for two more encryption queries): Now we find a
solution p and p′ such that E[1, ∗] 0

0 E[1, ∗]
E[2..a, ∗] E[2..a, ∗]

 · (p
p′

)
=

uβ1

u′β1

0

 .

This can be solved as it has full column rank (see Lemma 2). Now we make
two encryption queries p and p′ and obtain outputs c and c′. Let u, v, u′ and
v′ be the intermediate inputs and outputs for these two queries respectively.
So u1 = uβ1 , u

′
1 = u′β1

, ∆v1 = ∆vβ1 and ∆2..au = ∆2..av = 0a−1. Thus,
the a block output difference ∆c depends only on the a − 1 blocks of the
intermediate output difference ∆va+1...

4. step-4 (find a nullifier of unknown intermediate values, same as PRP dis-
tinguisher): As E[2a.. ; 2a + 1..] is a × (a − 1) matrix, we find a non-zero
binary vector w ∈ {0, 1}nb such that w · E[2a.., 2a+ 1..] = 0.

5. step-5 (the distinguisher event): If w · (p⊕ d) = w ·D[2a.. ; ..a] · d′ then it
returns 1 (decision for the keyed construction), else returns 0 (decision for
uniform random permutation).
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5.2 PRP security of Single-Key Luby-Rackoff with Masking

Define one round Luby-Rackoff LRf (a, b) = (b ⊕ f(a), a) where a, b ∈ In and
f ∈ Func(a, a). In [28] it was shown that three rounds of some variants LR
rounds with single function key is not PRP secure. In last section we have also
generalized and showed that any encryption making three calls over two blocks
input with key space K = F = Func(a) is not PRP secure. However, we now
show that a simple variant of LR with a masking key becomes PRP secure.

Definition 6. For any f ∈ Func(a), L ∈ In, we define (see the Fig. 5 below)

LRf,3L (a, b) = LRf (LRf (LRf (a+ L, b))).

⊕

a

⊕

b

⊕

⊕
c d

L

f

f

f

x

a+ L x+ b

x+ d

a+ c+ L

c

Fig. 5: LR-three rounds single function-key and one masking key.

Now we show that the above construction with key-space K = In × Func is
PRP. Note that we have constant key-assignment (i.e., we reuse the PRF for all
invocations) and also inverse assignment tuple is 13. Let f denote the uniform
random function on In. Given a tuple of elements c = (c1, . . . , ct) we say that
the event coll(c) holds if there exists i 6= j such that ci = cj . We define

Vbad = {((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) ∈ I4qn : coll(c)}.

It is easy to see that for random function Γ2 and a q-algorithm A,

Pr[τ(AΓ2) ∈ Vbad] ≤
(
q

2

)
2−n.
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Now we show the high interpolation probability of the variant of 3 round LR
construction.

Proposition 1. For all τ = ((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) 6∈ Vbad, we have

Pr[τ ] := Pr[LRf,3L (ai, bi) = (ci, di), 1 ≤ i ≤ q] ≥ (1− ε)2−2nq

where ε = 7q2

2n+1 .

Proof. We say that a tuple (L0, (xi)1≤i≤q) is admissible if

1. L0 6∈ {ai + cj ; 1 ≤ i, j ≤ q} ∪ {ai + xj ; 1 ≤ i, j ≤ q},
2. xi’s are distinct and xi 6= cj , 1 ≤ i, j ≤ q and
3. whenever ai = aj , we have xi + xj = bi + bj .

Let A denote the set of admissible tuples. Let q1 be the number of distinct
ai’s. The number of (L0, x = (x1, . . . , xq)), denoted N1,3, satisfying only (1) and
(3) is at least (2n − 2q2)× 2nq1 . So the number of admissible tuple is at least

(2n − 2q2)× 2nq1 − (2n − 2q2)× 2n(q1−1)3q2/2.

We mainly subtract the number of tuples satisfying (1) and (3) and not satisfying
(2) from N1,3. So the number of admissible tuple is at least 2n(q1+1)(1−ε) where

ε = 7q2

2n+1 .
Now, for any τ = ((a1, b1, c1, d1), . . . (aq, bq, cq, dq)) 6∈ Vbad we have

Pr[τ ] ≥
∑

(L0,x)∈A

Pr[τ,Xi = xi, L = L0] =
∑

(L0,x)∈A

2−n(q1+2q+1).

By using the lower bound of the number of admissible tuples we have

Pr[LRf,3L (ai, bi) = (ci, di), 1 ≤ i ≤ q] ≥ (1− 7q2

2n+1
)2−2nq. ut

Theorem 2. For any q-adversary, the PRP advantage Advprp

LRf,3L
against LRf,3L

is at most 4q2

2n .

Proof. Armed with the above result and using Coefficient-H technique the the-
orem follows. ut

6 Conclusion

In this paper, we justify formally why we do not have any length-preserving
PRP constructions more efficient than LR three rounds and length-preserving
SPRP constructions more efficient than CMC or four round LR (in terms of the
number of building block calls). We note that this optimality holds for all linear
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modes. We show that any such linear mode based constructions over ` blocks
requires at leat 2`− 1 blockcipher calls against chosen plaintext adversaries and
at least 2` blockcipher calls against chosen plaintext-ciphertext adversaries. This
bounds are clearly tight as we know some constructions achieving the bound.
Then we look into inverse-free single-key PRP constructions. Nandi has shown
that three blockcipher call is no longer sufficient for LR-type constructions over
two blocks (note that three call is sufficient using two independent PRF). We
extend this result and show that any `-block single-key inverse-free PRP must
require 2` calls like SPRP constructions. However, if we are allowed to use one
masking key then we can have inverse-free PRP construction invoking only three
blockcipher calls. We actually show that the three round LR using same keyed
PRF is PRP if we mask a plaintext block by a masking key.
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37. Jacques Patarin. New results on pseudorandom permutation generators based on
the des scheme. In Advances in Cryptology?CRYPTO?91, pages 301–312. Springer,
1992.

38. Jacques Patarin. How to construct pseudorandom and super pseudorandom
permutations from one single pseudorandom function. In Advances in Cryptol-
ogy?EUROCRYPT?92, pages 256–266. Springer, 1993.

39. Jacques Patarin. Generic attacks on feistel schemes. In Advances in Cryptolo-
gyASIACRYPT 2001, pages 222–238. Springer, 2001.

40. Jacques Patarin. Security of random feistel schemes with 5 or more rounds. In
Advances in Cryptology–CRYPTO 2004, pages 106–122. Springer, 2004.

41. Jacques Patarin. The coefficients h technique. In Selected Areas in Cryptography,
pages 328–345. Springer, 2009.

42. Josef Pieprzyk. How to construct pseudorandom permutations from single pseudo-
random functions. In Advances in Cryptology, EUROCRYPT-90, pages 140–150.
Springer, 1991.



22 Mridul Nandi

43. Thomas Ristenpart and Phillip Rogaway. How to enrich the message space of a
cipher. In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer
Science, pages 101–118. Springer, 2007.

44. Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. RC6 as the AES.
In AES Candidate Conference, pages 337–342, 2000.

45. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes ocb and pmac. In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

46. Babak Sadeghiyan and Josef Pieprzyk. A construction for super pseudorandom
permutations from a single pseudorandom function. In Advances in Cryptology,
EUROCRYPT-92, pages 267–284. Springer, 1993.

47. Palash Sarkar. Improving upon the tet mode of operation. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, ICISC, volume 4817 of Lecture Notes in Computer
Science, pages 180–192. Springer, 2007.

48. Bruce Schneier and John Kelsey. Unbalanced feistel networks and block cipher
design. In Fast Software Encryption, pages 121–144. Springer, 1996.

49. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

50. Arthur Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22–42, 1984.
51. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length

enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC,
volume 3822 of Lecture Notes in Computer Science, pages 175–188. Springer, 2005.


