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Abstract. We demonstrate a simple, statistically secure, ORAM with compu-
tational overhead O(log2 n); previous ORAM protocols achieve only compu-
tational security (under computational assumptions) or require fZ(log3 n) over-
heard. An additional benefit of our ORAM is its conceptual simplicity, which
makes it easy to implement in both software and (commercially available) hard-
ware.

Our construction is based on recent ORAM constructions due to Shi, Chan, Ste-
fanov, and Li (Asiacrypt 2011) and Stefanov and Shi (ArXiv 2012), but with some
crucial modifications in the algorithm that simplifies the ORAM and enable our
analysis. A central component in our analysis is reducing the analysis of our al-
gorithm to a “supermarket” problem; of independent interest (and of importance
to our analysis,) we provide an upper bound on the rate of “upset” customers in
the “supermarket” problem.

1 Introduction

In this paper we consider constructions of Oblivious RAM (ORAM) [10,11]. Roughly
speaking, an ORAM enables executing a RAM program while hiding the access pat-
tern to the memory. ORAM have several fundamental applications (see e.g. [11,24] for
further discussion). Since the seminal works for Goldreich [10] and Goldreich and Os-
trovksy [11], constructions of ORAM have been extensively studied. See, for example,
[32,33,1,25,12,6,27,2,13,29,15] and references therein. While the original constructions
only enjoyed “computational security” (under the the assumption that one-way func-
tions exists) and required a computational overhead of O(log3 n), more recent works
have overcome both of these barriers, but only individually. State of the art ORAMs
satisfy either of the following:
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— An overhead of O(log2 n)*, but only satisfies computational security, assuming the
existence of one-way functions. [25,12,15]
— Statistical security, but have an overhead of O(log3 n).[1,6,27,8,5].
A natural question is whether both of these barriers can be simultaneously overcome;
namely, does there exists a statistically secure ORAM with only O(log2 n) overhead?
In this work we answer this question in the affirmative, demonstrating the existence of
such an ORAM.

Theorem 1. There exists a statistically-secure ORAM with O(log®(n)) worst-case
computational overhead, constant memory overhead, and CPU cache size poly log(n),
where n is the memory size.

An additional benefit of our ORAM is its conceptual simplicity, which makes it
easy to implement in both software and (commercially available) hardware. (A software
implementation is available from the authors upon request.)

Our ORAM Construction A conceptual breakthrough in the construction of ORAMs
appeared in the recent work of Shi, Chan, Stefanov, and Li [27]. This work demon-
strated a statistically secure ORAM with overhead O(log® n) using a new “tree-based”
construction framework, which admits significantly simpler (and thus easier to imple-
mented) ORAM constructions (see also [8,5] for instantiations of this framework which
additionally enjoys an extremely simple proof of security).

On a high-level, each memory cell r accessed by the original RAM will be asso-
ciated with a random leaf pos in a binary tree; the position is specified by a so-called
“position map” Pos. Each node in the tree consists of a “bucket” which stores up to ¢ el-
ements. The content of memory cell » will be found inside one of the buckets along the
path from the root to the leaf pos; originally, it is put into the root, and later on, the con-
tent gets “pushed-down” through an eviction procedure—for instance, in the ORAM of
[5] (upon which we rely), the eviction procedure consists of “flushing” down memory
contents along a random path, while ensuring that each memory cell is still found on its
appropriate path from the root to its assigned leaf. (Furthermore, each time the content
of a memory cell is accessed, the content is removed from the tree, the memory cell is
assigned to a new random leaf, and the content is put back into the root).

In the work of [27] and its follow-ups [8,5], for the analysis to go through, the bucket
size £ is required to be w(logn). Stefanov and Shi [28] recently provided a different
instantiation of this framework which only uses constant size buckets, but instead relies
on a single poly log n size “stash” into which potential “overflows” (of the buckets in
the tree) are put;® Stefanov and Shi conjectured (but did not prove) security of such
a construction (when appropriately evicting elements from the “stash” along the path
traversed to access some memory cell).®

In this work, we follow the above-mentioned approaches, but with the following
high-level modifications:

* The best protocol achieves O(log? n/ loglogn).
5> We mention that the idea of using “stash” also appeared in the works [12,13,15,17].
6 Although different, the “flush” mechanism in [5] is inspired by this eviction method.



— We consider a binary tree where the bucket size of all internal buckets is O(log logn),
but all the leaf nodes still have bucket size w(logn).

— As in [28], we use a “stash” to store potential “overflows” from the bucket. In our
ORAM we refer to this as a “queue” as the main operation we require from it is
to insert and “pop” elements (as we explain shortly, we additionally need to be
able to find and remove any particular element from the queue; this can be easily
achieved using a standard hash table). Additionally, instead of inserting memory
cells directly into the tree, we insert them into the queue. When searching for a
memory cell, we first check whether the memory cell is found in the queue (in
which case it gets removed), and if not, we search for the memory cell in the binary
tree along the path from the root to the position dictated by the position map.

— Rather than just “flushing” once (as in [5]), we repeat the following procedure “pop
and random flush” procedure twice.

e We “pop” an element from the queue into the root.
e Next, we flush according to a geometrically distributed random variable with
expectation 2.’
We demonstrate that such an ORAM construction is both (statistically) secure, and only
has 2(log” n) overhead.

Our Analysis The key element in our analysis is reducing the security of our ORAM
to a “supermarket” problem. Supermarket problems were introduced by Mitzenmacher
[20] and have seen been well-studied (see e.g., [20,31,23,26,21]). We here consider a
simple version of a supermarket problem, but ask a new question: what is the rate of
“upset” customers in a supermarket problem: There are D cashiers in the supermarket,
all of which have empty queues in the beginning of the day. At each time step ¢: with
probability o < 1/2 a new customer arrives and chooses a random cashier® (and puts
himself in that cashiers queue); otherwise (i.e., with probability 1 — ) a random cashier
is chosen that “serves” the first customer in its queue (and the queue size is reduced by
one). We say that a customer is upset if he chooses a queue whose size exceeds some
bound ¢. What is the rate of upset customers?’

We provide an upper bound on the rate of upset customers relying on Chernoff
bounds for Markov chains [9,14,16,3]—more specifically, we develop a variant of tra-
ditional Chernoff bounds for Markov chains which apply also with “resets” (where at
each step, with some small probability, the distribution is reset to the stationary distri-
bution of the Markov chain), which may be of independent interest, and show how such
a Chernoff bound can be used in a rather straight-forward way to provide a bound on
the number of upset customers.

" Looking forward, our actual flush is a little bit different than the one in [5] in that we only pull
down a single element between any two consecutive nodes along the path, whereas in [5] all
elements that can be pulled down get flushed down.

8 Typically, in supermarket problems the customer chooses d random cashiers and picks the one
with the smallest queue; we here focus on the simple case when d = 1.

® Although we here consider a discrete-time version of the supermarket problem (since this is
the most relevant for our application), as we remark in Remark 1, our results apply also to the
more commonly studied continuous-time setting.



Intuitively, to reduce the security of our ORAM to the above-mentioned supermar-
ket problem, each cashier corresponds to a bucket on some particular level &k in the
tree, and the bound ¢ corresponds to the bucket size, customers correspond to elements
being placed in the buckets, and upset customers overflows. Note that for this transla-
tion to work it is important that the number of flushes in our ORAM is geometrically
distributed—this ensures that we can view the sequence of operations (i.e., “flushes”
that decrease bucket sizes, and “pops” that increase bucket sizes) as independently dis-
tributed as in the supermarket problem.

Independent Work In a very recent independent work, Stefanov, van Dijk, Shi, Fletcher,
Ren, Yu, and Devadas [30] prove security of the conjectured Path ORAM of [28].
This yields a ORAM with overhead O(log2 n), whereas our ORAM has overhead
O(log2 nloglogn)). On the other hand, the data structure required to implement our
queue is simpler than the one needed to implement the “stash” in the Path ORAM con-
struction. More precisely, we simply need a standard queue and a standard hash table
(both of which can be implemented using commodity hardware), whereas the “stash” in
[28,30,18] requires using a data structure that additionally supports sorting, or “range
queries” ( thus a binary search tree is needed), which may make implementations less
straightforward. We leave a more complete exploration of the benefits of these two in-
dependent approaches for future work.

In another concurrent work, Gentry, Goldman, Halevi, Jutla, Raykova, and Wichs
optimize the ORAM of [27]. In particular, they improve the memory overhead from
O(log n) to constant, but the time overhead remains O(log® n). We rely on their idea to
achieve constant memory overhead.

2 Preliminaries

A Random Access Machine (RAM) with memory size n consists of a CPU with a small
size cache (e.g., can store a constant or poly log(n) number of words) and an “external”
memory of size n. To simplify notation, a word is either L or a logn bit string.

The CPU executes a program I1 (given n and some input x) that can access the
memory by a Read(r) and Write(r, val) operations where r € [n] is an index to
a memory location, and wval is a word (of size logn). The sequence of memory cell
accesses by such read and write operations is referred to as the memory access pattern
of IT(n, z) and is denoted IT(n, z). (The CPU may also execute “standard” operations
on the registers, any may generate outputs).

Let us turn to defining an Oblivous RAM Compiler. This notion was first defined by
Goldreich [10] and Goldreich and Ostrovksy [11]. We recall a more succinct variant of
their definition due to [5].

Definition 1. A polynomial-time algorithm C'is an Oblivious RAM (ORAM) compiler
with computational overhead c(-) and memory overhead m(-), if C givenn € N and a
deterministic RAM program IT with memory-size n outputs a program II' with memory-
size m(n) - n such that for any input x, the running-time of I1'(n, x) is bounded by
c(n) - T where T is the running-time of II (n, x), and there exists a negligible function
W such that the following properties hold:



— Correctness: For any n € N and any string x € {0, 1}*, with probability at least
1—p(n), I(n,z) = ' (n,x).

— Obliviousness: For any two programs IIi, Ils, any n € N and any two in-
puts z1, x5 € {0,1}* if |ITIy(n,z1)| = |ITa(n,xs)|, then IT}(n,x1) is p-close
to IT}(n, x2) in statistical distance, where IT| = C(n, IT,) and II} = C(n, II,).

Note that the above definition (just as the definition of [11]) only requires an oblivi-
ous compilation of deterministic programs II. This is without loss of generality: we can
always view a randomized program as a deterministic one that receives random coins
as part of its input.

3 Our ORAM and Its Efficiency

This section presents the construction of our ORAM, followed by an analysis of its
efficiency.

3.1 The algorithm

Our ORAM data structure serves as a “big” memory table of size n and exposes the
following two interfaces.

— READ(r): the algorithm returns the value of memory cell r € [n].

— WRITE(r, v): the algorithm writes value v to memory cell , and returns the original

value of r.

We start by assuming that the ORAM is executed on a CPU with cache size is
2n/a+o(n) (in words) for a suitably large constant « (the reader may imagine o = 16).
Following the framework in [27], we can then reduce the cache size to O(poly logn)
by recursively applying the ORAM construction; we provide further details on this
transformation at the end of the section.

In what follows, we group each consecutive o« memory cells in the RAM into a
block and will thus have n/« blocks in total. We also index the blocks in the natural
way, i.e. the block that contains the first « memory cells in the table has index 0 and in
general the i-th block contains memory cells with addresses from ai to «(i + 1) — 1.

Our algorithm will always operate at the block level, i.e. memory cells in the same
block will always be read/written together. In addition to the content of its & memory
cells, each block is associated with two extra pieces of information. First, it stores the
index ¢ of the block. Second, it stores a “position” p that specify its storage “destination”
in the external memory, which we elaborate upon in the forthcoming paragraphs. In
other words, a block is of the form (i, p, val), where val is the content of its &z memory
cells.

Our ORAM construction relies on the following three main components.

1. A full binary tree at the in the external memory that serves as the primary media
to store the data.

2. A position map in the internal cache that helps us to search for items in the binary
tree.

3. A queue in the internal cache that is the secondary venue to store the data.



We now walk through each of the building blocks in details.

The full binary tree Tr. The depth of this full binary tree is set to be the smallest d
so that the number of leaves L = 27 is at least 2(n/a)/(lognloglogn) (i.e., L/2 <
2(n/a)/(lognloglogn) < L). (In[27,5] the number of leaves was set to n/«; here, we
instead follow [8] and make the tree slightly smaller—this makes the memory overhead
constant.) We index nodes in the tree by a binary strings of length at most d, where
the root is indexed by the empty string A, and each node indexed by ~ has left and
right children indexed 0 and 71, respectively. Each node is associated with a bucket.
A bucket in an internal node can store up to £ blocks, and a bucket in a leaf can store up
to ¢’ blocks, where £ and ¢’ are parameters to be determined later. The tree shall support
the following two atomic operations:
— READ(Node: v): the tree will return all the blocks in the bucket associated with v
to the cache.
— WRITE(Node: v, Blocks: b): the input is a node v and an array of blocks b (that
will fit into the bucket in node v). This operation will replace the bucket in the node
v by b.

The position map P. This data structure is an array that maps the indices of the blocks
to leaves in the full binary tree. Specifically, it supports the following atomic operations:
— READ(i): this function returns the position P[i] € [L] that corresponds to the block
with index 7 € [n/a].
— WRITE(, p): this function writes the position p to P[i].
We assume that the position map is initialized with value L.

The queue (). This data structure stores a queue of blocks with maximum size g ax, a
parameter to be determined later, and supports the following three atomic operations:

— INSERT(Block b): insert a block b into the queue.

— POPFRONT(): the first block in the queue is popped and returned.

— FIND(int: 4, word: p): if there is a block b with index ¢ and position p stored in the
queue, then FIND returns b and deletes it from the queue; otherwise, it returns L.
Note that in addition to the usual INSERT and POPFRONT operations, we also

require the queue to support a FIND operation that finds a given block, returns and
deletes it from the queue. This operation can be supported using a standard hash ta-
ble in conjunction with the queue. We mention that all three operations can be imple-
mented in time less than O(logn loglogn), and discuss the implementation details in
Appendix A.

Our Construction. We now are ready to describe our ORAM construction, which
relies the above atomic operations. Here, we shall focus on the read operation. The
algorithm for the write operation is analogous.

For two nodes u and v in Tr, we use path(u,v) to denote the (unique) path con-
necting v and v. Throughout the life cycle of our algorithm we maintain the following
block-path invariance.

Block-path Invariance: For any index i € [n/al, either P[i] = L and in
this case both Tr and the queue do not contain any block with index i, or there
exists a unique block b with index i that is located either in the queue, or in the
bucket of one of the nodes on path(\, P[i]) in Tr



We proceed to describe our READ(r) algorithm. At a high-level, READ(r) con-
sists of two sub-routines FETCH() and DEQUEUE(). READ(r) executes FETCH() and
DEQUEUE() once in order. Additionally, at the end of every log n invocations of READ(r),
one extra DEQUEUE() is executed. Roughly, FETCH() fetches the block b that contains
the memory cell r from either path(X, P[|r/«]]) in Tr or in @, then returns the value
of memory cell r, and finally inserts the block b to the queue (). On the other hand,
DEQUEUE() pops one block b from @, inserts b to the root A of Tr (provided there
is a room), and performs a random number of “FLUSH” actions that gradually moves
blocks in Tr down to the leaves.

Fetch: Let i = |r/«| be the index of the block b that contains the r-th memory cell,
and p = PJi] be the current position of b. If P[i] = L (which means that the
block is not initialized yet), let P[i] < [L] be a uniformly random leaf, create a
block b = (4, P[i], L), and insert b to the queue Q. Otherwise, FETCH performs
the following actions in order.

Fetch from tree Tr and queue Q: Search the block b with index ¢ along path(\, p)
in Tr by reading all buckets in path(A, p) once and writing them back. Also, search
the block b with index 4 and position p in the queue @ by invoking FIND(i, p). By
the block-path invariance, we must find the block b.

Update position map P. Let P[i] < [L] be a uniformly random leaf, and update
the position p = PJi] of b.

Insert to queue (: Insert the block b to Q.

Dequeue: This sub-routine consists of two actions PUT-BACK () and FLUSH(). It starts
by executing PUT-BACK() once, and then performs a random number of FLUSH()es
as follows: Let C' € {0, 1} be a biased coin with Pr [C' = 1] = 2/3. It samples C,
and if the outcome is 1, then it continues to perform one FLUSH() and sample an-
other independent copy of C, until the outcome is 0. (In other words, the number
of FLUSH() is a geometric random variable with parameter 2/3.)

Put-Back: This action moves a block from the queue, if any, to the root of Tr.
Specifically, we first invoke a POPFRONT(). If POPFRONT() returns a block b then
addbto \.

Flush : This procedure selects a random path (namely, the path connecting the root
to a random leaf p* «+ {0, 1}d) on the tree and tries to move the blocks along the
path down subject to the condition that the block always finds themselves on the
appropriate path from the root to their assigned leaf node (see the block-path invari-
ance condition). Let po(= \)pi...pq be the nodes along path(\, p*). We traverse
the path while carrying out the following operations for each node p; we visit: in
node p;, find the block that can be “pulled-down” as far as possible along the path
path(\, p*) (subject to the block-path invariance condition), and pull it down to
pit+1. For i < d, if there exists some 7 € {0, 1} such that p; contains more than
£/2 blocks that are assigned to leafs of the form p;||n||- (see also Figure 1 in Ap-
pendix),'0 then select an arbitrary such block b, remove it from the bucket p; and
invoke an OVERFLOW (b) procedure, which re-samples a uniformly random posi-

19 Here, a||b denotes the concatenation of string @ and b.



tion for the overflowed block b and inserts it back to the queue Q. (See the full
version of the paper [4] for the pseudocode.)

Finally, the algorithm aborts and terminates if one of the following two events hap-
pen throughout the execution.

Abort-queue : If the size of the queue () reaches g, then the algorithm aborts and
outputs ABORTQUEUE.

Abort-leaf : If the size of any leaf bucket reaches ¢’ (i.e., it becomes full), then the
algorithm aborts and outputs ABORTLEAF.

This completes the description of our READ(r) algorithm; the WRITE(r, v) algo-
rithm is defined in essentially identically the same way, except that instead of inserting
b into the queue @ (in the last step of FETCH), we insert a modified b’ where the content
of the memory cell r (inside b) has been updated to v.

It follows by inspection that the block-path invariance is preserved by our construc-
tion. Also, note that in the above algorithm, FETCH increases the size of the queue @) by
1 and PUT-BACK is executed twice which decreases the queue size by 2. On the other
hand, the FLUSH action may cause a few OVERFLOW events, and when an OVERFLOW
occurs, one block will be removed from Tr and inserted to (). Therefore, the size of the
queue changes by minus one plus the number of OVERFLOW for each READ operation.
The crux of our analysis is to show that the number of OVERFLOW is sufficiently small
in any given (short) period of time, except with negligible probability.

We remark that throughout this algorithm’s life cycle, there will be at most ¢ — 2
non-empty blocks in each internal node except when we invoke FLUSH(+), in which
case some intermediate states will have ¢ — 1 blocks in a bucket (which causes an
invocation of OVERFLOW).

Reducing the cache’s size. We now describe how the cache can be reduced to poly log(n)
via recursion [27]. The key observation here is that the position map shares the same
set of interfaces with our ORAM data structure. Thus, we may substitute the position
map with a (smaller) ORAM of size [n/«]. By recursively substituting the position map
O(logn) times, the size of the position map will be reduced to O(1).

A subtle issue here is that we need to update the position map when overflow oc-
curs (in addition to the update for the fetched block), which results in an access to the
recursive ORAM. This causes two problems. First, it reveals the time when overflow
occurs, which kills obliviousness. Second, since we may make more than one recursive
calls, the number of calls may blow up over O(log n) recursion levels.

To solve both problems, we instead defer the recursive calls for updating the posi-
tion map to the time when we perform PUT-BACK operations. It is not hard to check
that this does not hurt correctness. Recall that we do DEQUEUE once for each ORAM
access, and additionally do an extra DEQUEUE for every log n ORAM accesses (to keep
the cache size small). This is a deterministic pattern and hence restores obliviousness.
Also note that this implies only (logn) + 1 recursive calls are invoked for every logn
ORAM accesses. Thus, intuitively, the blow-up rate is (1 + (1/logn)) per level, and
only results in a constant blow up over O(log n) levels. More precisely, consider a pro-
gram execution with 7 ORAM access. It results in 7" - (1 + (1/logn)) access to the
second ORAM, and O(T') access to the final O(1) size ORAM.



Now, we need to be slightly more careful to avoid the following problem. It might
be possible that the one extra DEQUEUE occurs in multiple recursion levels simultane-
ous, resulting in unmanageable worst case running time. This problem can be avoided
readily by schedule the extra DEQUEUE in different round among different recursion
levels. Specifically, let u = log n. For recursion level £, the extra DEQUEUE is sched-
uled in the (au + ¢)-th (base-)ORAM access, for all positive integers a. Note that the
extra DEQUEUE occurs in slightly slower rate in deeper recursion levels, but this will
not change the asymptotic behavior of the system. As such, no two extra DEQUEUE’s
will be called in the same READ/WRITE operation.

On the other hand, recall that we also store the queue in the cache. We will set the
queue size gmax = polylog(n) (specifically, we can set gmax = O(log®™ n) for an
arbitrarily small constant £). Since there are only O(logn) recursion levels, the total
queue size is poly log(n).

3.2 Efficiency of Our ORAM

In this section, we discuss how to set the parameters of our ORAM and analyze its
efficiency. We summarize the parameters of our ORAM and the setting of parameters
as follows:
— ¢: The bucket size (in terms of the number of blocks it stores) of the internal nodes
of Tr. We set £ = O(loglogn).
— {': The bucket size of the leaves of Tr. We set ¢’ = O(lognloglogn).
— d: The depth of Tr. As mentioned, we set it to be the smallest d so that the number
of leaves 2 is at least 2(n/a)/(log nloglog n).
— Qmax: The queue size. As mentioned, we set ¢y oy = 9(log2+6 n) for an arbitrarily
small constant €.
— «: The number of memory cells in a block. As mentioned, we set « to be a constant,
say 16.
We proceed to analyze the efficiency of our ORAM.

Memory overhead: constant. The external memory stores O(logn) copies of binary
trees from O(log n) recursion levels. Let us first consider Tt of the top recursion level:
there are 2¢+1 — 1 = O(n/lognloglogn) nodes, each of which has bucket of size at
most ¢/ = O(log nloglogn). The space complexity of Tr is ©(n). As the size of Tr
in each recursion level shrinks by a constant factor, one can see that the total memory
overhead is constant.

Cache size: poly log(n). As argued, the CPU cache stores the position map in the final
recursion level, which has O(1) size, and the queues from O(logn) recursion levels,
each of which has at most ©(log”"® n) size. Thus, the total cache size is O(log®*® n).
As we shall see below, poly log(n) queue size is required in our analysis to ensure that
the queue overflows with negligible probability by concentration bounds. On the other
hand, we mention that our simple simulation shows that the size of the queue in the top
recursion level is often well below 50 for ORAM with reasonable size.

Worst-case computational overhead: O~(log2 n). As above, we first consider the top
recursion level. In the FETCH() sub-routine, we need to search from both Tr and the
queue. Searching Tr requires us to traverse along a path from the root to a leaf. The time



spent on each node is proportional to the size of the node’s bucket. Thus, the cost here is
O(lognloglogn). One can also see searching the queue takes O(log n loglogn) time.
The total cost of FETCH() is O(log nloglogn).

For the DEQUEUE() sub-routine, the PUT-BACK() action invokes (1) one POPFRONT(),
which takes O (log n log log n) time, and (2) accesses the root node, which costs O(log log n).
It also writes to the position map and triggers recursive calls. Note that certain re-
cursive levels may execute two consecutive DEQUEUE’s after a READ/WRITE oper-
ation. But our construction ensures only one level will execute two DEQUEUE’s for any
READ/WRITE. Thus, the total cost here is O(log® n).

The FLUSH() sub-routine also traverses Tr along a path, and has cost O(log n loglog n).
However, since we do a random number of FLUSH() (according to a geometric random
variable with parameter 2/3), we only achieve expected O(logn loglogn) runtime, as
opposed to worst-case runtime.

To address this issue, recall that there are O(logn) recursion levels, and the total
number of FLUSH() is the sum of O(logn) i.i.d. random variables. Thus, the proba-
bility of performing a total of more than w(logn) number of FLUSH()’s is negligible
by standard concentration result. Thus, the total time complexity is upper bounded by
w(log? nlog log n) except with negligible probability. To formally get O(log® n) worst-
case computational overhead, we can add an Abort-Flush condition that aborts when
the total number of flush in one READ()/WRITE() operation exceeds some parameter
t € w(logn).

4 Security of Our ORAM

The following observation is central to the security of our ORAM construction (and an
appropriate analogue of it was central already to the constructions of [27,5]):

Key observation: Let X denote the sum of two independent geometric random
variables with mean 2. Each Read and Write operation traverses the tree
along X + 1 randomly chosen paths, independent of the history of operations
so far.

The key observation follows from the facts that (1) just as in the schemes of [27,5], each
position in the position map is used exactly once in a traversal (and before this traversal,
no information about the position is used in determining what nodes to traverse), and
(2) we invokes the FLUSH action X times and the flushing, by definition, traverses a
random path, independent of the history.

Armed with the key observation, the security of our construction reduces to show
that our ORAM program does not abort except with negligible probability, which fol-
lows by the following two lemmas.

Lemma 1. Given any program II, let II'(n, ) be the compiled program using our
ORAM construction. We have

Pr[ABORTLEAF| < negl(n).



Proof. The proof follows by a direct application of the (multiplicative) Chernoff bound.
We show that the probability of overflow in any of the leaf nodes is small. Consider any
leaf node v and some time ¢. For there to be an overflow in ~ at time ¢, there must be
£+ 1 out of n/« elements in the position map that map to . Recall that all positions in
the position map are uniformly and independently selected; thus, the expected number
of elements mapping to v is . = log n log log n and by a standard multiplicative version
of Chernoff bound, the probability that ¢'+1 elements are mapped to ~y is upper bounded
by 2 when ¢' > 64 (see Theorem 4.4 in [19]). By a union bound, we have that the
probability of any node ever overflowing is bounded by 2= - (n/a)) - T

To analyze the full-fledged construction, we simply apply the union bound to the
failure probabilities of the log,, n different ORAM trees (due to the recursive calls).
The final upper bound on the overflow probability is thus 2= . (n/a) - T - log, n,
which is negligible as long as ¢’ = clog n loglogn for a suitably large constant c. [

Lemma 2. Given any program II, let IT'(n,x) be the compiled program using our
ORAM construction. We have

Pr [ABORTQUEUE] < negl(n).

The proof of Lemma 2 is significantly more interesting. Towards proving it, in
Section 5 we consider a simple variant of a “supermarket” problem (introduced by
Mitzenmacher[20]) and show how to reduce Lemma 2 to an (in our eyes) basic and
natural question that seems not to have been investigated before.

5 Proof of Lemma 2

We here prove Lemma 2: in Section 5.1 we consider a notion of “upset” customers in
a supermarket problem [20,31,7]; in Section 5.2 we show how Lemma 2 reduced to
obtaining a bound on the rate of upset customers, and in Section 5.3 we provide an
upper bound on the rate of upset customers.

5.1 A Supermarket Problem

In a supermarket problem, there are D cashiers in the supermarket, all of which have
empty queues in the beginning of the day. At each time step ¢,

— With probability o < 1/2, an arrival event happens, where a new customer arrives.
The new customer chooses d uniformly random cashiers and join the one with the
shortest queue.

— Otherwise (i.e. with the remaining probability 1 — «), a serving event happens: a
random cashier is chosen that “serves” the first customer in his queue and the queue
size is reduced by one; if the queue is empty, then nothing happens.

We say that a customer is upset if he chooses a queue whose size exceeds some bound
. We are interested in large deviation bounds on the number of upset customers for a
given short time interval (say, of O(D) or poly log(D) time steps).
Supermarket problems are traditionally considered in the continuous time setting [20,31,7].
But there exists a standard connection between the continuous model and its discrete



time counterpart: conditioned on the number of events is known, the continuous time
model behaves in the same way as the discrete time counterpart (with parameters ap-
propriately rescaled).

Most of the existing works [20,31,7] study only the stationary behavior of the pro-
cesses, such as the expected waiting time and the maximum load among the queues
over the time. Here, we are interested in large deviation bounds on a statistics over a
short time interval; the configurations of different cashiers across the time is highly
correlated.

For our purpose, we analyze only the simple special case where the number of
choice d = 1; i.e. each new customer is put in a random queue.

We provide a large deviation bound for the number of upset customers in this set-
ting.!! .

Proposition 1. For the (discrete-time) supermarket problem with D cashiers, one choice
(i.e., d = 1), probability parameter o € (0,1/2), and upset threshold ¢ € N, for any
T steps time interval [t + 1,¢ + T, let F be the number of upset customers in this time
interval. We have

exp {2 (P ) foro <5 <1

PriF>(1+¢ 1—a))?T] < v
r[ ( )(a/( a)) ] exp _0 5(a/(1—a)) T)) f0r521

(1—0)?

)]

Note that Proposition 1 would trivially follow from the standard Chernoff bound
if T is sufficiently large (1.e., T' > O(D)) to guarantee that we individually get con-
centration on each of the D queue (and then relying on the union bound). What makes
Proposition 1 interesting is that it applies also in a setting when 7 is poly log D.

The proof of Proposition 1 is found in Section 5.3 and relies on a new variant Cher-
noff bounds for Markov chains with “resets,” which may be of independent interest.

Remark 1. One can readily translate the above result to an analogous deviation bound
on the number of upset customers for (not-too-short) time intervals in the continuous
time model. This follows by noting that the number of events that happen in a time
interval is highly concentrated (provided that the expected number of events is not too
small), and applying the above proposition after conditioning on the number of events
happen in the time interval (since conditioned on the number of events, the discrete-time
and continous-time processes are identical).

5.2 From ORAM to Supermarkets

This section shows how we may apply Proposition 1 to prove Lemma 2. Central to
our analysis is a simple reduction from the execution of our ORAM algorithm at level
k in Tr to a supermarket process with D = 2**! cashiers. More precisely, we show
there exists a coupling between two processes so that each bucket corresponds with two

" It is not hard to see that with D cashiers, probability parameter «, and “upset” threshold ¢, the
expected number of upset customers is at most (a/(1 — «))¥ - T for any T'-step time interval.



cashiers; the load in a bucket is always upper bounded by the total number of customers
in the two cashiers it corresponds to.
To begin, we need the following Lemma.

Lemma 3. Ler {a;};>1 be the sequence of PUT-BACK/FLUSH operations defined by
our algorithm, i.e. each a; € {PUT-BACK,FLUSH} and between any consecutive
PUT-BACKSs, the number of FLUSHes is a geometric r.v. with parameter 2/3. Then
{ai}i>1 is a sequence of i.i.d. random variables so that Pr [a; = PUT-BACK| = %.12

To prove Lemma 3, we may view the generation of {a; };>1 as generating a sequence
of i.i.d. Bernoulli r.v. {b;};>1 with parameter 2. We set a; be a FLUSH() if and only
if b; = 1. One can verify that the {a;};>1 generated in this way is the same as those
generated by the algorithm.

We are now ready to describe our coupling between the original process and the
supermarket process. At a high-level, a block corresponds to a customer, and 2+*!
sub-trees in level k£ + 1 of Tr corresponds to D = 2**1 cashiers. More specifically,
we couple the configurations at the k-th level of Tr in the ORAM program with a
supermarket process as follows.

— Initially, all cashiers have zero customers.
— For each PUT-BACK(), a corresponding arrival event occurs: if a ball b with position

p = (7||n) (where v € {0,1}""") is moved to Tr, then a new customer arrives at
the «-th cashier; otherwise (e.g. when the queue is empty), a new customer arrives
at a random cashier.

— For each FLUSH() along the path to leaf p* = (v||n) (where v € {0,1}**1), a
serving event occurs at the y-th cashier.

— For each FETCH(), nothing happens in the experiment of the supermarket prob-
lem. (Intuitively, FETCH() translates to extra “deletion” events of customers in the
supermarket problem, but we ignore it in the coupling since it only decreases the
number of blocks in buckets in Tr.)

Correctness of the coupling. We shall verify the above way of placing and serving
customers exactly gives us a supermarket process. First recall that both PUT-BACK and
FLUSH actions are associated with uniformly random leaves. Thus, this corresponds to
that at each timestep a random cashier will be chosen. Next by Lemma 3, the sequence
of PUT-BACK and FLUSH actions in the execution of our ORAM algorithm is a se-
quence of i.i.d. variables with Pr [PUT-BACK] = % Therefore, when a queue is chosen
at a new timestep, an (independent) biased coin is tossed to decide whether an arrival
or a service event will occur.

Dominance. Now, we claim that at any timestep, for every v € {0, 1}k+1, the number

of customers at ~y-th cashier is at least the number of blocks stored at or above level
k in Tr with position p = (v||-). This follows by observing that (i) whenever there is
a block with position p = (v]|-) moved to Tr (from PUT-BACK()), a corresponding
new customer arrives at the ~-th cashier, i.e. when the number of blocks increase by

12 The first operation in our system is always a PUT-BACK. To avoid that a; = PUT-BACK,
we can first execute a geometric number of FLUSHes before the system starts for the analysis
purpose.



one, so does the number of customers, and (ii) for every FLUSH() along the path to
p* = (7]|-): if there is at least one block stored at or above level k in Tr with position
p = (7]|*), then one such block will be flushed down below level k (since we flush the
blocks that can be pulled down the furthest)—that is, when the number of customers
decreases by one, so does the number of blocks (if possible). This in particular implies
that throughout the coupled experiments, for every v € {0, 1}k the number of blocks in
the bucket at node + is always upper bounded by the sum of the number of customers
at cashier y0 and 1.
We summarize the above in the following lemma.

Lemma 4. For every execution of our ORAM algorithm (i.e., any sequence of READ
and WRITE operations), there is a coupled experiment of the supermarket problem such
that throughout the coupled experiments, for every v € {0, l}k the number of blocks in
the bucket at node vy is always upper bounded by the sum of the number of customers at
cashier v0 and 1.

From Lemma 4 and Proposition 1 to Lemma 2. Note that at any time step ¢, if the
queue size is < %log2+6 n, then by Proposition 1 with ¢ = ¢/2 = O(loglogn) and
Lemma 4, except with negligible probability, at time step ¢ + log® n, there have been
at most w(log n) overflows per level in the tree and thus at most 1 log® ™ n in total.
Yet during this time “epoch”, log® n element have been “popped” from the queue, so,
except with negligible probability, the queue size cannot exceed % log® ™ n.

It follows by a union bound over 1og3 n length time “epochs”, that except with
negligible probability, the queue size never exceeds log? ™ n.

5.3 Analysis of the Supermarket Problem

We now prove Proposition 1. We start with interpreting the dynamics in our process as
evolutions of a Markov chain.

A Markov Chain Interpretation. In our problem, at each time step ¢, a random cashier
is chosen and either an arrival or a serving event happens at that cashier (with probability
a and (1 — «), respectively), which increases or decreases the queue size by one. Thus,
the behavior of each queue is governed by a simple Markov chain M with state space
being the size of the queue (which can also be viewed as a drifted random walk on a
one dimensional finite-length lattice). More precisely, each state ¢ > 0 of M transits
to state ¢ + 1 and ¢ — 1 with probability « and (1 — «), respectively, and for state 0, it
transits to state 1 and stays at state 0 with probability a and (1 — «), respectively. In
other words, the supermarket process can be rephrased as having D copies of Markov
chains M, each of which starts from state 0, and at each time step, one random chain is
selected and takes a move.

We shall use Chernoff bounds for Markov chains [9,14,16,3] to derive a large devi-
ation bound on the number of upset customers. Roughly speaking, Chernoff bounds for
Markov chains assert that for a (sufficiently long) T'-steps random walk on an ergodic fi-
nite state Markov chain M, the number of times that the walk visits a subset V' of states
is highly concentrated at its expected value 7(V') - T, provided that the chain M has



spectral expansion'? (M) bounded away from 1. However, there are a few technical
issues, which we address in turn below.

Overcounting. The first issue is that counting the number of visits to a state set V' C .S
does not capture the number of upset customers exactly—the number of upset cus-
tomers corresponds to the number of transits from state ¢ to ¢ + 1 with i + 1 > .
Unfortunately, we are not aware of Chernoff bounds for counting the number of transits
(or visits to an edge set). Nevertheless, for our purpose, we can set V, = {i:i>¢}and
the number of visits to V,, provides an upper bound on the number of upset customers.

Truncating the chain. The second (standard) issue is that the chain M for each queue
of a cashier has infinite state space {0}UN, whereas Chernoff bounds for Markov chains
are only proven for finite-state Markov chains. However, since we are only interested in
the supermarket process with finite time steps, we can simply truncate the chain M at
a sufficiently large K (say, K > t + T) to obtain a chain Mg with finite states Sx =
{0,1,..., K}; thatis, M is identical to M, except that for state K, it stays at K with
probability « and transits to &K' — 1 with probability 1 — a.. Clearly, as we only consider
t 4+ T time steps, the truncated chain Mg behaves identical to M. It’s also not hard to
show that My has stationary distribution 7x with 7 (i) = (1 — 8)B¢/(1 — K+,
and spectral gap 1 — A\(Mg) > 2(1/(1 — a)?).14

Correlation over a short time frame. The main challenge, however, is to establish
large deviation bounds for a short time interval T' (compared to the number D of
chains). For example, ' = O(D) or even poly log(D), and in these cases the expected
number of steps each of the D chains take can be a small constant or even o(1). There-
fore, we cannot hope to obtain meaningful concentration bounds individually for each
single chain. Finally, the D chains are not completely independent: only one chain is
selected at each time step. This further introduces correlation among the chains.

We address this issue by relying on a new variant of Chernoff bounds for Markov
chains with “resets,” which allows us to “glue” walks on D separate chains together and
yields a concentration bound that is as good as a T'-step random walk on a single chain.
We proceed in the following steps.

— Recall that we have D copies of truncated chains M starting from state 0. At each
time step, a random chain is selected and we takes one step in this chain. We want
to upper bound the total number of visits to V,, during time steps [t + 1, + 7.

— We first note that, as we are interested in upper bounds, we can assume that the
chains start at the stationary distribution 7 instead of the 0 state (i.e., all queues
have initial size drawn from 7 instead of being empty). This follows by noting that
starting from 7 can only increase the queue size throughout the whole process for
all of D queues, compared to starting from empty queues, and thus the number of
visits to V,, can only increase when starting from 7z in compared to starting from
state 0 (this can be formalized using a standard coupling argument).

— Since walks from the stationary distribution remain at the stationary distribution, we
can assume w.l.o.g. that the time interval is [1, T']. Now, as a thought experiment, we

13 For an ergodic reversible Markov chain M, the spectral expansion \(M) of M is simply
the second largest eigenvalue (in absolute value) of the transition matrix of M. The quantity
1 — A(M) is often referred to as the spectral gap of M.

!4 One can see this by lower bounding the conductance of My and applying Cheeger’s inequality.



can decompose the process as follows. We first determine the number of steps each
of the D chains take during time interval [1,T7; let ¢; denote the number of steps
taken in the j-th chain. Then we take c¢; steps of random walk from the stationary
distribution 7 for each copy of the chain M, and count the total number of visit
to V.

— Finally, we can view the process as taking a T-step random walk on Mg with “re-
sets.” Namely, we start from the stationary distribution 7, take c; steps in M,
“reset” the distribution to stationary distribution (by drawing an independent sam-
ple from 7 ) and take ¢, more steps, and so on. At the end, we count the number
of visits to V,,, denoted by X, as an upper bound on the number of upset customers.
Intuitively, taking a random walk with resets injects additional randomness to the

walk and thus we should expect at least as good concentration results. We formalize this
intuition as the following Chernoff bound for Markov chains with “resets”—the proof
of which follows relatively easy from recent Chernoff bounds for Markov chains [3]
and is found Section 5.4—and use it to finish the proof of Proposition 1.

Theorem 2 (Chernoff Bounds for Markov Chains with Resets). Let M be an ergodic
finite Markov chain with state space S, stationary distribution 7, and spectral expansion
MLet VC Sand p = w(V). Let T,D € Nand1 =Ty < Ty < --- < Tp <
Tpi1 =T+1. Let (Wy,...,Wr) denote a T-step random walk on M from stationary
with resets at steps Ty, ..., Tp; that is, for every j € {0,...,D}, Wy, < 7 and
Wriv1,- .., Wr, 1 are random walks from Wr,. Let X; = 1 iff W; e V for every
i€[T)and X = Z?Zl X;. We have

exp {—2(8*(1 = NuT)} for0<6<1

Prix = (1+ouT] < {exp{—Q(6(1 —MuT)}  foréd>1

Now, recall that 1 — A\(Mg) = 2(1/(1 — a)?) and 7 () = p¢/(1 — pEFY) =
(a/1 — a)?/(1 — B5*1). Theorem 2 says that for every possible ci,...,cp (corre-
sponding to resetting time T} = Z{Zl cj + 1),

(1+46)(a/1 e exp{ —{?2 _laf1-a) T for0<é6<1
Pr|{X > o/1-a) Cly. -, CD] < (1—a)2(1_5:<+1) o
- (1 - ﬁKJrl) - exp _.Q % f0r5 Z 1

Since X is an upper bound on the number of upset customers, and the above bound
holds for every cy, ..., cp and for every K > t + T, Proposition 1 follows by taking
K — 0. O

5.4 Chernoff Bounds for Markov Chains with Reset

We now prove Theorem 2. The high level idea is simple—we simulate the resets by
taking a sufficiently long “dummy”” walk, where we “turn off” the counter on the num-
ber of visits to the state set V. However, formalizing this idea requires a more general
version of Chernoff bounds that handles “time-dependent weight functions,” which al-
lows us to turn on/off the counter. Additionally, as we need to add long dummy walks,



a multiplicative version (as opposed to an additive version) Chernoff bound is needed
to derive meaningful bounds. We here rely on a recent generalized version of Chernoff
bounds for Markov chains due to Chung, Lam, Liu and Mitzenmacher [3].

Theorem 3 ([3]). Let M be an ergodic finite Markov chain with state space S, sta-
tionary distribution 7, and spectral expansion A\. Let W = (W1,...,Wr) denote a
T-step random walk on M starting from stationary distribution w, that is, W1 < .
For everyi € [T, let f; : S — [0, 1] be a weight function at step i with expected weight
Ever[fi(v)] = pi. Let p = 3", p1;. Define the total weight of the walk (W1, ..., W)
by X 2 31| fi(W;). Then

_ 201 — <0<
PrlX > (14 )] < exp {—02(0%(1—Np)} for0<45<1
exp{—02(5(1—MNu)} ford>1
We now proceed to prove Theorem 2.

Proof of Theorem 2. We use Theorem 3 to prove the theorem. Let f : S — [0,1] be
an indicator function on V' C S (i.e., f(s) = 1iff s € V) .The key component from
Theorem 3 we need to leverage here is that the functions f; can change over the time.
Here, we shall design a very long walk V on M so that the marginal distribution of a
specific collections of “subwalks” from ) will be statistically close to V. Furthermore,
we design {f; }i>o in such a way that those “unused” subwalks will have little impact
to the statistics we are interested in. In this way, we can translate a deviation bound
on V to a deviation bound on W. Specifically, let T'(¢) be the mixing time for M (i.e.
the number of steps needed for a walk to be e-close to the stationary distribution in
statistical distance). Here, we let € £ exp(—DT) (¢ is chosen in an arbitrary manner so
long as it is sufficiently small). Given 1 =T, < T} < --- <Tp <Tpy1 =T+ 1, we
define V and f; as follows: V will start from 7 and take 7} —2 steps of walk. In the mean
time, we shall set f; = f forall ¢ < T7. Then we “turn off” the function f; while letting
V keep walking for T'(€) more steps, i.e. we let f; = O forall Ty < i < Ty +T(e) — 1.
Intuitively, this means we let V take a long walk until it becomes close to 7 again.
During this time, f; is turned off so that we do not keep track of any statistics. After
that, we “turn on” the function f; again for the next T, — T3 steps (i.e. f; = f for all
Ty +T(e) <i<Ty+T(e) — 1, followed by turning f; off for another T'(¢) steps. We
continue this “on-and-off” process until we walk through all T;’s.

Let V' be the subwalks of V with non-zero f;. One can see that the statistical dis-
tance between V' and W is poly (D, T') exp(—DT') < exp(—T + o(T)). Thus, for any
0 we have

Pr [ e f(w) > 6] <Pr[¥, 0 f(v

") > 6] + exp(~T + o(T))
=Pr Yy flv) >0

2
] +exp(—T +o(T)). @
By letting = (1 + §)uT and using Theorem 3 to the right hand side of (2), we finish
our proof. U
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A Implementation details.

This section discusses a number of implementation details in our algorithm.

The queue at the cache. We now describe how we may use a hash table and a stan-
dard queue (that could be encapsulated in commodity chips) to implement our queue
with slightly non-standard behavior, which still suffices for our ORAM. Here, we only
assume the hash table uses universal hash function and it resolves collisions by using a
linked-list. To implement the INSERT(Block :b) procedure, we simply insert b to both
the hash table and the queue. The key we use is b’s value at the position map. Doing
so we may make sure the maximum load of the hash table is O(logn) whp [22]. To
implement FIND(int :¢, word :p), we find the block b from the hash table. If it exists,
return the block and delete it. However, for simplicity of implementation, we do not
delete b at the queue. This introduces inconsistencies between the hash table and the
queue, which we take care below in POPFRONT().

We now describe how we implement POPFRONT(). Here, we need to be careful with
the inconsistencies. We first pop a block from the queue. Then we need to check whether
the block is in hash table. If not, that means the block was already deleted earlier. In
this case, POPFRONT() will not return anything (because we need a hard bound on the
running time). Note that this does not effect the correctness of our analysis, since the
queue size is indeed decreased by 1 for every PUT-BACK() action.

One can see that the above implementation relies only on standard hash table and
queue, and INSERT() takes O(1) time and the other two operations take w(logn) time
(except with negligible probability).

02 2

Fig. 1. In the FLUSH operation, we may imagine each bucket is splitted into two sub-arrays so
that blocks that will travel to different subtrees are stored in different arrays. An overflow occurs
when either sub-array’s size reaches g
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