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Abstract. We show that the so-called super S-box representation of
AES – that provides a simplified view of two consecutive AES rounds
– can be further simplified. In the untwisted representation of AES pre-
sented here, two consecutive AES rounds are viewed as the composition
of a non-linear transformation S and an affine transformation R that re-
spectively operate on the four 32-bit columns and on the four 32-bit rows
of their 128-bit input. To illustrate that this representation can be helpful
for analysing the resistance of AES-like ciphers or AES-based hash func-
tions against some structural attacks, we present some improvements of
the known-key distinguisher for the 7-round variant of AES presented
by Knudsen and Rijmen at ASIACRYPT 2007. We first introduce a
known-key distinguisher for the 8-round variant of AES which constructs
a 264-tuple of (input,output) pairs satisfying a simple integral property.
While this new 8-round known-key distinguisher is outperformed for 8
AES rounds by known-key differential distinguishers of time complex-
ity 248 and 244 presented by Gilbert and Peyrin at FSE 2010 and Jean,
Naya-Plasencia, and Peyrin at SAC 2013, we show that one can take
advantage of its specific features to mount a known-key distinguisher for
the 10-round AES with independent subkeys and the full AES-128. The
obtained 10-round distinguisher has the same time complexity 264 as
the 8-round distinguisher it is derived from, but the highlighted input-
output correlation property is more intricate and therefore its impact on
the security of the 10-round AES when used as a known key primitive,
e.g. in a hash function construction, is questionable. The new known-key
distinguishers do not affect at all the security of AES when used as a
keyed primitive, for instance for encryption or message authentication
purposes.

1 Introduction

In this paper we present an alternative representation of AES. More precisely
we show that AES can be viewed as the composition of other elementary trans-
formations than those originally used for the specification of its round function.
While one might wonder whether selecting any of the equivalent descriptions of
a cipher is more than an arbitrary convention, numerous examples illustrate that
the choice of an appropriate description may be very useful for highlighting some
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of its structural features and serve as a starting point for its cryptanalysis or for
optimised implementions. To take a simple example, it is well known that while
the so-called ladder representation of the Feistel scheme is strictly equivalent to
its more traditional twisted representation for any even number of rounds, it is
helpful for understanding some attacks against DES and DES-like ciphers, for
instance the Davies-Murphy attack [8].

In the case of AES, several alternative representations have been proposed
[9, 20] to highlight some aspects of its algebraic structure. These representations
respectively allow to relate the ciphertext to the plaintext using continued frac-
tions, resp. algebraic equations over GF (28). In [2] it was shown that numerous
dual ciphers of AES - i.e. equivalent descriptions of AES up to fixed, easy to
compute and to invert bijective mappings on the plaintexts, the ciphertexts, and
the keys - can be obtained by applying appropriately chosen modifications to
the irreducible polynomial used to represent GF (28), the affine transformation
in the S-box, the coefficients of MixColumns, etc. This observation was further
extended in [3]. While these dual ciphers can be considered as equivalent rep-
resentations of AES, these representations essentially preserve the structure of
the round function of the AES up to small variations on the exact parameter of
each elementary transformation. They are therefore closer to the original AES
than the equivalent representations we consider in this paper.

The starting point for the AES representation introduced here is the so-called
super S-box (or super-box) representation of two AES rounds which allows to
describe two consecutive AES rounds as the composition of one single non-linear
operation, namely a range of four parallel 32-bit to 32-bit key-dependent S-boxes
and several affine transformations. This representation was introduced in [7] by
the designers of AES as a useful notion for the analysis of AES differentials over
two rounds. It was subsequently reused in [11, 12] and [18] in order to extend
so-called rebound attacks on AES-like permutations by at least one round: this
improved rebound technique, sometimes referred to as super S-box cryptanalysis,
was shown to be applicable in two related contexts, the cryptanalysis of AES-
like hash functions and the investigation of so-called known-key distinguishers
for AES-like block ciphers. Many recent improved distinguishers for reduced-
round versions of AES-like hash functions such as the SHA-3 candidates Grøstl
and ECHO are using super S-boxes, e.g. [19, 16, 15].

We introduce a novel representation of two consecutive AES rounds that
results from an extra simplification of the super S-box representation. The sim-
plification relates to the description of the affine transformations that surround
the 32-bit super S-boxes. We show that all these transformations can be replaced
by one simple 32-bit oriented affine transformation that operates on the rows of
the 4 × 4 matrix of bytes representing the current state. We propose to name the
resulting view of two or more generally r AES rounds the untwisted representa-
tion since it avoids viewing the affine transformations that surround the super
S-boxes as column-oriented operations “twisted” by the action the ShiftRows
transformation. The untwisted representation thus provides an equivalent de-
scription of two consecutive AES rounds as the composition of:



– a non-linear transformation denoted by S (a shorthand for “super S-boxes”)
that consists of the parallel application of four non-linear bijective mappings
which operate on the four 32-bit columns of the AES state. These four map-
pings are essentially super S-boxes up to permutations of the four input bytes
and the four output bytes of each column;

– an affine transformation denoted by R (a shorthand for “MixRows”) that
consists of the parallel application of four affine mappings which operate on
the four 32-bit rows of the AES state.

Fig. 1. Equivalent representation of two AES rounds as the composition R ◦ S of four
parallel non-linear bijections of the columns and four parallel affine bijections of the
rows of the input state.

As shown in Figure 1, two consecutive AES rounds can thus be viewed as
one “super-round” that is the composition R ◦ S of S and R. As will be shown
more in detail in the sequel, the small price to pay for this simplified view is that
in the resulting equivalent representation of 2r AES rounds as the composition
of r super-rounds, the first (resp. last) super-round is preceded (resp. followed)
by a simple affine permutation.

While an alternative representation of a cipher can obviously be regarded
in itself neither as a design nor as a cryptanalysis result, we believe that the
simplicity of the new representation can play a significant heuristic role in the
investigation of structural attacks on reduced-round versions of AES. Indeed,
the new representation pushes the advantage of the super S-box representation
of highlighting the 32-bit structure underlying the AES transformation one step
further.

To illustrate this alternative representation, we present extensions of the
known cryptanalytic results on reduced-round versions of AES in the so-called
known-key model. The known-key model was first introduced by Knudsen and
Rijmen in [17]. Attacks in this model are most often named known-key distin-
guishers and we will use this terminology in the sequel.1 An integral known-
key distinguisher for the 7-round AES was introduced by Knudsen and Rijmen
in [17]. We first present an improvement of this distinguisher whose idea was
inspired by the use of the untwisted representation of AES. This provides a
known-key distinguisher against the 8-round AES. While this distinguisher is
outperformed by the differential known-key distinguishers for the 8-round AES

1 This terminology may seem a bit confusing since known-key distinguishers have
little to do with the notion of distinguisher one considers in more traditional se-
curity models, namely a testing algorithm with an oracle access capability. But on
the other hand the wording known-key distinguisher conveys probably less risks of
misinterpretation than the wording known-key attack.



of [12] and [14], whose respective complexities are 248 and 244, we show that one
can take advantage of its specific features, that reflect integral properties of the
8-round AES, to extend it by one outer round at both sides. We thus obtain
the first known-key distinguisher for the full 10-round AES. This known-key
distinguisher has the same time complexity 264 (now measured as an equivalent
number of 10-round AES encryptions) as the one of the 8-round distinguisher it
is derived from, but the highlighted input-output correlation property is more
intricate. We nevertheless provide some evidence that unlike some generic known
distinguishers that are known to exist for block ciphers if the key size is suffi-
ciently small, the obtained distinguisher can reasonably be considered mean-
ingful. While in this paper we will only investigate the security of AES in the
known-key model, it is worth mentioning a recent result on the security of AES in
a related but even stronger security model, namely the chosen-key distinguisher
on the 9-round AES-128 of [10].

The rest of this paper is organized as follows. In Section 2, we introduce the
novel representation of two consecutive AES rounds and of 2r AES rounds. In
Section 3, we propose a definition of the known-key model, i.e. we define the
adversaries considered in this model and we remind known impossibility results
on the resistance of block ciphers to all known-key distinguishers. In Section 4,
we show how to use the untwisted representation of AES to mount known-key
distinguishers for the 8-round AES and its extension to the full 10-round AES
and why the latter distinguisher can be considered meaningful.

2 A new representation of AES

Notational conventions and usual representation of AES. Throughout
this paper we most often denote the composition of two mappings F and G
multiplicatively by F ·G instead of using the more classical notation G ◦F . The
advantage of this notation in the context considered here is that when read from
left to right it describes the successive transformations that are applied to the
input value.

Let us briefly recall the AES features that will be useful for the sequel and
the associated notation. Each AES block is represented by a four times four
matrix of bytes. While there are three standard versions of AES, of respective
key lengths k= 128, 192, and 256 bits and respective number of rounds 10, 12,
and 14 rounds, for the purpose of this paper we restrict ourselves for the sake
of simplicity to the full 10-round AES-128 and reduced-round versions of this
cipher.2 For r ≤ 10, the r-round version of the AES-128 encryption function is
denoted by AESr and is parametrized by (r+ 1) 128-bit subkeys denoted by K0

to Kr. These subkeys are derived from a k-bit key K by the key schedule; since
the exact features of the AES-128 key schedule are not relevant for the analysis

2 However, since the AES properties we are investigating do not relate to the key
schedule but to the data encryption part of the block cipher that is the same for all
AES versions, all the presented results are also applicable to reduced-round versions
of AES-192 and AES-256.



presented here, we do not detail them and refer to the full specification of AES for
their description. Each round of the encryption function AESr is the composition
SB ·SR ·MC ·AK of four transformations named SubBytes or SB, ShiftRows or
SR, MixColumns or MC, and AddRoundKey or AK. SubBytes applies a fixed
8-bit to 8-bit bijective S-box to each input byte, ShiftRows circularly shifts each
of the four 4-byte rows of the input state by 0, 1, 2, and 3 bytes to the left,
MixColumns applies to each of the four-byte columns of the input state, viewed
as a 4-coordinate vector with GF (28) coefficients, a left multiplication by a fixed
4× 4 matrix M with GF (28) coefficients, and at round i ∈ [1; r], AddRoundKey
or AK consists of a bytewise exclusive or of the input block with subkey Ki.

3

The first round of AESr is preceded by a key addition with the subkey K0 and
the MixColumns operation is omitted in the last round. In the sequel we will
sometimes also have to refer to the variant of AESr where the MixColumns
transformation is kept in the last round: we will denote this variant by AESr+ .
At the end of Section 4, we will also have to refer to the r-round variant of AES
parametrized by r+1 independent subkeys. Depending whether the MixColumns
transformation is omitted or kept in the last round, we will denote this variant
by AES∗r or AES∗r+ .

Super S-box representation of 2 consecutive AES rounds. The super
S-box representation allows to view two consecutive AES rounds as the parallel
invocation of four 32-bit to 32 bit mappings named super S-boxes - which are
applied to the four columns of the AES state - surrounded by affine applications.
More in detail, since the transformations SB and SR commute and the com-
position of transformations is associative, the composition of two consecutive
rounds:

SB · SR ·MC ·AK · SB · SR ·MC ·AK

can be rewritten as:

SR · (SB ·MC ·AK · SB) · SR ·MC ·AK.

We can notice that the middle term in brackets, i.e. SuperSB = (SB ·MC ·
AK · SB), where SuperSB stands for “Super S-boxes”, is the composition of
transformations that all preserve the column-wise structure of the AES state.
Thus SuperSB splits up into 4 parallel key-dependent bijective transformations
of one column of the input state. It is surrounded by the left, resp right affine
transformations SR, resp SR·MC ·AK. Each super S-box applies its 4-byte input
column the composition of 4 parallel S-box invocations, a left multiplication by
the MixColumn matrix M , a xor with a 32-bit subkey column, and 4 final parallel
S-box invocations.

3 Since AddRoundKey is parametrized by a subkey the use of the notation AK, that
suggests a fixed transformation, is a slight abuse of notation, but this notation is
convenient in the context of this paper: in the sequel AK just stands for a xor with
some constant — whose value does not affect the properties we consider.



Moving to the untwisted representation of 2 consecutive AES rounds.
We now show how to move from the super S-box representation of two consec-
utive rounds to their untwisted representation as the composition S · R of four
parallel column-wise non-linear transformations and four parallel row-wise affine
transformations. We first observe that the periodic repetition, in r iterations, of
the 2-round pattern associated with the super S-box representation:

SR · SuperSB · SR ·MC ·AK

can be equivalently viewed as the periodic repetition in r iterations of the cycli-
cally shifted periodic 2-round pattern:

SuperSB · SR ·MC ·AK · SR

up to a minor correction, namely the left composition of the first iteration with
SR and the right composition of the last iteration with SR−1. Now in order
to move to the aimed 2-round representation the conducting idea is to left and
right-compose the SuperSB and SR ·MC ·AK · SR transformations using well
chosen byte permutations P and Q and their inverses P−1 and Q−1. Due to the
cancellation effect produced by the alternate use of these permutations and their
inverse, r iterations of the obtained 2-round description:

(Q−1 · SuperSB · P−1) · (P · SR ·MC ·AK · SR ·Q)

gives, for any choice of the two byte permutations, exactly the same product
as r iterations of the 2-round transformation it is derived from, up to a left
composition of the first iteration by Q−1 and a right composition of the last
iteration by Q. In order for the byte permutations P and Q to provide the desired
untwisted representation, they must satisfy the two following extra requirements:

– (i) the non-linear transformation S = Q−1 ·SuperSB ·P−1 must operate on
columns;

– (ii) the affine transformation R = P · SR ·MC · AK · SR ·Q must operate
on rows.

In order to describe the byte permutations satisfying the above requirements
that we found, we introduce the following auxiliary byte permutations:

– we denote by T the matrix transposition that operates on 4× 4 matrices of
bytes as follows:

T :

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→
 a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15


– we denote by SC (or SwapColumns) the swapping of the second and fourth

columns of the input state:

SC :

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→
a0 a12 a8 a4
a1 a13 a9 a5
a2 a14 a10 a6
a3 a15 a11 a7





Proposition 1. The byte permutations

P = SR · T · SR−1 :

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→
a0 a5 a10 a15
a3 a4 a9 a14
a2 a7 a8 a13
a1 a6 a11 a12


and

Q = SR−1 · T · SR · SC :

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→
a0 a7 a10 a13
a1 a4 a11 a14
a2 a5 a8 a15
a3 a6 a9 a12


satisfy the requirements (i) and (ii) and thus result in the desired untwisted
representation.

Proof sketch.
(i): It is easy to see that P , Q, and their inverses operate on columns. Therefore
S = Q−1 · SuperSB · P−1 also operates on columns.
(ii): We can simplify the expression of R:

R = P · SR ·MC ·AK · SR ·Q
= SR · T · SR−1 · SR ·MC ·AK · SR · SR−1 · T · SR · SC
= SR · T ·MC ·AK · T · SR · SC

Since T ·MC · T and therefore T ·MC · AK · T operates on rows and SR and
SC also operate on rows, R operates on rows. ut

The linear part of the row-wise affine transformation R determined by P
and Q is described by the four following circulant matrices Ri, i = 0 to 3. Each
matrix Ri operates on a 4-byte row vector xi that represents row i of the input
block of R and produces the 4-byte row vector yi = xi · Ri that represents row
i of the linear part of the image of the input block by R. The coefficients of the
Ri are those of the MixColumns matrix M (in a different order).

R0 = R2 =

 2 3 1 1
3 1 1 2
1 1 2 3
1 2 3 1

 R1 = R3 =

 1 1 2 3
1 2 3 1
2 3 1 1
3 1 1 2

 M =

 2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Remark. (P,Q) is not the unique pair of byte permutations that satisfy require-
ments (i) and (ii). Given any permutations σ and τ of the set {0, 1, 2, 3}, let
us denote by Cσ, resp. Dτ the associated column and row permutations, that
on input a 4-tuple (x0, x1, x2, x3) of columns, resp. of rows produces the per-
muted 4-tuple (x′0, x

′
1, x
′
2, x
′
3) of columns, resp. of rows given by x′σ(i) = xi, resp.

x′τ (i) = xi, i.e. x′i = xσ−1(i) resp. x′i = x−1τ (i), i = 0 to 3. It is easy to see that all
the pairs of byte permutations (Pσ,τ , Qσ,τ ) = (Cσ ·Dτ · P,Q ·Dτ−1 · Cσ−1) also
satisfy requirements (i) and (ii). We will however only use (P,Q) in the sequel.



Resulting untwisted representation of AES2r+ and AES2r. The former
2-round untwisted representation of two consecutive AES rounds immediately
results in the following equivalent untwisted description of the 2r-round version
AES2r+ of the encryption function of AES (in which the MixColumns transfor-
mation is kept in the last round).

AES2r+ = AK · IP · (S ·R)r · FP,

where the initial and final permutations IP and FP are the byte permutations
given by:

IP = SR ·Q = T · SR · SC;
FP = Q−1 · SR−1 = IP−1.

.

This representation AES2r+ is illustrated on Figure 2. To confirm the equivalence
of the above representation of AES2r+ with its usual representation using SB,
SR, MC, and AK, implementations based on both representations were checked
to provide equal output values on a few input values.

Fig. 2. Equivalent representation of AES10+ . IP and FP are permutations of the byte
positions.

The former representation of AES2r+ can be used to derive a first representation
of AES2r, that will be used in the sequel to mount a known-key distinguisher for
AES8. The right composition of AES2r with an appropriate conjugate of MC−1

is required in order to cancel out the MixColumns operation in the last round. If
one “develops” the last occurrence of R and simplifies the obtained expression,
one obtains the equality:

AES2r = AK · IP · (S ·R)r−1 · S · P · SR ·AK.

We also introduce a second equivalent representation of AES2r that will be
used in the sequel to mount a known-key distinguisher for AES10: we start
from an equivalent representation of the 2(r − 1)-round version AES2(r−1)+ of
AES, apply a left composition with a full round and a right composition with a
last round without MixColumns, and simplify the obtained expression using the
equality R = P · SR ·MC ·AK · SR ·Q.

AES2r = (AK · SB · SR ·MC) ·AES2(r−1)+ · (SB · SR ·AK)
= AK · SB · SR ·MC ·AK · SR ·Q · (S ·R)r−1 ·Q−1 · SR−1 · SB · SR ·AK
= AK · SB · P−1 ·R · (S ·R)r−1 ·Q−1 · SB ·AK
= AK · P−1 · SB ·R · (S ·R)r−1 · SB ·Q−1 ·AK

Thus AES2r can be equivalently viewed as a middle transformation R·(S ·R)
r−1

preceded and followed by simplified initial and final “external rounds”, namely
AK · P−1 · SB and SB ·Q−1 ·AK.



3 The known-key model

We believe that the untwisted AES representation introduced above can po-
tentially help analysing known structural attacks of reduced-round versions of
AES, AES-like ciphers, or AES-based hash functions.4 In the next section we
will present two “attacks” that substantiate this belief. They both happen to
belong to a quite specific class of structural attacks, the so-called known-key
distinguishers, and respectively relate to a reduced-round version of AES and
the full 10-round AES-128. In this section we introduce the underlying security
model, that is named the known-key model. This model was inspired from the
cryptanalysis of hash functions and first introduced by Knudsen and Rijmen in
[17]. The difference between the known-key model and the usual security model
considered for block ciphers can be outlined as follows.

– In the usual model, the adversary is given a black box (oracle) access to an
instance of the encryption function associated with a random secret key and
its inverse and must find the key or more generally efficiently distinguish the
encryption function from a perfect random permutation;

– In the known-key model, the adversary is given a white box (i.e. full) access
to an instance of the encryption function associated with a known random
key and its inverse and her purpose is to simultaneously control the inputs
and the outputs of the primitive, i.e. to achieve input-output correlations
she could not efficiently achieve with the inputs and outputs of a perfect
random permutation to which she would have an oracle access.

We now propose a more detailed definition of the known-key model – i.e. of the
adversaries considered in this model, that are named known-key distinguishers. In
order to capture the idea that the goal of such adversaries is to derive an N -tuple
of input blocks of the considered block cipher E that is “abnormally correlated”
with the corresponding N -tuple of output blocks, we first introduce the notion of
T -intractable relation on N -tuples of E blocks. This notion (that is independent
of E up to the fact that for the sake of simplicity we are using the time complexity
of E as the unit for quantifying time complexities) is closely related to the notion
of correlation intractable relation proposed in [6]. It essentially expresses that it
is difficult to derive from oracle queries to a random permutation and its inverse
an N -tuple of input/output pairs satisfying the relation.

Definition 1 (T -intractable relation). Let E : (K,X) ∈ {0, 1}k × {0, 1}n 7→
EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. Let N ≥ 1 and R
denote an integer and any relation5 over the set S of N -tuples of n-bit blocks. R
4 By structural attacks we mean here attacks that unlike statistical attacks, e.g. dif-

ferential and linear cryptanalysis, do not consider the detail of the algorithm’s el-
ementary ingredients such as the S-boxes, but put more emphasis on their overall
construction, their use of transformations that preserve the byte structure or the
32-bit structure of the data, etc.

5 Let us remind that for any set S, a relation R over S can be defined as a subset of
the cartesian product S × S and that for any pair (a, b) of S × S, aRb means that
(a, b) belongs to this subset.



is said to be T -intractable relatively to E if, given any algorithm A′ that is given
an oracle access to a perfect random permutation Π of {0, 1}n and its inverse,
it is impossible for A′ to construct in time T ′ ≤ T two N -tuples X ′ = (X ′i)
and Y ′ = (Y ′i ) such that Y ′i = Π(X ′i), i = 1 · · ·N and X ′ R Y ′ with a success
probability p′ ≥ 1

2 over Π and the random choices of A′. The computing time
T ′ of A′ is measured as an equivalent number of computations of E, with the
convention that the time needed for one oracle query to Π or Π−1 is equal to
1.Thus if q′ denotes the number of queries of A′ to Π or Π−1, q′ ≤ T ′.

Definition 2 (known-key distinguisher). Let E : (K,X) ∈ {0, 1}k×{0, 1}n
7→ EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. A known-key
distinguisher (R,A) of order N ≥ 1 consists of (1) a relation R over the N -tuples
of n-bit blocks (2) an algorithm A that on input a k-bit key K produces in
time TA, i.e. in time equivalent with TA computations of E, an N -tuple X =
(Xi)i=1···N of plaintext blocks and an N -tuple Y = (Yi)i=1···N of ciphertext blocks
related by Yi = EK(Xi), The two following conditions must be met:
(i) The relation R must be TA-intractable relatively to E.
(ii) The validity of R must be efficiently checkable: we formalize this requirement
by incorporating the time for checking whether two N -tuples are related by R in
the computing time TA of algorithm A.6

It is important for the sequel to notice that in the former definition, while the
algorithm A takes a random key K as input, the relation R satisfied by the
N -tuples of input and output blocks constructed by A is the same for all values
of K and must be efficiently checkable without knowing K.

Example 1. The following example of a known-key distinguisher of order N = 2 il-
lustrates the link between the use of block ciphers for hashing purposes and their
security in the known-key model. Let E denote a block cipher of key length k bits
and block length n bits and (X1, X2) and (Y1, Y2) denote two pairs of n-bit blocks.
We define the relation (X1, X2) R (Y1, Y2) by the conditions X1 6= X2 and X1 ⊕ Y1 =
X2 ⊕ Y2. The definition of relation R obviously implies that if E is vulnerable to a
known-key distinguisher (R,A) of complexity T � 2

n
2 , then the compression function

h : {0, 1}k × {0, 1}n → {0, 1}n : (K,X) 7→ X ⊕ EK(X) derived from E using the
Matyas-Meyer-Oseas construction is vulnerable to a collision attack of complexity T
that is more powerful than any generic collision attack against h.7

In the next example and throughout the rest of this paper, we are using the fol-
lowing notation to describe integral properties of partial AES encryptions and
decryptions.

Notation. Let F : {0, 1}n → {0, 1}n denote any mapping over the block space
and let us consider the transformation by F of a structure X of N = 28m blocks,

6 This avoids specifying an explicit upper bound on the time complexity for checking
whether two N -tuples are related by R. In practice one typically expects the time
complexity for checking R to be at most the one of N computations of E.

7 It could be shown that if T � 2
n
2 , R is T -intractable.



m ≤ 16. An input or output byte bi, i ∈ {0, · · · , 15} of F is said to be constant
and marked C if it takes one constant value. It is said to be uniform and marked
U if it takes each of the 28 possible values exactly 28(m−1) times. A s-tuple
(bi1 , · · · , bis), where s ≤ m and i1, · · · is ∈ {0, · · · , 15}, of input or output bytes
of F is said to be uniform and marked U1, · · ·Us if (bi1 , · · · , bis) takes each of
the 28s possible s-tuple values exactly 28(m−s) times.

Example 2. The known-key distinguisher for AES7 introduced in [17] uses a relation
R of order N = 256 that exploits integral properties of partial AES encryptions and
decryptions. The following integral properties are used:U1 C C C

C U2 C C
C C U3 C
C C C U4

 +4r→

U U U U
U U U U
U U U U
U U U U

 and

U1 C C C
U2 C C C
U3 C C C
U4 C C C

 −3r→

U U U U
U U U U
U U U U
U U U U


where 4r denotes 4 consecutive AES encryption rounds without MixColumns in the
last round and −3r denotes 3 full AES decryption rounds. These properties imply that
if a middle structure Z of N = 256 blocks is chosen as to satisfy the properties of
the intermediate block of the scheme below, then by applying 4 forward encryption
rounds and 3 backward decryption rounds to this structure one obtains a N -tuple of
(plaintext, ciphertext) pairs that satisfy the relation R that (1) the N input blocks are
pairwise distinct and (2) each of the 16 input bytes and each of the 16 output bytes is
uniformly distributed.U U U U

U U U U
U U U U
U U U U

 −3r←

ZU1 C C C
U5 U2 C C
U6 C U3 C
U7 C C U4

 +4r→

U U U U
U U U U
U U U U
U U U U


While R could be shown to be N -intractable by the same kind of arguments as

those used in the next section, we do not give a detailed proof here. The authors of [17]
do not use exactly the same notion of T -intractable relation, but conjecture the related
– somewhat stronger – property that “for a randomly chosen 128-bit permutation,
finding a collection of 256 texts in similar time, using similar (little) memory and with
similar properties as in the case of 7-round AES has a probability of succeeding which
is very close to zero”.

Example 3. In [12] a known-key distinguisher of order N = 2 for AES8 of time com-
plexity T = 248, memory about 232, and success probability close to 1 is described. The
associated relationR is differential in nature. It is defined as follows: (X1, X2)R(Y1, Y2)
if and only if X1 6= X2, the single non-zero bytes of the input difference X1 ⊕X2 are
the diagonal bytes, i.e. the bytes numbered 0, 5, 10, and 15, and the single non-zero
bytes of the output difference Y1 ⊕ Y2 are the four bytes numbered 0, 7, 10, and 13.
It was shown in [13] that given a perfect random permutation Π, the best method to
get an input pair (X1, X2) and an output pair (Y1, Y2) = (Π(X1), Π(X2)) satisfying
(X1, X2)R(Y1, Y2) is the so-called limited birthday technique, that requires about 265

oracle queries for a target success probability of about 1
2
. With only T = 248 oracle

queries, the success probability of this best method would decrease to about 2−17.

Example 4. When applied to block ciphers, so-called zero-sum distinguishers [1, 4, 5],
that thanks to higher order differential properties produce structures (Xi, Yi)i=1···N of
N (input, output) pairs such that

⊕N
i=1Xi =

⊕N
i=1 Yi = 0 also represent examples of

known-key distinguishers.



Impossiblity results on the resistance of block ciphers to all known-key
distinguishers. Specifying the requirements on the resistance of a block cipher
E against known-key distinguishers is a notoriously difficult issue because of an
impossibility result that was first pointed out by Canetti, Goldreich, and Halevi
in [6]. While the notion of correlation intractability was originally used to state
this result, the related notion of resistance against known-key distinguishers can
be used to reformulate it as follows:

Proposition 2. Every block cipher of key length k bits and block length n bits
such that k ≤ n is vulnerable to a known-key distinguisher of order 1 and com-
plexity about one computation of E.

Proof sketch. In order to give the intuition of the proof, let us restrict ourselves
to the situation where k = n. It suffices to use the whole specification of E in
the definition of R to get the claimed result. Let us define X R Y , where X
and Y are any n-bit blocks, by the condition Y = EX(X). Given any known
k-bit key K, the easy to compute values X = K and Y = EK(K) are related
by EK and satisfy X R Y . However, for any adversary A′ that makes q << 2n

queries to a perfect random permutation Π of the block space, finding X such
that X R Π(X), i.e. Π(X) = EX(X) is very unlikely to succeed: by sepa-
rately considering the cases where A′ outputs a value X that belongs or does
not belong to a queried pair it can indeed be shown that the success probabil-
ity of A′ is upper bounded by q

2n + 1
2n−q , and is therefore negligible if q << 2n. ut

The former proposition can be easily extended as follows.

Proposition 3. Every block cipher of block length n bits and key length k = Nn
bits is vulnerable to a known-key distinguisher of order N and complexity about
N computations of E.8

Proof sketch. We just need to replace the relation R used in the former proof by
the following relation RN over the N -tuples of blocks: if X = (Xi)i=1···N and
Y = (Yi)i=1···N , XRNY iff ∀i ∈ [1;N ]EX (Xi) = Yi, where EX denotes the block
cipher E parametrized by the Nn-bit key X1||X2|| · · · ||XN . ut

To summarize the above impossibility results, for a block cipher E of block and
key lengths n and k, generic known-key distinguishers of order N are known to
exist iff k ≤ Nn.

Discussion. If k > Nn, any known-key distinguisher of order at most N can
be reasonably conjectured to be meaningful, i.e. to reflect, unlike the artificial
generic known-key distinguishers of Propositions 2 and 3, a meaningful corre-
lation property of E. Now in the frequently encountered case where k ≤ Nn,

8 One can generalize the former result a bit further by noticing that if k ≤ Nn, then
given any easy to compute and easy to invert function f : {0, 1}Nn → {0, 1}k, a
simple variant of the known-key distinguisher of Proposition 3 can be obtained by
replacing RN by the relation R′N defined by XR′NY iff ∀i ∈ [1;N ] Ef(X )(Xi) = Yi.



that is met for instance for the known-key distinguisher of [17] where k = 128
and Nn = 256 × 128, characterizing which known-key distinguishers of order N
should be considered meaningful and which ones should be considered artificial
is a very complex issue. Finding a complete characterization remains an open
problem that even lacks a rigorous statement and we will not attempt to solve
it here. We will limit ourselves to propose informal criteria allowing to identify
two classes of known key distinguishers that have little to do with artificial dis-
tinguishers identified so far and can be both reasonably considered meaningful.
– Informal criterion 1. One heuristic argument in favour of the view that the
known-key distinguisher of Example 2 [17] for AES7 is meaningful is the ob-
servation that while the description of the generic relations R and RN used in
Propositions 2 and 3 involve the specification of E itself, the relation R used in
[17] has no obvious connection with the specification of E. More generally, if a
known-key distinguisher uses an intractable relation R whose specification does
not extensively reuse operations of E, this provides some heuristic evidence that
it can be considered meaningful.9

– Informal criterion 2. While the informal criterion 1 sounds like a reasonable
sufficient condition, we think it should not be considered as a necessary condi-
tion. In other words, known-key distinguishers that do not satisfy it, i.e. whose
relation R re-uses some operations of E, should not be systematically ruled out
as if they were all artificial. We informally state an alternative criterion for high-
lighting that independently of whether their relation R reuses operations of E
or not, some known-key distinguishers have little to do with existing artificial
distinguishers. One can observe that in the artificial distinguishers (A,R) of
Propositions 2 and 3 and of the generalisation of Proposition 3 in the remark
above, algorithm A produces an N -tuple X of input blocks from which the value
of the whole key can be easily derived: in other words, one exploits the fact that
X “encodes” the value of the entire key. If for a given known-key distinguisher
(A,R) the entire key can neither be derived from the N -tuples of input values
X nor from the N -tuples of output values Y produced by A one is brought back
to a situation somewhat similar to the case where k > Nn (a condition that ob-
viously prevents X and Y from encoding the entire key) and this provides some
evidence that (A,R) has little to do with the artificial distinguishers identified
so far. We will use this informal criterion at the end of the next section.

4 Application: improved known-key distinguishers for
AES8 and AES10

4.1 A known-key distinguisher for AES8

Let us now show how to use the first untwisted representation of AES2r in-
troduced in Section 2 in order to mount a known-key distinguisher of order
N = 264 for AES8. The distinguisher starts from a suitably chosen middle N -
block structure and exploits the forward and backward properties of the final

9 Giving a rigorous definition of the former informal criterion seems difficult. One
might perhaps express that the verification of R is not substantially sped up by
oracle accesses to E.



rounds, resp. the initial rounds of the AES8, that are illustrated on Figure 3.
These properties result from the fact that the initial and final rounds essentially
consist of the composition S ·R ·S, up to simple initial and final transformations.

Property 1. For any structure X(a,b,c,d) = {(x ⊕ a, b, c, d), x ∈ {0, 1}32} of 232

input blocks — where (a, b, c, d) denotes an AES block of columns a, b, c, and
d — each of the four 4-byte columns of the image of X(a,b,c,d) by S · R · S is
uniformly distributed.

This can be easily seen by following the column-wise transitions through trans-
formations S, R, and S on the top of Figure 3 and by observing (1) that S
transforms each column bijectively and (2) that if one fixes the second, third,
and fourth input columns of R, each of the four output columns of R is a bijec-
tive affine function of the first input column. Since moreover P ·SR ·AK is just
a permutation of the byte positions followed by a key addition, each of the 16
bytes of the image of X(a,b,c,d) by S ·R · S ·P · SR ·AK is uniformly distributed
and can be marked “U”.

Property 2. For any structure Y(e,f,g,h) = {(y ⊕ e, f, g, h), y ∈ {0, 1}32} of 232

blocks, each four-byte column of the preimage of Y(e,f,g,h) by S ·R ·S is uniformly
distributed.

This can be easily seen by following the column-wise transitions through trans-
formations S−1, R−1, and S−1 on the bottom of Figure 3 and observing (1)
that S−1 transforms each column bijectively and that (2) if one fixes the second,
third, and fourth input columns of R−1, each of the four output columns of R−1

is a bijective affine function of the first input column. Since moreover IP−1 is
a permutation of the byte positions, each of the 16 bytes of the preimage of
Y(e,f,g,h) by AK · IP ·S ·R ·S is uniformly distributed and can be marked “U”.

X(a,b,c,d)U1 C C C
U2 C C C
U3 C C C
U4 C C C

 S→

U1 C C C
U2 C C C
U3 C C C
U4 C C C

 R→

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

 S→

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

 P ·SR·AK
−−−→

U U U U
U U U U
U U U U
U U U U


Y(e,f,g,h)U1 C C C
U2 C C C
U3 C C C
U4 C C C

S−1

→

U1 C C C
U2 C C C
U3 C C C
U4 C C C

 R−1

→

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

 S−1

→

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

 (AK·IP )−1

−−→

U U U U
U U U U
U U U U
U U U U


Fig. 3. Forward and backward properties of S ·R · S

We are using these properties to mount the known-key distinguisher of order
N = 264 for AES8 illustrated on Figure 4, i.e. an algorithm A allowing to effi-
ciently derive from any known key a N -tuple

(
(Xi, Yi)

)
i=1···N of AES8 (input,

output) pairs that satisfy the relation R defined as follows.

Relation R: (Xi)i=1···NR(Yi)i=1···N iff the N blocks Xi are pairwise distinct
and for each byte position j ∈ {0, · · · , 15}, the j-th byte of the Xi and the j-th
byte of the Yi are uniformly distributed.



Algorithm A: The conducting idea is that in the untwisted representation of
AES8 in Figure 4, the initial and final rounds of Figure 3 are linked together by
the transformation R, that is affine. This allows to construct a structure that
simultaneously achieves the requirements on the intput and the output of R−1

in order to apply Properties 1 and 2. More in detail, we are using the 264 chosen
middle blocks structure Z = X0 ⊕ RY0, where X0 and Y0 are shorthands for
X(0,0,0,0) and Y(0,0,0,0) and X0 ⊕ RY0 denotes the set {X ⊕ R(Y ), X ∈ X0, Y ∈
Y0}. It directly results from the definition of Z that it can be partitioned into
232 structures X0 ⊕ R(y, 0, 0, 0) = XR(y,0,0,0) of 232 blocks each, one for each
value y ∈ {0, 1}32. In other words, Z can be partitioned into 232 structures of
the form X(a,b,c,d). Therefore, due to Property 1, each byte of the image of Z by
S ·R ·S ·P ·SR ·AK satisfies property U . Let us denote by L and C the linear and
constant parts of the affine mapping R, i.e. the linear mapping and the constant
such that ∀X ∈ {0, 1}128R(X) = L(X) ⊕ C. Since the linear mapping and the
constant associated with R−1 are L′ = L−1 and C ′ = L−1(C), the preimage of
Z by R is R−1(Z) = L−1(X0 ⊕ L(Y0) ⊕ C) ⊕ C ′ = L−1(X0) ⊕ Y0. Therefore
R−1(Z) can be partitioned into 232 structures Y0⊕L−1(x, 0, 0, 0) = YL−1(x,0,0,0)

of 232 blocks each10 – one for each value x ∈ {0, 1}32. In other words, R−1(Z)
can be partitioned into 232 structures of the form Y(e,f,g,h) and the application
of Property 2 to R−1(Z) shows that each byte of the preimage of R−1(Z) by
AK · IP ·S ·R ·S, i.e. each byte of the preimage of Z by AK · IP · S ·R · S ·R,
satisfies property U .


U U U U
U U U U
U U U U
U U U U

 (AK·IP )−1

←−−−


U1

1 U
2
1 U

3
1 U

4
1

U1
2 U

2
2 U

3
2 U

4
2

U1
3 U

2
3 U

3
3 U

4
3

U1
4 U

2
4 U

3
4 U

4
4

 (SRS)−1

←−−

R−1(Z)=Y0⊕L−1X0

≡232×
U1 C C C
U2 C C C
U3 C C C
U4 C C C

 R−1

←−−

Z=X0⊕RY0
≡232×

U1 C C C
U2 C C C
U3 C C C
U4 C C C

 · · ·

· · ·
SRS

−−→


U1

1 U
2
1 U

3
1 U

4
1

U1
2 U

2
2 U

3
2 U

4
2

U1
3 U

2
3 U

3
3 U

4
3

U1
4 U

2
4 U

3
4 U

4
4

 P ·SR·AK

−−→


U U U U
U U U U
U U U U
U U U U


Fig. 4. A known-key distinguisher for AES8

In summary, we derived from the middle structure Z a N -tuple
(
(Xi, Yi)

)
i=1···N

of AES8 (input, output) pairs that satisfy relation R. The time complexity of the
derivation of such an N -tuple is T = N = 264 AES8 computations. To complete
the proof that we have mounted a known-key distinguisher for AES8, we just
have to show that property R is T -intractable, i.e. that the success probability
of any oracle algorithm A(Π,Π−1) of overall time complexity upper bounded by
N (and therefore of number q of queries also upper bounded by N) is negligible.

10 One can notice that the above partitions of Z and R−1(Z) do not map into eachother
through R.



Proposition 4. For any oracle algorithm A that makes q ≤ N = 264 oracle
queries to a perfect random permutation Π of {0, 1}n (where n = 128) or its
inverse, the probability that A successfully outputs a N -tuple (

(
Xi, Yi)

)
i=1···N

of (input, output) pairs of Π that satisfy R is upper bounded by 1
2n−(N−1) and

hence by 1
2n−1 .

Proof. If at least one of the N pairs (Xi, Yi) output by A does not result from
the query Xi to Π or the query Yi to Π−1, then the probability that for this pair
Yi = Π(Xi) and thus the success probability of A is upper bounded by 1

2n−(N−1) .

In the opposite case, i.e. if q = N and all the (Xi, Yi) result from queries to Π
or Π−1, we can assume w.l.o.g. that (XN , YN ) results from the N -th query XN

or YN of A to Π or Π−1. But given any pairs (Xi, Yi)i=1···N−1 at most one value
of the block YN , resp. XN is such that each of the 16 bytes of (Yi)i=1···N , resp.
(Xi)i=1···N be uniformly distributed.11 However the oracle answer YN , resp. XN

is uniformly drawn from {0, 1}n \ {Y1, · · ·YN−1}, resp. {0, 1}n \ {X1, · · ·XN−1}.
Therefore the probability that the answer to the N -th query allows the output
of A to satisfy property R is also upper bounded by 1

2n−(N−1) in this case. ut

Discussion. The known-key distinguisher of order N = 264 for AES8 presented
above has a time complexity of about 264. It is obviously applicable without
modification to the AES8 variant parametrized by independent subkeys AES∗8.
In both cases, the fact that informal criterion of Section 3 is met, i.e. that
the relation R used by the distinguisher has no obvious connection with the
AES specification suggests that the obtained known-key distinguisher can be
considered meaningful. While the presented 8-round known-key distinguisher is
outperformed by the differential known-key distinguishers for AES8 of complex-
ities 248 and 244 of [12, 14], the strong property expressed by relation R that
each input and output byte is not only balanced as in zero-sum distinguishers,
but uniformly distributed turns out to be convenient for further extending the
known key distinguisher by two rounds in a provable manner, as will be shown
in the rest of this section.

Strengthening Proposition 4 under a heuristic assumption. Let us give
some partial evidence that R is actually T -intractable in a stronger sense than in
Proposition 4 above, namely that the success probability of any adversary A who
makes M > N oracle queries to Π or Π−1 remains negligible if M−N is not too
large. While a rigorous proof requiring no unproven assumptions could be easily
derived along the same lines as Proposition 4 for values of M marginally larger
than N , e.g. N + 3, for larger values of M we make the heuristic assumption
that querying both Π and Π−1 does not improve the performance of A over
an adversary who only queries one of these oracles. Therefore, we consider an
adversary A who only makes queries to an oracle permutation Π not its inverse,
and aims at finding an N -tuple of (input, output) pairs that satisfy the relation

11 This can for instance be deduced from the fact that the Xi and the Yi must satisfy⊕N
i=1Xi =

⊕N
i=1 Yi = 0.



R of Section 4.1. To upper bound the success probability of such an adversary,
we observe that given any N -tuple of distinct input blocks Xi and any output
byte position j ∈ [0; 15], the 256-tuple (N0, · · · , N255) of numbers of occurrences
of the values 0, 1, · · · 255 for byte j of the blocks Yi = Π(Xi) is nearly governed

by a multinomial law. For any 256-tuple (N0, · · · , N255) such that
∑255
i=0Ni = N ,

we denote the multinomial coefficient N !
N0!N1!···N255!

by
(

N
N0,···N255

)
.

Proposition 5. For any N -tuple (Xi)i=1···N of distinct inputs to Π an upper
bound on the probability p that for byte positions j = 0 to 15, the 256-tuple of
numbers of occurrence of the values of byte j of Π(Xi) be (N j

0 , · · · , N
j
255) —

where for j=0 to 15 the 256-tuple (N j
0 , · · · , N

j
255) satisfies

∑255
0 N j

i = N — is
given by:

p ≤
15∏
j=0

(
N

N j
0 , · · ·N

j
255

)
× (

1

2128 −N + 1
)N .

An upper bound on the success probability pA of an adversary A who makes
M > N queries to Π and no query to Π−1 is given by:

pA ≤
(
M

N

)
×
(

N
N
256 ,

N
256 · · ·

N
256

)16

× (
1

2128 −N + 1
)N .

Since N = 264, Proposition 5 provides very small upper bounds pA � 1
2 for

values of M of up to M ≈ N + 211. But it provides no bound pA < 1
2 for

slightly larger values, e.g. M ≈ N + 212. We do not know whether the bounds of
Proposition 5, that relate to the probability that the (input, output) pairs pro-
vided by M queries contain one N -tuple, can be significantly improved. Since
even in a situation where such N -tuples exist it can be computationally diffi-
cult to find one in time T , a potential approach might consist in establishing
upper bounds that hold for higer values of M under computational assumptions.

4.2 A known-key distinguisher for the 10-round AES

In this section we show that the former known-key distinguisher for AES8 can
be extended by two rounds without significant complexity increase. The price to
pay for this extension is that the relation R of the new distinguisher is much less
simple and that its description involves operations of the first and last rounds.
This raises the question whether the new known-key distinguisher reflects a
meaningful correlation property of the cipher. Since we can provide more simple
arguments supporting this view for AES∗10 (i.e. the 10-round AES parametrized
by 11 independent subkeys), we first describe the application of the new known-
key distinguisher to AES∗10 and then discuss how this transposes to AES-128.

As shown at the end of Section 2, AES∗10 can be equivalently represented by
the sequence of transformations

AK · P−1 · SB ·R · (S ·R)4 · SB ·Q−1 ·AK

The properties we are using to build a known-key distinguisher on AES∗10 are
illustrated on Figure 5.



(Xi)
(AK·P−1·SB·R)−1

←−−−−−−−−

U
U U U U
U U U U
U U U U
U U U U

(SRS)−1

←−−−−−

R−1(Z)=Y0⊕L−1X0
U1 C C C
U2 C C C
U3 C C C
U4 C C C

 R−1

←−−

Z=X0⊕RY0
U1 C C C
U2 C C C
U3 C C C
U4 C C C

SRS

−−→

V
U U U U
U U U U
U U U U
U U U U

R·SB·Q−1·AK

−−−−−−−−→ (Yi)

Fig. 5. Derivation of the N AES10 (input,output) pairs used in our known-key distin-
guisher

Algorithm A: We reuse the same structure Z of N = 264 intermediate blocks
as for the known-key distinguisher on AES8 presented above, but extend the for-
ward computation and backward computations S ·R ·S and (S ·R ·S ·R)−1, by
two outer transformations whose structures are symmetric of each other, namely
(AK · P−1 · SB · R)−1 (backward) and R · SB · Q−1 · AK (forward) to get an
N -tuple of related AES∗10 inputs and outputs. As shown in the former subsection
the inputs to the forward and backward outer transformations each consist of
four columns that are uniformly distributed and therefore each of the 16 bytes
of each of these two states U and V is uniformly distributed and can be marked
U . However, these states are related to the AES∗10 inputs Xi and to the AES∗10
outputs Yi by the outer transformations.

This implies that if we denote by α and β the 128-bit states P−1(K0) and
Q(K10) the N -tuple X = (Xi)i=1···N and Y = (Yi)i=1···N are related by the key-
dependent relation Rα,β defined as follows: XRα,βY if and only if each byte of
R ◦SB(P−1(Xi)⊕α) and each byte of R−1 ◦SB−1(Q(Yi)⊕β) is uniformly dis-
tributed. We can now define the following relation R over the N -tuples of blocks:

Relation R: Given two N -tuples X ′ = (X ′i)i=1···N and Y ′ = (Y ′i )i=1···N X ′RY ′
if and only if all the X ′i, i = 1 · · ·N are pairwise distinct and there exists a pair
α′, β′ of 128-bit states such that X ′Rα′,β′Y ′.
It is important to understand that though relation R reflects the existence of
values α′ and β′ that can be conveniently interpreted as subkeys, ckecking R
does not take as input any key or subkey: given two N -tuples X ′ and Y ′ that
can be possibly derived from a random key value K by algorithm A, whether
X ′RY ′ must be efficiently checkable without providing the verifyer with K or
any other side information about suitable values of α′ and β′.

It immediately results from the definition of R that the N -tuples X and Y
derived as described in Figure 5 satisfy property R and the complexity of the
derivation algorithm A is T = N = 264. To complete the proof that (R,A) is
a known-key distinguisher for AES∗10, we just have to show that R is efficiently
checkable and T -intractable.

R is efficiently checkable. Though the involvement in R of 128-bit constants
α′ and β′ might suggest that checking R has a huge complexity, this is not the
case because the existence of 128-bit states α′, β′ such that X ′Rα′,β′Y ′ can be
split into independent conditions. Let us denote by sb : {0, 1}32 → {0, 1}32 a
parallel application of four AES S-boxes that from a four-byte row produces a
four-byte output row. For j= 0 to 3 let us denote by rowj the mapping that



from a 128-bit state outputs the row numbered j of this state, and by Rj the
linear transformation of row j introduced in Section 2. It is easy to see that the
existence of α′ and β′ is equivalent to the existence of eight 32-bit constants
α′j , j = 0 · · · 3 and β′j , j = 0 · · · 3 (representing the rows of α′ and β′) such

that for j = 0 · · · 3 each of the four bytes of Rj ◦ sb ◦ rowj(P−1(Xi) ⊕ α′j) and

R−1j ◦ sb−1 ◦ rowj(Q(Yi)⊕ α′j) is uniformly distributed. This can be easily done

by first computing in a first step the number of occurrences of each of the 232

possible values of the 32-bit words rowj(P
−1(Xi)) and rowj(Q(Yi)), j = 0 · · · 3,

and then using the obtained distributions of frequencies in a second step for
computing, for j = 0 to 3 and each of the 232 possible values of α′j , resp. β′j
the resulting distribution of frequencies of Rj ◦ sb ◦ rowj(P−1(Xi) ⊕ α′j), resp

R−1j ◦ sb−1 ◦ rowj(Q(Yi)⊕ α′j) and checking that at least one of them induces a

balanced distribution for each byte position. Since the first step requires 264 very
simple operations that are much less complex that one operation of AES∗10 and
the second step again requires 8 times 264 very simple operations, the overall
complexity of checking R is strictly smaller than N = 264 AES∗10 operations.

Remark. The reader might wonder whether the technique we used to derive a
known-key distinsguisher for the 10-round AES from a known-key distinguisher
for the 8-round AES, by expressing that the 10-round inputs and outputs are
related (by one outer round at each side) to intermediate blocks that satisfy the
relation used by the 8-round distinguisher does not allow to extend this 8-round
known distinguisher by an arbitrary number of rounds. If this was the case, this
would of course render this technique highly suspicious. It is easy however to see
that the argument showing that 10-round relation R is efficiently checkable does
not transpose for showing that the relations over r > 10 rounds one could derive
from the 8-round relation by expressing that the r-round inputs and outputs are
related by r−8 > 2 outer rounds to intermediate blocks that satisfy the 8-round
relation are efficiently checkable. To complete this remark, we explain at the end
of this section why the 2-round extension technique we used is not generically
applicable to extend any r-round known-key distinguisher to a r + 2-round dis-
tinguisher.

R is T -intractable. In order to show that relation R is T -intractable, we now
have to prove that the success probability of any oracle algorithm of overall time
complexity upper bounded by N = 264 (and therefore of number q of queries
also upper bounded by N) is negligible.

Proposition 6. For any oracle algorithm A that makes q ≤ N = 264 oracle
queries to a perfect random permutation Π of {0, 1}128 or Π−1, the probability
that A outputs a N -tuple (Xi, Yi)i=1···N of Π that satisfies and ∀i ∈ [1;N ] Yi =

Π(Xi) and also satisfies R is upper bounded by 2256 × ( 516

2128−(N−5) )
3 ≈ 2−16.5 .

Proof. If at least one of the N pairs (Xi, Yi) output by A does not result from
a query Xi to Π or a query Yi to Π−1, then the probability that for this pair
Yi = Π(Xi) and consequently the success probability of A is upper bounded by



1
2n−(N−1) . So from now on we only consider the opposite case, i.e. q = N and

all the (Xi, Yi) result from queries to Π or Π−1. Given any two 128-bit words α
and β, let us upper bound the probability that A outputs an N -tuple (Xi, Yi)
that satisfies ∀i ∈ [1;N ] Yi = Π(Xi) and the relation Rα,β . The conducting
idea is that the constraints on the very last queries to the oracle (Π,Π−1) in
order for Rα,β to hold are so strong this is extremely unlikely to happen. For
the sake of simplicity of this proof, we consider the consider the last 5 queries
of A to the oracle (Π,Π−1): indeed, while considering the d last queries, d > 5,
might have lead to a tighter upper bound, the chosen value of 5 is sufficient for
establishing a suitable upper bound. Since the 5 last queries contain at least 3
queries to either Π or Π−1 we can assume w.l.o.g. that they contain at least
3 queries X, X ′, and X ′′ to Π and we denote the corresponding responses
by Y , Y ′, and Y ′′. In order for the property Rα,β to be satisfied, for each
byte position j ∈ [0; 15], the set of byte values Bj = {b ∈ [0; 255] | ]{i ∈
[1;N−5] | R−1◦SB−1(Q(Yi)⊕β)[j] = b} 6= N

256}must contain at most 5 elements
(since the last 5 queries can affect the number of occurrences of at most 5 of
the 256 byte values and all the unaffected numbers of occurrences must already
be N

256 ). Furthermore, in order for property Rα,β to be satisfied, one must have
∀i ∈ [N − 4;N ] R−1 ◦ SB−1(Q(Yi) ⊕ β)[j] ∈ Bj , i.e. ∀i ∈ [N − 4;N ] Yi ∈ S =

Q−1◦SB◦R(
∏15
j=0Bj)⊕β. Since Q, SB, R, and the xor with β are bijective, the

set S defined above contains ]S = ]
∏15
j=0Bj elements (where

∏15
j=0Bj denotes

the Cartesian product of the Bj). Since for j=0 to 15 ]Bj ≤ 5, ]
∏15
j=0B

′
j ≤ 516

and hence ]S ≤ 516. Therefore the probability that the three blocks Y, Y ′, and

Y ′′ all belong to S is upper bounded by ( 516

2128−(N−5) )
3. By summing the obtained

upper bound over all the 2256 possible values of α, β, one gets the claimed upper

bound 2256× ( 516

2128−(N−5) )
3 ≈ 2−16.5 on the probability that R be satisfied. ut

In order to give partial evidence that R is not only N -intractable as shown
in Proposition 6 above, but remains M -intractable for M > N if M −N is not
too large, we can make the heuristic assumption that the success probabilities
of adversaries who are allowed to make oracle queries to both Π and Π−1 and
adversaries who are allowed to make oracle queries to Π only have the same
upper limit. Proposition 5 can be transposed to the 10-round relation R, up to
a multiplication of the upper bounds obtained for p and pA by 2256. This multi-
plicative factor does not strongly affect the values ofM−N one can reach and one
still gets very small upper bounds pA � 1

2 for values of M of up to M ≈ N+211.

The former 2-round extension technique is not generic. The reader might
wonder why the two-round extension technique introduced above does not allow
to extend any r-round known-key distinguisher to an r + 2-round known-key
distinguisher. There are two reasons that can make such an extension fail: firstly,
unlike the r-round relation it is derived from, the r + 2-round relation may not
be efficiently ckeckable; secondly, unlike the r-round relation it is derived from,
the r+2-round relation may be insufficiently intractable to mount a r+2-round
distinguisher. This second situation occurs in the case of the 8-round differential



relation R8 of order 2 used in [12]. In the full version of this paper we show
that unlike R8, that is T -intractable for T = 248, the 10-round relation R10

derived from R8 is not intractable at all for T = 248, but simple to achieve with
a probabillity about 0.97 with only two queries to a perfect random permutation
Π and no extra operation. In other words, the transposition of our technique
to the 8-round distinguisher of [12] does not allow to derive a valid 10-round
distinguisher.

In the full version of this paper, we also show that while we do not preclude
that the use of the stronger property (reflected by a higher-order relation than
R8) that several pairs satisfying the differential relation of [12] can be derived
might potentially result in a 10-round distinguisher that outperforms the 10-
round distinguisher presented above, giving a rigorous proof (as was done in
Proposition 6) seems technically difficult. We leave the investigation of improved
10-round known-key distinguishers and associated proofs – or even plausible
heuristic arguments if rigorous proofs turn out to be too difficult to obtain – as
an open issue.

Discussion. The known-key distinguisher (R,A) of order N = 264 for AES∗10
presented above has a time complexity of about 264. Unlike in the former 8-
round known-key distinguishers the relation R involves operations of the AES.
However, it is easy to show that the alternative criterion at the end of Section
3 for differentiating certain known-key distinguishers from the artificial known-
key distinguishers that result from generic impossibility results is applicable.
Indeed, the derivation by A of the input N -tuple (Xi)i=1···N from the interme-
diate structure Z only involves the 6 first subkeys K0 to K5 and the derivation
A of the output N -tuple (Yi)i=1···N from the same structure only involves the
5 last subkeys K6 to K11. Consequently the 5 last subkeys cannot be derived
from (Xi)i=1···N and thus the input N -tuples do not “encode” the entire key.
Similarly, the 6 first subkeys cannot be derived from (Yi)i=1···N and thus the
output N -tuples do not “encode” the entire key. This suggests that the obtained
known-key distinguisher for AES∗10 can reasonably be considered meaningful.

While the former known-key distinguisher is obviously applicable without
any modification to AES10, i.e. the full AES-128, the former argument vanishes
in this case because all subkeys are related by the key schedule: the first subkey,
resp. the last subkey can actually be derived from the input, resp. the output
N -tuple and because of the key schedule relations this determines the entire key.
This does not mean that when applied to AES10 the former distinguisher be-
comes artificial. Actually, the fact that the very same distinguisher is applicable
to AES∗10 gives a hint that it can still be considered meaningful.12

12 Since the input N -tuple now encodes the entire key, there might exist artificial
variants of the former known-key distinguisher that produce the same input N -
tuples (or the same output N -tuples) but can be extended to AESr for any value of
r. We conjecture however that unlike the known-key distinguisher presented here,
such variants would not be applicable to AES∗r .



5 Conclusion

As said before, the untwisted representation of AES introduced in this paper is
not exclusively intended for the analysis of the security of AES in the known-key
model. We think however that the fact that this represention was used to find the
two known-key distinguishers presented in Section 4 provides some evidence that
this representation is well suited for analysing the resistance of (a reduced-round
version of) AES against some structural attacks.

Whether there exists a more simple 10-round known-key or even chosen-key
distinguisher for AES than the 10-round known key distinguisher presented in
this paper – allowing to highlight a less tenuous deviation from the behaviour
of a perfect random permutation, resp. of an ideal cipher remains an interesting
open question.
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Martin Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Com-
pression Function. In Advances in Cryptology - ASIACRYPT 2009, volume 5912
of Lecture Notes in Computer Science, pages 126–143. Springer, 2009.

19. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
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