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{jca,skr,nev}@zurich.ibm.com

3 INRIA France

Abstract. Lattice problems are an attractive basis for cryptographic systems be-
cause they seem to offer better security than discrete logarithm and factoring
based problems. Efficient lattice-based constructions are known for signature and
encryption schemes. However, the constructions known for more sophisticated
schemes such as group signatures are still far from being practical. In this paper
we make a number of steps towards efficient lattice-based constructions of more
complex cryptographic protocols. First, we provide a more efficient way to prove
knowledge of plaintexts for lattice-based encryption schemes. We then show how
our new protocol can be combined with a proof of knowledge for Pedersen com-
mitments in order to prove that the committed value is the same as the encrypted
one. Finally, we make use of this to construct a new group signature scheme that
is a “hybrid” in the sense that privacy holds under a lattice-based assumption
while security is discrete-logarithm-based.

Keywords: Verifiable Encryption, Group Signatures, Zero-Knowledge Proofs for
Lattices.

1 Introduction
There has been a remarkable increase of research in the field of lattice-based cryp-
tography over the past few years. This renewed attention is largely due to a number
of exciting results showing how cryptographic primitives such as fully homomorphic
encryption [21] and multi-linear maps [20] can be built from lattices, while no such
instantiations are known based on more traditional problems such as factoring or dis-
crete logarithms. Lattice problems are also attractive to build standard primitives such
as encryption and signature schemes, however, because of their strong security proper-
ties. In particular, their worst-case to average-case reductions as well as their apparent
resistance against quantum computers set them apart from traditional cryptographic as-
sumptions such as factoring or computing discrete logarithms, in particular in situations
that require security many years or even decades into the future.
? The research leading to these results has received partial funding from the European Com-
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Long-term integrity requirements, e.g., for digital signatures, can usually be fulfilled
by re-signing documents when new, more secure signature schemes are proposed. The
same approach does not work, however, for privacy requirements, e.g., for encryption or
commitment schemes, because the adversary may capture ciphertexts or commitments
now and store them until efficient attacks on the schemes are found.

Several lattice-based encryption schemes have been proposed in the literature, e.g.,
[22, 24, 30, 35], but many of their applications in more complex primitives require effi-
cient zero-knowledge proofs of the encrypted plaintext. Examples include optimistic
fair exchange [2], non-interactive zero-knowledge proofs [34], multiparty computa-
tion [18], and group signatures [12]. In this paper, we present a more efficient zero-
knowledge proof for lattice-based encryption schemes. We then combine it with a non-
lattice-based signature scheme to build a group signature scheme with privacy under
lattice assumptions in the random-oracle model.

1.1 Improved Proofs of Plaintext Knowledge for Lattice Schemes
In a zero-knowledge proof of plaintext knowledge, the encryptor wants to prove in
zero-knowledge that the ciphertext is of the correct form and that he knows the mes-
sage. Efficient constructions of these primitives are known based on number-theoretic
hardness assumptions such as discrete log, strong RSA, etc.

Encryptions in lattice-based schemes generally have the form t = Ae mod q, where
A is some public matrix and e is the unique vector with small coefficients that satisfies
the equation (in this general example, we are lumping the message with e). A proof
that t is a valid ciphertext (and also a proof of plaintext knowledge), therefore, involves
proving that one knows a short e such that Ae = t. It is currently known how to accom-
plish this task in two ways. The first uses a “Stern-type” protocol [37] in which every
run has soundness error 2/3 [26]. It does not seem possible to improve this protocol
since some steps in it are inherently combinatorial and non-algebraic.

A second possible approach is to use the Fiat-Shamir approach for lattices using
rejection sampling introduced in [27, 29]. But while the latter leads to fairly efficient
Fiat-Shamir signatures, there are some barriers to obtaining a proof of knowledge. What
one is able to extract from a prover are short vectors r′, z′ such that Ae′ = tc for some
integer c, which implies that Ae′c−1 = t. Unfortunately, this does not imply that e′c−1

is short unless c = ±1. This is the main way in which lattice-based Fiat-Shamir proofs
differ from traditional schemes like the discrete-log based Schnorr protocol. In the latter,
it is enough to extract any discrete log, whereas in lattice protocols, one must extract a
short vector. Thus, the obvious approach at Fiat-Shamir proofs of knowledge for lattices
(i.e., using binary challenge vectors) also leads to protocols with soundness error 1/2.

Things do not improve for lattice-based proofs of knowledge even if one considers
ideal lattices. Even if A and e are a matrix and a vector of polynomials in the ring
Zq[X]/(Xn + 1), and c is now a polynomial (as in the Ring-LWE based Fiat-Shamir
schemes in [28, 29]), then one can again extract only a short e′ such that Ae′c−1 = t.
In this case, not only is c−1 not necessarily short, but it does not even necessarily exist
(since the polynomial Xn + 1 can factor into up to n terms). At this point, we are not
aware of any techniques that reduce the soundness error of protocols that prove plaintext
knowledge of lattice encryptions, except by (parallel) repetition.
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In a recent work, Damgård et al. [18] gave an improved amortized proof of plaintext
knowledge for LWE encryptions. Their protocol allows one to prove knowledge ofO(k)
plaintexts (where k is the security parameter) in essentially the same time as just one
plaintext. The ideas behind their protocol seem do not reduce the time requirement for
proving just one plaintext, nor do they apply to Ring-LWE based encryption schemes.
In particular, Ring-LWE based schemes are able to encrypt O(n) plaintext bits into one
(or two) polynomial, which is often all that is needed. Yet, the techniques in [18] do not
seem to be helpful here. The reason is that the challenge matrix required in [18] needs
to be of a particular form and cannot simply be a ring element in Zq[X]/(Xn + 1).

In this paper, we show that one can reduce the soundness error of lattice-based
zero-knowledge proofs of knowledge for ciphertext validity from 1/2 to 1/(2n), which
in practice decreases the number of required iterations of the protocol by a factor of
approximately 10. Interestingly, our techniques only work for ideal lattices, and we do
not know how to adapt them to general ones. The key observation is that, when working
over the ring Z[X]/(Xn + 1), the quantity 2/(Xi − Xj) for all 0 ≤ i 6= j < n is a
polynomial with coefficients in {−1, 0, 1}, cf. Section 3.1.

This immediately allows us to prove that, given A and t, we know a vector of short
polynomials e such that Ae = 2t. While this is not quite the same as proving that
Ae = t, it is good enough for most applications, since it still allows us to prove knowl-
edge of the plaintext. This result immediately gives improvements in all schemes that
require such a proof of knowledge for Ring-LWE based encryption schemes such as
the ring-version of the “dual” encryption scheme [22], the “two element” scheme of
Lyubashevsky et al. [30], and NTRU [24, 35].

1.2 Linking Lattice-based and Classical Primitives
A main step in applying our new proof protocol to construct a “hybrid” group signature
scheme is to prove that two primitives, one based on classical cryptography and the
other one on lattices, are committing to the same message (and that the prover knows
that message). In our application, we will use the perfectly hiding Pedersen commitment
scheme as the classical primitive, and a Ring-LWE encryption scheme as the lattice-
based primitive.

While the Pedersen commitment and the lattice-based encryption scheme work over
different rings, we show that we can still perform operations “in parallel” on the two.
For example, if the message is µ0, µ1, . . . , µn−1, then it is encrypted in Ring-LWE
schemes by encrypting the polynomial µ = µ0 + µ1X + . . . + µn−1X

n−1, and each
µi is committed to individually using a Pedersen commitment. We will then want to
prove that a Ring-LWE encryption of µ encrypts the same thing as n Pedersen com-
mitments of the µi’s. Even though the two computations are performed over different
rings, we show that by mimicking polynomial multiplications over a polynomial ring
by appropriate additions and multiplications of coefficients in exponents, we can use
our previously mentioned proof of plaintext knowledge to both prove knowledge of µ
and show that the Pedersen commitments are committing to the coefficients of the same
µ. One reason enabling such a proof is that the terms dealing with µ (and µi) in the
proof of knowledge are done “over the integers”—that is, no modular reduction needs
to be performed on these terms. We describe this protocol in detail in Section 4.
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1.3 Applications to Group Signatures and Credentials
Group signatures [12] are schemes that allow members of a group to sign messages
on behalf of the group without revealing their identity. In case of a dispute, the group
manager can lift a signer’s anonymity and reveal his identity. Currently known group
signatures based on lattice assumptions are mainly proofs of concepts, rather than prac-
tically useful schemes. The schemes by Gordon et al. [23] and Camenisch et al. [10]
have signature size linear in the number of group members. The scheme due to Laguil-
laumie et al. [25] performs much better asymptotically with signature sizes logarithmic
in the number of group members, but, as the authors admit, instantiating it with practical
parameters would lead to very large keys and signatures. This is in contrast to classical
number-theoretic solutions, where both the key and the signature size are constant for
arbitrarily many group members.

One can argue that the privacy requirement for group signatures is a concern that is
more long-term than traceability (i.e., unforgeability), because when traceability turns
out to be broken, verifiers can simply stop accepting signatures for the broken scheme.
When privacy is broken, however, an adversary can suddenly reveal the signers behind
all previous signatures. Users may only be willing to use a group signature scheme
if their anonymity is guaranteed for, say, fifty years in the future. It therefore makes
sense to provide anonymity under lattice-based assumptions, while this is less crucial
for traceability.

Following this observation, we propose a “hybrid” group signature scheme, where
unforgeability holds under classical assumptions, while privacy is proved under lattice-
based ones. This allows us to combine the flexible tools that are available in the classical
framework with the strong privacy guarantees of lattice problems. Our group signature
scheme has keys and signatures of size logarithmic in the number of group members;
for practical choices of parameters and realistic numbers of group members, the sizes
will even be independent of the number of users. Furthermore, by basing our scheme
on ring-LWE and not standard LWE, we partially solve an open problem stated in [25].

Our construction follows a variant of a generic approach that we believe is folk-
lore, as it underlies several direct constructions in the literature [3,8] and was described
explicitly by Chase and Lysyanskaya [11]. When joining the group, a user obtains a
certificate from the group manager that is a signature on his identity under the group
manager’s public key. To sign a message, the user now encrypts his identity under the
manager’s public encryption key, and then issues a signature proof of knowledge that
he possesses a valid signature on the encrypted plaintext. Our construction follows a
variant of this general paradigm, with some modifications to better fit the specifics of
our proof of plaintext knowledge for lattice encryption. To the best of our knowledge,
however, the construction was never proved secure, so our proof can be seen as a con-
tribution of independent interest.

2 Preliminaries
In this section, we informally introduce several notions. Formal definitions and proofs
can be found in the full version.
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2.1 Notation
We denote algorithms by sans-serif letters such as A,B. If S is a set, we write s←$ S to
denote that s was drawn uniformly at random from S. Similarly, we write y ←$ A(x) if
y was computed by a randomized algorithm A on input x, and d←$ D for a probability
distribution D, if d was drawn according to D. When we make the random coins ρ of
A explicit, we write y ← A(x; ρ).

We write Pr[E : Ω] to denote the probability of event E over the probability space
Ω. For instance, Pr[x = y : x, y ←$ D] denotes the probability that x = y if x, y were
drawn according to a distribution D.

We identify the vectors (a0, . . . , an−1) with the polynomial a0 + a1X + · · · +
an−1X

n−1. If v is a vector, we denote by ‖v‖ its Euclidean norm, by ‖v‖∞ its infinity
norm, and by v�l an anti-cyclic shift of a vector v by l positions, corresponding to a
multiplication by X l in Rq = Zq[X]/(Xn + 1). That is, v�l = (v0, . . . , vn−1)�l =
(−vn−l, . . . ,−vn−1, v0, . . . , vn−l−1).

Throughout the paper, λ denotes the main security parameter and ε denotes the
empty string.

2.2 Commitment Schemes and Pedersen Commitments
Informally, a commitment scheme is a tuple (CSetup,Commit,COpen), where CSetup
generates commitment parameters, which are then used to commit to a message m
using Commit. A commitment cmt can then be verified using COpen. Informally, a
commitment scheme needs to be binding and hiding. The former means that no cmt
can be opened to two different messages, while the latter guarantees that cmt does not
leak any information about the contained m .

The following commitment scheme was introduced by Pedersen [32]. Let be given
a family of prime order groups {G(λ)}λ∈N such that the discrete logarithm problem is
hard in G(λ) for security parameter λ, and let q̃ = q̃(λ) be the order of G = G(λ).

To avoid confusion, all elements with order q̃ are denoted with a tilde in the follow-
ing. To ease the presentation of our main result, we will write the group G(λ) additively.

CSetup. This algorithm chooses h̃←$ G, g̃ ←$ 〈h̃〉, and outputs cpars = (g̃, h̃).
Commit. To commit to a message m ∈M = Zq̃ , this algorithm first chooses r ←$ Zq̃ .

It then outputs the pair (c̃mt , o) = (m g̃ + rh̃, r).
COpen. Given a commitment c̃mt , an opening o, a public key cpars and a message m ,

this algorithm outputs accept if and only if c̃mt
?
= m g̃ + oh̃.

Theorem 2.1. Under the discrete logarithm assumption for G, the given commitment
scheme is perfectly hiding and computationally binding.

2.3 Semantically Secure Encryption and NTRU
A semantically secure (or IND-CPA secure) encryption scheme is a tuple (EncKG,Enc,
Dec) of algorithms, where EncKG generates public/private key pair, Enc can be used to
encrypt a message m under the public key, and the message can be recovered from the
ciphertext by Dec using the secret key. Informally, while Dec(Enc(m)) = m should
always hold, only knowing the ciphertext and the public key should not leak any infor-
mation about the contained message.
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In this paper we present improved zero-knowledge proofs of plaintext knowledge
for lattice-based encryption schemes, and show how to link messages being encrypted
by these schemes to Pedersen commitments. Our improved proof of knowledge protocol
will work for any Ring-LWE based scheme where the basic encryption operation con-
sists of taking public key polynomial(s) ai and computing the ciphertext(s) bi = ais+ei
where s and ei are polynomials with small norms. Examples of such schemes include
the ring-version of the “dual” encryption scheme [22], the “two element” scheme of
Lyubashevsky et al. [30], and the NTRU encryption scheme [24, 35].

In this paper we will for simplicity only be working over the ringsR = Z[X]/(Xn+
1) and Rq = R/qR, for some prime q. Also for simplicity, we will use NTRU as our
encryption scheme because its ciphertext has only one element and is therefore simpler
to describe in protocols. The NTRU scheme was first proposed by Hoffstein et al. [24],
and we will be using a modification of it due to Stehlé and Steinfeld [35].

Definition 2.2. The discrete normal distribution on Zm centered at v with standard de-
viation σ is defined by the density functionDm

v,σ(x)=ρ
m
v,σ(x)/ρσ(Zm), with ρmv,σ(x) =(

1√
2πσ

)m
e−
‖x−v‖2

2σ2 being the continuous normal distribution on Rm and ρσ(Zm) =∑
z∈Zm ρ

m
0,σ(z) being the scaling factor required to obtain a probability distribution.

When v = 0, we also write Dm
σ = Dm

0,σ .

We will sometimes write u ←$ Dv,σ instead of u ←$ Dn
v,σ for a polynomial u ∈ Rq if

there is no risk of confusion.
In the following, let p be a prime less than q and σ, α ∈ R.

Message space. The message spaceM is any subset of {y ∈ R : ‖y‖∞ < p}.
KeyGen. Sample f ′, g fromDσ , set f = pf ′+1, and resample, if f mod q or g mod q

are not invertible. Output the public key h = pg/f and the secret key f . Note here
that h is invertible.

Encrypt. To encrypt a message m ∈ M, set s, e ←$ Dα and return the ciphertext
y = hs+ pe+m ∈ Rq .

Decrypt. To decrypt y with secret key f , compute y′ = fy ∈ Rq and output m′ = y′

mod p.

If the value of σ is large enough (approximately Õ(n√q)), then g/f is uniformly
random in Rq [35], and the security of the above scheme is based on the Ring-LWE
problem. For smaller values of σ, however, the scheme is more efficient and can be
based on the assumption that h = g/f is indistinguishable from uniform. This type of
assumption, while not based on any worst-case lattice problem, has been around since
the introduction of the original NTRU scheme over fifteen years ago. Our protocol
works for either instantiation.

To obtain group signatures, we will need our encryption scheme to additionally
be a commitment scheme. In other words, there should not be more than one way to
obtain the same ciphertext. For the NTRU encryption scheme, this will require that we
work over a modulus q such that the polynomial Xn + 1 splits into two irreducible
polynomials of degree n/2, which can be shown to be always the case when n is a
power of 2 and q = 3 mod 8 [36, Lemma 3].
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Lemma 2.3. Suppose that q = 3 mod 8 and let #S,#E, and #M be the domain sizes
of the parameters s, e, and m in the ciphertext y = hs+ pe+m. Additionally suppose
that for all m ∈ M, ‖m‖∞ < p/2. Then the probability that for a random h, there ex-
ists a ciphertext that can be obtained in two ways is at most (2#M+1)·(2#S+1)·(2#E+1)

qn/2
.

Note that the above lemma applies to NTRU public keys h that are uniformly random.
If h = pg/f is not random, then the ability to come up with two plaintexts for the same
ciphertext would constitute a distinguisher for the assumed pseudorandomness of h.

2.4 Rejection Sampling
For a protocol to be zero-knowledge, the prover’s responses must not depend on its
secret inputs.However, in our protocols, the prover’s response will be from a discrete
normal distribution which is shifted depending on the secret key. To correct for this, we
employ rejection sampling [28, 29], where a potential response is only output with a
certain probability, and otherwise the protocol is aborted.

Informally, the following theorem states that for sufficiently large σ the rejection
sampling procedure outputs results that are independent of the secret. The technique
only requires a constant number of iterations before a value is output, and furthermore
the output is also statistically close for every secret v with norm at most T . For concrete
parameters we refer to the original work of Lyubashevsky [29, Theorem 4.6].

Theorem 2.4. Let V be a subset of Z` in which all elements have norms less than T ,
and let H be a probability distribution over V . Then, for any constant M , there exists
a σ = Θ̃(T ) such that the output distributions of the following algorithms A,F are
statistically close:

A : v ←$ H; z ←$ D`
v,σ; output (z, v) with probability min

(
D`
σ(z)/(MD`

v,σ(z)), 1
)

F : v ←$ H; z ←$ D`
0,σ; output (z, v) with probability 1/M

The probability that A outputs something is exponentially close to that of F, i.e., 1/M .

2.5 Zero-Knowledge Proofs and Σ ′-Protocols
On a high level, a zero-knowledge proof of knowledge (ZKPoK) is a two party protocol
between a prover and a verifier, which allows the former to convince the latter that it
knows some secret piece of information, without revealing anything about the secret
apart from what the claim itself already reveals. For a formal definition we refer to
Bellare and Goldreich [4].

A language L ⊆ {0, 1}∗ has witness relationshipR ⊆ {0, 1}∗×{0, 1}∗ if x ∈ L ⇔
∃(x,w) ∈ R. We callw a witness for x ∈ L. The ZKPoKs constructed in this paper will
be instantiations of the following definition, which is a straightforward generalization
of Σ-protocols [13, 15]:

Definition 2.5. Let (P,V) be a two-party protocol, where V is PPT, and let L,L′ ⊆
{0, 1}∗ be languages with witness relations R,R′ such that R ⊆ R′. Then (P,V) is
called a Σ′-protocol for L,L′ with completeness error α, challenge set C, public input
x and private input w, if and only if it satisfies the following conditions:
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– Three-move form: The protocol is of the following form: The prover P, on input
(x,w), computes a commitment t and sends it to V. The verifier V, on input x,
then draws a challenge c ←$ C and sends it to P. The prover sends a response s

to the verifier. Depending on the protocol transcript (t, c, s), the verifier finally
accepts or rejects the proof. The protocol transcript (t, c, s) is called accepting, if
the verifier accepts the protocol run.

– Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at
least 1− α.

– Special soundness: There exists a PPT algorithm E (the knowledge extractor) which
takes two accepting transcripts (t, c′, s′), (t, c′′, s′′) satisfying c′ 6= c′′ as inputs,
and outputs w′ such that (x,w′) ∈ R′.

– Special honest-verifier zero-knowledge (HVZK): There exists a PPT algorithm S
(the simulator) taking x ∈ L and c ∈ C as inputs, that outputs (t, s) so that the
triple (t, c, s) is indistinguishable from an accepting protocol transcript generated
by a real protocol run.

This definition differs from the standard definition of Σ-protocols in two ways.
First, we allow the honest prover to fail in at most an α-fraction of all protocol runs,
whereas the standard definition requires perfect completeness, i.e., α = 0. However,
this relaxation is crucial in our construction that is based on rejection sampling [28,29],
where the honest prover sometimes has to abort the protocol to achieve zero-knowledge.
Second, we introduce a second language L′ with witness relation R′ ⊇ R, such that
provers knowing a witness in R are guaranteed privacy, but the verifier is only ensured
that the prover knows a witness forR′. This has already been used in [1] and informally
also in, e.g., [16, 19]. If the soundness gap between R and R′ is sufficiently small, the
implied security guarantees are often enough for higher-level applications. Note that the
original definition of Σ-protocols is the special case that α = 0 and R = R′.

We want to stress that previous results showing that a Σ-protocol is always also an
honest-verifier ZKPoK with knowledge error 1/|C| directly carry over to the modified
definition whenever 1 − α > 1/|C|. Zero-knowledge against arbitrary verifiers can be
achieved by applying standard techniques such as Damgård et al. [14, 17].

Finally, it is a well known result that negligible knowledge and completeness errors
in λ can be achieved, e.g., by running the protocol λ times in parallel and accepting if
and only if at least λ(1 − α)/2 transcripts were valid, if there exists a constant c such
that (1− α)/2 > 1/|C|+ c .

Some of the Σ′-protocols presented in this paper will further satisfy the following
useful properties:

– Quasi-unique responses: No PPT adversary A can output (y, t, c, s, s′) with s 6= s′

such that V(y, t, c, s) = V(y, t, c, s′) = accept.
– High-entropy commitments: For all (y, w) ∈ R and for all t, the probability that an

honestly generated commitment by P takes on the value t is negligible.

3 Proving Knowledge of Ring-LWE Secrets
In the following we show how to efficiently prove knowledge of short 2s, 2e such that
2y = 2as+2e. This basic protocol can easily be adapted for proving more complex re-
lations including more than one public image or more than two secret witnesses. Before
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presenting the protocol, we prove a technical lemma that is at the heart of the knowledge
extractor thereof.

3.1 A Technical Lemma
The following lemma guarantees that certain binomials in Z[X]/(Xn + 1) can be in-
verted, and their inverses have only small coefficients.

Lemma 3.1. Let n be a power of 2 and let 0 < i, j < 2n−1. Then 2(Xi−Xj)−1 mod
(Xn + 1) only has coefficients in {−1, 0, 1}.

Proof. Without loss of generality, assume that j > i. Using thatXn = −1 mod (Xn+
1), we have that 2(Xi −Xj)−1 = −2Xn−i(1 −Xj−i)−1. It is therefore sufficient to
prove the claim for i = 0 only.

Now remark that, for every k ≥ 1 it holds that: (1 −Xj)(1 +Xj +X2j + . . . +
X(k−1)j) = 1−Xkj .

Let us write j = 2j
′
j′′, with j′′ a positive odd integer and 0 ≤ j′ ≤ log2(n), and let

us choose k = 2log2(n)−j
′

(recall that n is a power of 2). We then have jk = nj′′, and
Xkj = (−1)j′′ = −1 mod (Xn + 1), hence 1−Xkj = 2 mod (Xn + 1). Therefore,
we have

2(1−Xj)−1 = 1 +Xj +X2j + . . .+X(k−1)j mod (Xn + 1)

= 1±Xj mod n ±X2j mod n ± . . .±X(k−1)j mod n mod (Xn + 1) .

Finally, in this equation, no two exponents are equal, since otherwise that would mean
that n divides jk′ with 1 ≤ k′ < k, which is impossible by definition of k. ut

3.2 The Protocol
We next present our basic protocol. Let therefore be y = as+e, where the LWE-secrets
s, e←$ Dα are chosen from a discrete Gaussian distribution with standard deviation α.
Protocol 3.2 now allows a prover to convince a verifier that it knows s′ and e′ such that
2y = 2as′+2e′ with 2s′ and 2e′ being short (after reduction modulo q), i.e., the verifier
is ensured that the prover knows short secrets for twice the public input. Here, by short
we mean the following: An honest prover will always be able to convince the verifier
whenever ‖s‖ , ‖e‖ ≤ Õ(

√
nα), which is the case with overwhelming probability if

they were generated honestly. On the other hand, the verifier is guaranteed that the
prover knows LWE-secrets with norm at most Õ(n2α). This soundness gap on the size
of the witnesses is akin to those in, e.g., [1, 16].

To be able to simulate aborts when proving the zero-knowledge property of the pro-
tocol, we must not send the prover’s first message in the plain, but commit to it and
later open it in the last round of the Σ′-protocol. We therefore make use of an auxiliary
commitment scheme (aCSetup, aCommit, aCOpen), and assume that honestly gener-
ated commitment parameters are given as common input to both parties. We do not
make any assumptions on the auxiliary commitment scheme. However, if it is computa-
tionally binding, the resulting protocol is only sound under the respective assumption,
and similarly if it is computationally hiding. For simplicity, the reader may just think of
the scheme as a random oracle.
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Prover Verifier

rs, re ←$ DÕ(
√
nα)

t = ars + re
(caux, daux) = aCommit(t) caux -

c←$ C = {0, . . . , 2n− 1}c�
ss = rs +Xcs
se = re +Xce

accept with probability
DÕ(

√
2nα)

((se,ss))

MD
(Xce,Xcs),Õ(

√
2nα)

((se,ss))

t, daux, (ss, se)- Xcy + t
?
= ass + se

aCOpen(t, caux, daux)
?
= accept

‖ss‖ , ‖se‖ ≤ Õ(nα)

Protocol 3.2: Proof of knowledge of LWE-secrets s, e such that y = as+ e.

Theorem 3.3. Protocol 3.2 is an HVZK Σ′-protocol for the following relations:

R = {((a, y), (s, e)) : y = as+ e ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)}

R′ = {((a, y), (s, e)) : 2y = 2as+ 2e ∧ ‖2s‖ , ‖2e‖ ≤ Õ(n2α)}

where 2s and 2e are reduced modulo q. The protocol has a knowledge error of 1/(2n),
a completeness error of 1− 1/M , and high-entropy commitments.

We remark that in Protocol 3.2, the rejection sampling is applied on the whole vector
(se, ss) instead of applying it twice on se and on ss. This yields better parameters (M
or the “σ = Õ(T )” in Theorem 2.4) by a factor of about

√
2, because of the use of the

Euclidean norm.

Proof. We need to prove the properties from Definition 2.5.
Completeness. First note that by Theorem 2.4, the prover will respond with probability
1/M . If the prover does not abort, we have that:

ass + se = a(rs +Xcs) + (re +Xce) = Xc(as+ e) + (ars + re) = Xcy + t .

For the norms we have that ‖ss‖ ≤ ‖rs‖ + ‖s‖ ≤ Õ(nα) with overwhelming proba-
bility, as the standard deviations of rs is Õ(

√
nα), and similarly for se.

Honest-verifier zero-knowledge. Given a challenge value c, the simulator outputs the tu-
ple (aCommit(0), c,⊥) with probability 1−1/M . With probability 1/M , the simulator
S proceeds as follows: It chooses ss, se ←$ DÕ(

√
nα), and computes t = ass + se −

Xcy, and (caux, daux)←$ aCommit(t). Finally, S outputs (caux, c, (t, daux, (ss, se))).
It follows from Theorem 2.4 that if no abort occurs the distribution of se, ss does not

depend on s, e, and thus simulated and real protocol transcripts are indistinguishable.
In case that an abort occurs, the indistinguishability follows from the hiding property of
aCommit and the fact that aborts are equally likely for every c.
Special soundness. Assume that we are given (caux, c

′, (t′, d′aux, (s
′
s, s
′
e))) and (caux, c

′′,
(t′′, d′′aux, (s

′′
s , s
′′
e ))) passing the checks performed by the verifier. From the binding

property of the auxiliary commitment scheme we get that t′ = t′′ =: t. Now, by
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subtracting the verification equations we get: (Xc′−Xc′′)y = a(s′s−s′′s )+(s′e−s′′e ) .
Multiplying by 2(Xc′ −Xc′′)−1 yields:

2y = a
2(s′s − s′′s )

Xc′ −Xc′′
+

2(s′e − s′′e )

Xc′ −Xc′′
=: 2aŝ+ 2ê .

Furthermore, we get that ‖2ŝ‖ ≤ ‖s′e − s′′e‖
√
n
∥∥∥ 2
Xc′−Xc′′

∥∥∥ ≤ Õ(n2α), where in the
second inequality we used Lemma 3.1, and similarly for ê.
High-entropy commitments. This directly follows from the security of the auxiliary
commitment scheme. ut
By Section 2.5, both the completeness and the knowledge error can be made negligible
if n > M2.

4 Proving Equality among Classical and Lattice-Based
Primitives

In the following we show how our basic protocol from Section 3 can be used to link
number-theory and lattice-based primitives via zero-knowledge proofs of knowledge.
We exemplify this by showing how to prove that the messages contained in Pedersen
commitments correspond to the plaintext in an encryption under the secure version
of NTRU. We want to stress that in particular the choice of the encryption scheme
is arbitrary, and it is easy to exchange it against other schemes, including standard
NTRU [24] or Ring-LWE encryption [30].

Let y = hs+pe+m ∈ Rq be the NTRU encryption of a messagem ∈ {0, 1}n, and
let p > 2n2 be coprime with q. Let further g̃, h̃ be a Pedersen commitment parameters,
cf. Section 2.2, and let c̃mt i = mig̃ + rih̃ for i = 0, . . . , n − 1 be commitments to
coefficients of m, where the order of g̃ and h̃ is q̃ > 2n2.

Then Protocol 4.1 can be used to prove, in zero-knowledge, that the commitments
and the ciphertext are broadly well-formed and consistent, i.e., contain the same mes-
sage. More precisely, the protocol guarantees the verifier that the prover knows the
plaintext encrypted in 2y, and that the coefficients of the respective message are all
smaller than p. Furthermore, it shows that the messages are the same that are contained
in 2c̃mt i, i.e., 2y and the 2c̃mt i are consistent.

Theorem 4.2. Protocol 4.1 is an HVZK Σ′-protocol for the following relations:

R =

{
((g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y), (m, s, e, (ri)

n−1
i=0 )) : y = hs+ pe+m

∧
n−1∧
i=0

c̃mt i = mig̃ + rih̃ ∧ ‖m‖∞ ≤ 1 ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)

}
,

R′ =
{
((g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y), (m, s, e, (ri)

n−1
i=0 )) : 2y = 2hs+ 2pe+ 2m

∧
n−1∧
i=0

2c̃mt i = (2m mod q)ig̃ + 2rih̃

∧ ‖2m‖∞ ≤ 2n2 ∧ ‖2s‖ , ‖2e‖ ≤ Õ(n2α)
}
.
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Prover Verifier

rs, re ←$ DÕ(
√
nα)

rm ←$ DÕ(
√
n)

rr,i ←$ Zq̃ for i = 0, . . . , n− 1
t = hrs + pre + rm
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , 2n− 1
(caux, daux) = aCommit(t, (t̃i)

n−1
i=0 )

caux -
c←$ C = {0, . . . , 2n− 1}c�

ss = rs +Xcs
se = re +Xce
sm = rm +Xcm
sr = rr + (r0, . . . , rn−1)�c

accept with probability
DÕ(

√
3nα)

((se,ss,sm))

MD
(Xce,Xcs,Xcm),Õ(

√
3nα)

(se,ss,sm)

(t, (t̃i)
n−1
i=0 ), daux,-

(ss, se, sm, sr) Xcy + t
?
= hss + pse + sm

(c̃mt0, . . . , c̃mtn−1)�c + (t̃0, . . . , t̃n−1)
?
= smg̃ + srh̃

aCOpen((t, t̃0, . . . , t̃n−1), caux, daux)
?
= accept

‖ss‖, ‖se‖ ≤ Õ(nα)
‖sm‖ ≤ Õ(n)

Protocol 4.1: Proof that Pedersen commitments and NTRU encryption contain the same
plaintext.

where (2m mod q)i is the i-coefficient of 2m ∈ Rq . The protocol has a knowledge
error of 1/(2n), and a completeness error of 1− 1/M .

Furthermore, if for the auxiliary commitment scheme a commitment does not only
bind the user to the message, but also to the opening information, the protocol has
quasi-unique responses and high-entropy commitments.

A detailed proof is given in the full version. By the remark in Section 2.5, both the
completeness and the knowledge error can be made negligible if n > M .

5 Application to Group Signatures
We next show how Protocol 4.1 can be used to construct a group signature scheme
with signature size logarithmic in the number of group members. The scheme is private
under lattice assumptions, but traceable/unforgeable under non-lattice assumptions. As
argued in the introduction, this may be realistic in applications where privacy needs to
be guaranteed on the long term. For example, if group signatures are used to sign votes
in electronic elections, unforgeability is mainly important when the votes are counted,
but privacy needs to be preserved long after that.

Before presenting the actual signature scheme, we will prove secure a variation of
a generic construction that we believe is folklore, as it underlies several direct schemes
in the literature [3,8] and was explicitly described by Chase and Lysyanskaya [11]. The
resulting construction satisfies the following definition of group signatures providing
full (CCA) anonymity put forth by Bellare et al. [5].
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Experiment Expanon−b
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1N )
(st , i∗0 , i

∗
1 ,m

∗)←$

AGOpen(gok ,·,·)((gpk ,gsk), ε)
σ∗ ←$ GSign(gsk[ib],m

∗)
b′ ←$ AGOpen(gok ,·,·)(σ∗, st)
If (m∗, σ∗) 6∈ QGOpen

then return b′ else return 0

Experiment Exptrace
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1N )
(m, σ)←$

AGSign(gsk[·],·), gsk[·](gpk , gok)
i ←$ GOpen(gok ,m, σ)
If GVerify(gpk ,m, σ) = 1 ∧ i 6∈ Qgsk

∧ (i ,m) 6∈ QGSign

then return 1 else return 0

Fig. 1. The anonymity (left) and traceability (right) experiments for group signatures.
The setsQGOpen,QGSign,Qgsk contain all queries (m, σ), (i ,m), and i that A submitted
to its GOpen, GSign, and gsk oracles, respectively.

Definition 5.1. A group signature scheme is a tuple (GKG,GSign,GVerify,GOpen)
where:

– On input 1λ, 1N , the key generation algorithm GKG outputs a group public key
gpk , an opening key gok , and a vector of N signing keys gsk where gsk[i ] is given
to user i ∈ {1, . . . ,N }.

– On input gsk = gsk[i ] and message m ∈M, the signing algorithm GSign outputs
a group signature σ.

– On input gpk ,m, σ, the verification algorithm GVerify outputs accept or reject.
– On input gok ,m, σ, the opening algorithm GOpen outputs the identity of the pur-

ported signer i ∈ {1, . . . ,N } or ⊥ to indicate failure.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever keys and signatures are honestly gen-
erated, i.e., for all λ,N ∈ N, all i ∈ {1, . . . ,N }, and all m ∈M

Pr

[
GVerify(gpk ,m, σ) = accept :

(gpk , gok ,gsk)←$ GKG(1λ, 1N ), σ ←$ GSign(gsk[i ],m)

]
= 1 .

– Anonymity: One cannot tell which signer generated a particular signature, even
when given access to an opening oracle. Referring to Figure 1, for all PPT A there
exists a negligible function negl such that∣∣Pr[Expanon−0

A (λ) = 1]− Pr[Expanon−1
A (λ) = 1]

∣∣ ≤ negl(λ) .

– Traceability: One cannot generate a signature that cannot be opened or that opens
to an honest user. Referring to Figure 1, for all PPT A there exists a negligible
function negl such that

Pr[Exptrace
A (λ)] ≤ negl(λ) .
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5.1 Building Blocks
The construction is based on weakly unforgeable standard signatures, and signature
proofs of knowledge. In the following, we recap the respective definitions.

Informally, a signature scheme is a triple (SKG,SSign,SVerify), where SKG gen-
erates a signing/verification key pair (ssk , spk), SSign can be used to sign a message
m using the signing key, and SVerify can be used to check the validity of a signature
only using the public verification key. It should hold that honestly computed signatures
are always valid, and that no adversary can come up with a valid signature on a new
message after having received signatures on messages that he chose before obtaining
spk . A formal definition can be found in the full version.

Concerning signature proofs of knowledge, we adapt the definitions of Chase and
Lysyanskaya [11] to allow for signatures in the random-oracle model (ROM) that are
simulated by programming the random oracle H and extracted through rewinding. We
also generalize the definition to allow for a soundness gap: signing is performed using
a witness from R for a language L, while extraction only guarantees that the signer
knows a witness from R′ ⊇ R for relation L′. Finally, we add a definition of simu-
lation soundness, meaning that an adversary cannot produce new signatures for false
statements even after seeing simulated signatures on arbitrary statements.

Definition 5.2. A signature of knowledge scheme for languages L,L′ with respective
witness relations R,R′ is a tuple (SoKSetup,SoKSign,SoKVerify,SoKSim) where:

– On input 1λ, the setup algorithm SoKSetup outputs common parameters sokp.
– On input sokp, x, w such that (x,w) ∈ R and message m ∈ M, the signing

algorithm SoKSign outputs a signature of knowledge sok .
– On input sokp, x,m, sok , the verification algorithm SoKVerify outputs accept or
reject.

– The stateful simulation algorithm SoKSim can be called in three modes. When
called as (sokp, st) ←$ SoKSim(setup, 1λ, ε), it produces simulated parameters
sokp, possibly keeping a trapdoor in its internal state st . When run as (h, st ′) ←$

SoKSim(ro, Q, st), it produces a response h for a random oracle query Q. When
run as (sok , st ′) ←$ SoKSim(sign, x,m, st), it produces a simulated signature of
knowledge sok without using a witness.
For ease of notation, let StpSim(1λ) be the algorithm that returns the first part of
SoKSim(setup, 1λ, st), let ROSim(Q) be the algorithm that returns the first part
of SoKSim(ro, Q, st), let SSim(x,w,m) be the algorithm that returns the first
part of SoKSim(sign, x,m, st) if (x,w) ∈ R and returns ⊥ otherwise, and let
SSim′(x,m) be the algorithm that returns the first part of SoKSim(sign, x,m, st)
without checking language membership. The experiment keeps a single synchro-
nized state for SoKSim across all invocations of these derived algorithms.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever parameters and signatures are cor-
rectly generated, i.e., for all λ ∈ N, all (x,w) ∈ R, and all m ∈ M, there exists a
negligible function negl such that

Pr

[
SoKVerify(sokp, x,m, sok) = reject :

sokp ←$ SoKSetup(1λ), sok ←$ SoKSign(sokp, x, w,m)

]
≤ negl(λ) .
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– Simulatability: No adversary can distinguish whether it is interacting with a real
random oracle and signing oracle, or with their simulated versions. Formally, for
all PPT A there exists a negligible function negl such that∣∣∣Pr[b = 1 : sokp ←$ SoKSetup(1λ), b←$ AH(·),SoKSign(sokp,·,·,·)(sokp)]

−Pr[b = 1 : sokp ←$ StpSim(1λ), b←$ AROSim(·),SSim(·,·,·)(sokp)]
∣∣∣ ≤ negl(λ) .

– Extractability: The only way to produce a valid signature of knowledge is by know-
ing a witness from R′. Formally, for all PPT A there exists an extractor SoKExtA
and a negligible function negl such that

Pr


SoKVerify(sokp, x,m, sok) = accept

∧(x,w,m) 6∈ Q ∧ (x,w) 6∈ R′ :
sokp ←$ StpSim(1λ; ρS),

(x,m, sok)←$ AROSim(·),SSim(·,·,·)(sokp; ρA),
w ←$ SoKExtA(sokp, x,m, sok , ρS, ρA)

 ≤ negl(λ) ,

where Q is the set of queries (x,w,m) that A submitted to its SSim oracle.
– Simulation-soundness: No adversary can produce a new signature on a false state-

ment for L′, even after seeing a signature on an arbitrary statement. Formally, for
all PPT A there exists a negligible function negl such that

Pr


SoKVerify(sokp, x,m, sok) = accept

∧ (x′,m ′, sok ′) 6= (x,m, sok) ∧ x 6∈ L′ :
sokp ←$ StpSim(1λ), (x,m, st)←$ AROSim(·)(sokp),

sok ←$ SSim′(x,m), (x′,m ′, sok ′)←$ AROSim(·)(sok , st)

 ≤ negl(λ) .

5.2 Generic Construction
A folklore construction of group signatures is to have a user’s signing key be a standard
signature on his identity i , and to have a group signature on message m be an encryption
of his identity together with a signature of knowledge on m that the encrypted identity
is equal to the identity in his signing key. The construction appeared implicitly [3,8] or
explicitly [11] in the literature, but was never proved secure.

To obtain full anonymity, this generic construction would probably require CCA
security from encryption scheme, but our NTRU variant is only semantically secure.
We could apply a generic CCA-yielding transformation using random oracles or non-
interactive zero-knowledge proofs of knowledge (NIZK), but this would make the sig-
nature of knowledge hopelessly inefficient. Instead, we take inspiration from the Naor-
Yung construction [31, 33] by using a semantically secure scheme to encrypt the user’s
identity twice under two different public keys and letting the signature of knowledge
prove that both ciphertexts encrypt the same plaintext. Moreover, our proof systems
have a soundness gap: the adversary for the soundness game may use more noise in the
ciphertexts than what the encryption algorithm Enc does, and may also encrypt plain-
texts outside {0, 1}n. We therefore give a generic construction that deviates slightly
from the general idea, but that is sufficient and that we can efficiently instantiate with
our protocol from Section 3.
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Let (EncKG,Enc,Dec) be an encryption scheme with message space ID, let ID′ ⊇
ID, and let Enc′ be an algorithm such that for all key pairs (epk , esk) ←$ EncKG(1λ),
for all i ∈ ID and for all random tapes4 ρ, ρ′ and all i ∈ ID, i ′ ∈ ID′:

Enc(epk , i ; ρ) = Enc′(epk , i ; ρ) and Dec(esk ,Enc′(epk , i ′; ρ′)) = i ′ .

The algorithm Enc′ represents the way the adversary can generate the ciphertexts and
still prove them valid. The above property ensures that completeness holds perfectly
even with Enc′. The IND-CPA property still has to hold with Enc.

For our instantiation with the NTRU encryption scheme from Theorem 4.2, ID =
{0, 1}` which is identified with {0, . . . , 2` − 1} (with ` ≤ n, q̃), ID′ = Zq̃ and ρ =
(s, e). The algorithm Enc′((h, p), i ′; ρ′) with i ′ ∈ ID′ checks that either ρ′ is a triple
(s, e, i ′′), or i ′ ∈ ID and ρ′ is a pair of vectors (s, e). In the latter case, i ′′ is just the
binary vector in {0, 1}` corresponding to i ′. In both cases, s and e must be such that
‖2s‖ , ‖2e‖ ≤ Õ(n2α), i ′′ ∈ Rq , 2i ′ =

∑n−1
j=0 2j(2i ′′ mod q)j mod q̃, and ‖i ′′‖∞ ≤

2n2 < p, q̃. If all these requirements are met, Enc′ outputs y ← hs+pe+i′. We need to
slightly change the algorithms EncKG and Enc to truncate the distribution of g, s and e,
to ensure that ‖s‖ , ‖e‖ ≤ Õ(

√
nα) and ‖g‖ is small enough for the decryption below.

We also change the algorithm Dec: to decrypt C = y with secret key f , it computes
y′ = 2fy ∈ Rq , and outputs i ′ = (

∑n−1
j=0 2j(y′ mod p)j)/2 mod q̃. In other words,

it decrypts 2C = 2y into y′ mod p, and then recover the corresponding identity in
ID′ = Zq̃ . This does not touch security.

Let (SKG,SSign,SVerify) be a signature scheme and let (SoKSetup,SoKSign,
SoKVerify,SoKSim) be a signature of knowledge scheme for the languages L,L′ with
witness relationships

R = {((spk , epk1, epk2, C1, C2), (i , sig , ρ1, ρ2)) : SVerify(spk , i , sig) = accept
∧ C1 = Enc(epk1, i ; ρ1) ∧ C2 = Enc(epk2, i ; ρ2)} ,

R′ = {((spk , epk1, epk2, C1, C2), (i
′, sig , ρ′1, ρ

′
2)) : SVerify(spk , i ′, sig) = accept

∧ C1 = Enc′(epk1, i
′; ρ′1) ∧ C2 = Enc′(epk2, i

′; ρ′2)} .

Consider the following group signature scheme with user identities i ∈ ID:

– GKG(1λ, 1N ): The group manager generates signing keys (spk , ssk)←$ SKG(1λ),
encryption keys (epk1, esk1) ←$ EncKG(1λ), (epk2, esk2) ←$ EncKG(1λ), and
parameters sokp ←$ SoKSetup(1λ). He computes gsk[i ] ←$ SSign(ssk , i) for i ∈
ID and outputs gpk = (spk , epk1, epk2, sokp), gok = (gpk , esk1), and gsk.

– GSign(gsk ,m): Signer i computes two ciphertexts C1 ← Enc(epk1, i ; ρ1) and
C2 ← Enc(epk2, i ; ρ2), computes a signature of knowledge sok ←$ SoKSign(
sokp, (spk , epk1, epk2, C1, C2), (i , sig , ρ1, ρ2),m) and outputs the group signa-
ture σ = (C1, C2, sok).

– GVerify(gpk ,m, σ): To verify a group signature, one checks that SoKVerify(sokp,
(spk , epk1, epk2, C1, C2),m, sok) = accept.

4 To simplify notation in this section, we assume that the random tapes ρ, ρ′ are not necessarily
a uniform binary bitstrings as usual. Rather, we see ρ as the list of random values that Enc
directly derives from the random tape, while ρ′ can be seen as an auxiliary adversarial input to
the Enc′ algorithm.
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– GOpen(gok ,m, σ): The opener checks that GVerify(gpk ,m, σ) = accept, and
returns i ← Dec(esk1, C1).

Theorem 5.3. The group signature scheme sketched above is anonymous in the ROM
if the encryption scheme is semantically secure and the signature of knowledge scheme
is simulatable and simulation-sound.

Theorem 5.4. The group signature scheme is traceable in the ROM if the underlying
signature scheme is weakly unforgeable and the signature of knowledge scheme is sim-
ulatable and extractable.

The proofs of the last two theorems are omitted here and are given in the full version.

5.3 Signatures of Knowledge from Σ ′-Protocols
We now show a construction of the required signatures of knowledge in the random-
oracle model from a signature scheme and an encryption scheme with Σ′-protocol
proofs. More particularly, we require that for the signature scheme one can prove knowl-
edge of a signature on a committed message, while for the encryption scheme one can
prove that an encrypted plaintext is equal to a committed message.

Let (CSetup,Commit,COpen) be a commitment scheme, let (EncKG,Enc,Dec) be
an encryption scheme with message spaceM and let Enc′ be an associated algorithm
as described earlier. Let (Ps,Vs,Ss) be a Σ-protocol for the language Ls with

Rs = {((spk , cpars, cmt), (sig ,m, o)) :

SVerify(spk ,m, sig) = accept ∧ COpen(cpars,m, cmt , o) = accept} .

Let also (Pe,Ve,Se) be a Σ′-protocol for the languages Le,L′e with

Re = {((epk , C, cpars, cmt), (m, ρ, o)) :
C = Enc(epk ,m; ρ) ∧ COpen(cpars,m, cmt , o) = accept} ,

R′e = {((epk , C, cpars, cmt), (m, ρ′, o)) :
C = Enc′(epk ,m; ρ′) ∧ COpen(cpars,m, cmt , o) = accept} .

Let Cs and Ce be the challenge spaces for these respective protocols, and let H :
{0, 1}∗ → Cs × Ce. Consider the following construction of a signature of knowledge
scheme for the languages L and L′:

– SoKSetup(1λ): Return sokp = cpars ←$ CSetup(1λ).
– SoKSign(sokp, x, w,m): Create a commitment (cmt , o) ←$ Commit(cpars,m).

Compute the first round of the Σ′-protocols for a signature and two encryptions
(ts, sts) ←$ Ps((spk , cpars, cmt), (sig ,m, o)) and (tj , stj) ←$ Pe((epk j , Cj ,
cpars, cmt), (m, ρj , o)) for j = 1, 2. Generate the challenges (cs, ce) ← H(spk ,
cpars, cmt , epk1, C1, epk2, C2, ts, t1, t2,m). Compute responses ss ← Ps(cs,
sts) and sj ← Pe(ce, stj) for j = 1, 2 and output the signature of knowledge
sok = (ts, t1, t2, ss, s1, s2).

– SoKVerify(sokp, x,m, sok): Recompute the challenges (cs, ce)← H(spk , cpars,
cmt , epk1, C1, epk2, C2, ts, t1, t2,m). Return accept if Vs((spk , cpars, cmt),
ts, cs, ss) = accept and Ve((epk j , Cj , cpars, cmt), tj , ce, sj) = accept for
j = 1, 2. Otherwise, return reject.



18 F. Benhamouda at al.

– SoKSim: The simulation algorithm keeps in its state its random tape, an initially
empty table HT to keep track of previous random-oracle queries, and a counter ctr
initialized to zero. The simulator’s random tape ρ includes random-oracle responses
h1, . . . , hqH+qS ←$ Cs × Ce, where qH and qS are upper bounds on the number of
random-oracle and signing queries that an adversary can make. When called as
SoKSim(setup, 1λ, ε), it generates commitment parameters cpars ←$ CSetup(1λ)
and returns (cpars, st = (ρ,HT , ctr , cpars)). When run as SoKSim(ro, Q, st),
it checks whether the query Q was made before. If so, it returns hHT [q]. Other-
wise, it increases the counter ctr , sets HT [Q] ← ctr , and returns hctr . When
run as SoKSim(sign, (spk , epk1, epk2, C1, C2),m, st), the simulator first creates
a commitment (cmt , o) ←$ Commit(1, cpars). It then increases the counter ctr
and parses hctr as (cs, ce). It runs the simulators Ss,Se to obtain simulated proto-
col transcripts (ts, ss) ←$ Ss((spk , cpars, cmt), cs) and (tj , sj) ←$ Ss((epk j , Cj ,
cpars, cmt), ce) for j = 1, 2. If HT [spk , cpars, cmt , epk1, C1, epk2, C2, ts, t1,
t2,m] is not defined, then set it to hctr , else abort.

Theorem 5.5. The above scheme is correct if the proof systems (Ps,Vs) and (Pe,Ve)
have negligible completeness error.

Theorem 5.6. The above scheme is simulatable in the random-oracle model if the com-
mitment scheme is hiding and the proof systems (Ps,Vs) and (Pe,Ve) are special HVZK
and have high-entropy commitments.

Theorem 5.7. The above scheme is extractable in the random-oracle model if the com-
mitment scheme is binding and the proof systems (Ps,Vs) and (Pe,Ve) are special-
sound and have super-polynomial challenge spaces and negligible knowledge error.

Theorem 5.8. The above scheme is simulation-sound if the underlying commitment
scheme is binding and the underlying Σ′-protocols (Ps,Vs,Ss) and (Pe,Ve,Se) are
special-sound, have quasi-unique responses, super-polynomial challenge spaces, and
negligible knowledge error.

Due to length limitations, the proofs of the previous theorems can be found in the full
version.

5.4 Σ ′-Protocols for Boneh-Boyen Signatures and the Group Sig-
nature Scheme

In the following we briefly recap the weakly unforgeable version of the Boneh-Boyen
signature scheme [6, 7]. We assume that the reader is familiar with bilinear pairings
and the strong Diffie-Hellman (SDH) assumption.The Boneh-Boyen signature scheme
is defined as follows for a bilinear group generator BGGen:

SKG. This algorithm first computes (q̃,G1,G2,GT , e) ←$ BGGen(1λ). It chooses
g̃1 ←$ G×1 , g̃2 ←$ G×2 , x ←$ Z×q̃ , and defines ṽ = xg̃2 and z̃ = e(g̃1, g̃2). It
outputs spk = ((q̃,G1,G2,GT , e), g̃1, g̃2, ṽ, z̃) and ssk = x.

SSign. To sign a message m ∈ Zq̃ \ {−ssk} with secret key ssk = x, this algorithm
outputs the signature s̃ig = 1

x+m g̃1 if x+m 6= 0, and 0 otherwise.



Better Zero-Knowledge Proofs for Lattice Encryption 19

Prover Verifier

if s̃ig 6= 0, then d←$ Z×q̃ and s̃ = ds̃ig

otherwise, d = 0 and s̃←$ G×
rd, rm,i, rr,i ←$ Zq̃
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , n− 1
t̃ = rdz̃ − (

∑n−1
i=0 2irm,i) · e(s̃, g̃2) s̃, t̃, (t̃i)

n−1
i=0 -

c←$ Zq̃c�
sd = rd + cd
sm,i = rm,i + cmi for i = 0, . . . , n− 1
sr,i = rr,i + cri for i = 0, . . . , n− 1

sd, (sm,i, sr,i)
n−1
i=0 - s̃ 6 ?= 0

t̃+ ce(s̃, ṽ)
?
= sdz̃ − (

∑n−1
i=0 2ism,i) · e(s̃, g̃2)

t̃i + cc̃mt i
?
= sm,ig̃ + sr,ih̃

Protocol 5.10: Proof of possession of a signature on m, which is also contained in a set of
Pedersen commitments.

SVerify. Given a signature public key spk , a message m ∈ Zq̃ and a signature s̃ig , this
algorithm outputs accept if ṽ+mg̃2 = 0 in case s̃ig = 0, and if e(s̃ig , ṽ+mg̃2) =
z̃ in case s̃ig 6= 0. In all other cases, it outputs reject.

Lemma 5.9. If the SDH assumption holds for BGGen, then the above scheme is a
weakly unforgeable signature scheme.

We next show how a user can prove possession of a Boneh-Boyen signature on a
message m, while keeping both, the message and the signature, private. In addition, the
proof will additionally show that the m is also contained in a set of Pedersen commit-
ments c̃mt i = mig̃ + rih̃ such that m =

∑n−1
i=0 2imi, cf. Section 2.2.

The idea underlying Protocol 5.10 is similar to that in Camenisch et al. [9]: The
prover first re-randomizes the signature to obtain a value s, which it sends to the verifier.
Subsequently, the prover and the verifier run a standard Schnorr proof for the resulting
statement.

Theorem 5.11. Protocol 5.10 is a perfectly HVZK Σ-proof of knowledge for the fol-
lowing relation:

R =

{
((spk , (c̃mt i)

n−1
i=0 ), (s̃ig ,m, r, (mi, ri)

n−1
i=0 )) : m =

n−1∑
i=0

2imi ∧

c̃mt i = mig̃ + rih̃ ∧ SVerify(spk ,m, s̃ig) = accept

}
.

The protocol is perfectly complete, and has a knowledge error of 1/q̃. Furthermore, the
protocol has quasi unique responses (under the discrete logarithm assumption in G)
and high-entropy commitments.

The proof of this theorem is straightforward and can be found in the full version.
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The Group Signature Scheme. Combining Protocols 4.1 and 5.10 now directly gives a
group signature by the construction from Section 5.3. The ID is given by {0, 1}` (which
can be identified with {0, . . . , 2` − 1}), where ` ≤ n and n/q̃ is negligible,n is the
dimension of the ring being used, and q̃ is the order of the groups of the commitment-
and the signature schemes. The condition n/q̃ is just to ensure that with overwhelming
probability, ssk /∈ ID, so that all signatures of an identity i ∈ ID is non-zero and
can be used as a witness in Protocol 5.10. The commitment (CSetup,Commit,COpen)
scheme from Section 5.3, corresponds to the bit-by-bit Pedersen commitments c̃mt i.
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