
Square Span Programs
with Applications to Succinct NIZK Arguments

George Danezis1, Cédric Fournet2, Jens Groth1 ?, and Markulf Kohlweiss2

1 University College London, UK
2 Microsoft Research

Abstract. We propose a new characterization of NP using square span
programs (SSPs). We first characterize NP as affine map constraints
on small vectors. We then relate this characterization to SSPs, which
are similar but simpler than Quadratic Span Programs (QSPs) and
Quadratic Arithmetic Programs (QAPs) since they use a single series
of polynomials rather than 2 or 3.
We use SSPs to construct succinct non-interactive zero-knowledge argu-
ments of knowledge. For performance, our proof system is defined over
Type III bilinear groups; proofs consist of just 4 group elements, verified
in just 6 pairings. Concretely, using the Pinocchio libraries, we estimate
that proofs will consist of 160 bytes verified in less than 6 ms.

Keywords: Square span program, quadratic span program, SNARKs,
non-interactive zero-knowledge arguments of knowledge.

1 Introduction

Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential
characterization of the complexity class NP using Quadratic Span Programs
(QSPs), a natural extension of span programs defined by Karchmer and Wigder-
son [KW93]. Their main motivation was the construction of Succinct Non-
interactive Arguments of Knowledge (SNARKs). Their work has lead to fast
progress towards practical verifiable computations, whereby a resource-constrained
client offloads the computation of an expensive function to a computationally en-
dowed server or cloud, but still intends to verify the correctness of any returned
results. For instance, using Quadratic Arithmetic Programs (QAPs), a general-
ization of QSPs for arithmetic circuits, Pinocchio [PHGR13] provides evidence
that verified remote computation can be faster than local computation. At the
same time, zero-knowledge variants of their construction enable the server to
keep intermediate and additional values used in the computation private. Such
constructions are at the forefront of privacy-friendly variants of Bitcoin, such as
Pinocchio Coin [DFKP13] and Zerocash [BSCG+14].

? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937 and the Engineering and Phys-
ical Sciences Research Council grant EP/J009520/1.

We introduce Square Span Programs (SSPs), a radical simplification of quadr-
atic span programs, and we use them to build simpler and more efficient SNARKs
and Non-Interactive Zero-Knowledge arguments (NIZKs) for the verified compu-
tation of binary circuits and the verification of SAT solving, two closely related
problems. Thus, SSPs can be used to build NIZK arguments to support privacy
properties while guaranteeing high integrity, at a minimal cost for the verifier.

Square span programs are based on the insight that every 2-input binary gate
g(a, b) = c can be specified using (1) an affine combination ` = αa+ βb+ γc+ δ
of the gate’s input and output wires that take exactly two values, ` = 0 or ` = 2,
when the wires meet the gate’s logical specification; and (2), equivalently, as a
single ‘square’ constraint (`− 1)2 = 1. Composing such constraints, a satisfying
assignment for any binary circuit (or any SAT problem) can be specified first
as a set of affine map constraints, then as a constraint on the span of a set of
polynomials, defining the square span program for this circuit.

Due to their conceptual simplicity, SSPs offer several advantages over previ-
ous constructions for binary circuits. Their reduced number of constraints lead
to smaller programs, and to lower sizes and degrees for the polynomials required
to represent them, which in turn reduce the computation complexity required
in proving or verifying NIZK arguments. Notably, their simpler ‘square’ form
requires only a single polynomial to be evaluated for verification (instead of two
for earlier QSPs, and three for Pinocchio [PHGR13]) leading to a simpler and
more compact setup, smaller keys, and fewer operations required for proof and
verification.

The resulting, SSP-based SNARKs may be the most compact constructions
to date. For performance, our proof system is defined over Type III bilinear
groups; to this end, we revisit and restate known assumptions for Type III bilin-
ear groups. The communicated proofs consist of just 4 group elements (3 in the
left group, and one in the right group); they can be verified in just 6 pairings,
plus one multiplication for each (non-zero) bit of input, irrespective of the size
of the circuit. Concretely, using the same groups as in the implementation of
Pinocchio, we arrive at 160-byte proofs that we estimate can be verified in less
than 6 ms, for circuits with millions of gates. For instance, our SNARKs would
be entirely adequate to verify the solutions of large SAT problems offloaded to
specialized servers and tools, such as those available in the annual SAT competi-
tion3, without the need to communicate (or even reveal) their complete solutions.

2 Square span programs

In this section we will provide new characterizations of languages in NP. First,
we show that circuit satisfiability can be recast as a set of constraints on affine
maps over the integers. Next, we show in Section 2.2 that this leads to the NP-
completeness of square span programs as defined below. The reader may find
the example in Section 2.3 useful to illustrate the transformation from circuit

3 http://satcompetition.org/

satisfiability to square span programs. We compare square span programs to
quadratic span programs in Section 2.4.

Definition 1 (Square span program). A square span program Q over the
field F consists of m + 1 polynomials v0(x), v1(x), . . . , vm(x) and a target poly-
nomial t(x) such that deg(vi(x)) ≤ deg(t(x)) for all i = 0, . . . ,m.

We say that the square span program Q has size m and degree d = deg(t(x)).
We say that Q accepts an input (a1, . . . , a`) ∈ F` if and only if there exist

a`+1, . . . , am ∈ F satisfying

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1.

We say that Q verifies a boolean function f : {0, 1}` → {0, 1} if it accepts
exactly those inputs a ∈ F` that satisfy a ∈ {0, 1}` and f(a) = 1.

In the definition, we may see f as a binary circuit or, more abstractly, as a
logical specification of a satisfiability problem. In our NIZK argument system
in Section 3.3 we will split the ` inputs into `u public and `w private inputs.
We remark that the public ‘inputs’ are considered from the viewpoint of the
verifier: for an outsourced computation for instance, they may include both the
inputs sent by the clients and the outputs returned by the server performing the
computation together with its proof; for a SAT problem, they may provide a
partial instantiation of the problem, or a part of its solution.

This treatment is strictly more general than classic Circuit-SAT which only
cares about satisfiability and thus corresponds to the special case of `u = 0, i.e.,
Q verifies a circuit C if it accepts exactly those w where C(w) = 1. Alternatively,
if we want the same SSP Q to handle different circuits, it may be useful to let f
be a universal circuit that takes as input an `u-bit description of a freely chosen
circuit C and an `w-bit value w and returns 1 if and only if C(w) = 1.

2.1 The NP-completeness of affine map constraints

In this section we will show that circuit satisfiability can be recast as a set of
constraints on the image of an affine map a 7→ aV + b.

Groth, Ostrovsky and Sahai [GOS12] used that a NAND-gate with input
wires a, b and output wire c can be “linearized”. Given values a, b, c ∈ {0, 1},
with 0 meaning false and 1 meaning true, and writing c̄ for 1− c, we have

c = ¬(a ∧ b) if and only if a+ b− 2c̄ ∈ {0, 1}.

All logic gates with fan-in 2 can be linearized. We will without loss of gen-
erality ignore gates corresponding to c = a, c = a, c = b, c = b, c = 0 and c = 1
since they are trivial and can be eliminated from a circuit. This leaves us with 10
types of logic gates. Table 1 displays their truth tables and their linearizations.

Let C be a circuit with m wires and n fan-in 2 gates. We can use linearization
of the logic gates to rewrite the circuit as a set of constraints on the output of
an affine map.

AND

a b c

0 0 0
0 1 0
1 0 0
1 1 1

a+ b− 2c ∈ {0, 1}

OR

a b c

0 0 0
0 1 1
1 0 1
1 1 1

ā+ b̄− 2c̄ ∈ {0, 1}

XOR

a b c

0 0 0
0 1 1
1 0 1
1 1 0

a+ b+ c ∈ {0, 2}

NAND

a b c

0 0 1
0 1 1
1 0 1
1 1 0

a+ b− 2c̄ ∈ {0, 1}

NOR

a b c

0 0 1
0 1 0
1 0 0
1 1 0

ā+ b̄− 2c ∈ {0, 1}

XNOR

a b c

0 0 1
0 1 0
1 0 0
1 1 1

a+ b+ c̄ ∈ {0, 2}

a ∧ b
a b c

0 0 0
0 1 1
1 0 0
1 1 0

ā+ b− 2c ∈ {0, 1}

a ∧ b
a b c

0 0 1
0 1 0
1 0 1
1 1 1

ā+ b− 2c̄ ∈ {0, 1}

a ∧ b
a b c

0 0 0
0 1 0
1 0 1
1 1 0

a+ b̄− 2c ∈ {0, 1}

a ∧ b
a b c

0 0 1
0 1 1
1 0 0
1 1 1

a+ b̄− 2c̄ ∈ {0, 1}

Table 1. Linearization of logic gates with inputs a, b and output c. We omit the 6
remaining gates, which depend on at most one input and are not used in circuits.

Theorem 1. For any circuit C with m wires and n fan-in 2 gates for a total
size of d = m+n, there exists a matrix V ∈ Zm×d and a vector b ∈ Zd such that
C is satisfiable if and only if there is a vector a ∈ Zm satisfying aV +b ∈ {0, 2}d.

The matrix V and the vector b can be constructed such that aV +b ∈ {0, 2}d
implies a ∈ {0, 1}m and a1, . . . , am corresponds to the values on the wires in a
satisfying assignment for C with the first ` bits being the input wires.

Proof. We represent an assignment to the wires as a vector a ∈ Zm. The assign-
ment is a satisfying witness for the circuit if and only if the entries belong to
{0, 1}, the entries respect all gates, and the output wire is 1.

It is easy to impose the condition a ∈ {0, 1}m by requiring a(2I) ∈ {0, 2}m.
(Alternatively, whenever ai ∈ {0, 1} is clear from the context, for instance for
the public inputs a1, . . . , a`u , this check can be omitted.)

Since ā = 1 − a, b̄ = 1 − b and c̄ = 1 − c and after scaling some of the gate
equations from Table 1 by a factor 2, we can write all gate equations in the form
αa+ βb+ γc+ δ ∈ {0, 2}. We want the circuit output wire cout to have value 1.
We do that by adding the condition 3c̄out to the linearization of the output gate,
since if cout = 0 this adds 3 to the linear equation and brings us outside {0, 2}
regardless of the type of logic gate.

Define G ∈ Zm×n and δ ∈ Zn such that aG+ δ ∈ {0, 2}n corresponds to the
linearization of the gates as described above, and let

V = [2I | G] and b = (0 | δ).

The existence of a such that

aV + b ∈ {0, 2}d

is equivalent to a satisfying assignment to the wires in the circuit. �

Note that V and b as we constructed them have some additional properties.
The matrix V is sparse, since it only has m+3n non-zero entries. The row vectors
of V and b are all linearly independent. Furthermore, all entries in V and b are
small integers. The small size of the integers gives us the following corollary.

Corollary 1. For any circuit C with m wires and n fan-in 2 gates and for any
p ≥ 8 there exist a matrix V ∈ Zm×dp (with d = m + n) and a vector b ∈ Zdp
(giving us m+1 linearly independent row vectors) such that C is satisfiable if and
only if there exists a vector a ∈ Zmp satisfying aV + b ∈ {0, 2}d. Furthermore, if

aV + b ∈ {0, 2}d then a ∈ {0, 1}m and C(a1, . . . , a`) = 1.

Relation to closest vector problem. There is an interesting connection between
our construction of affine map constraints and the closest vector problem for in-
teger lattices using the max-norm `∞. Consider a circuit made just from NAND-
gates; then the affine map aV +b constructed in the proof of Theorem 1 cannot
take the value 1 for any index i = 1, . . . , d, which means the circuit is satisfi-
able if and only if aV + b − 1 ∈ {−1, 0, 1}d. This is equivalent to saying that
the lattice generated by the rows of V has a vector aV with distance at most
1 from the target vector t = 1 − b, i.e., ||aV − t||∞ ≤ 1, if and only if the
circuit is satisfiable. Our construction therefore gives a very direct reduction of
the closest vector problem in integer lattices to circuit satisfiability. The NP-
hardness of the closest (nearest) vector problem was first demonstrated by van
Emde Boas [vEB81] but using a more complicated reduction that relied on the
partition problem.

2.2 The NP-completeness of square span programs

We will now connect affine maps to square span programs, which gives a reduc-
tion of square span programs to circuit satisfiability.

Corollary 1 can be reformulated to say that, for any circuit C and p ≥ 8,
there exist V and b such that C is satisfiable if and only there exists a ∈ Zmp
satisfying

(aV + b) ◦ (aV + b− 2) = 0,

where ◦ denotes the Hadamard product (entry-wise multiplication). We can
rewrite this condition as

(aV + b− 1) ◦ (aV + b− 1) = 1.

Let r1, . . . , rd be d distinct elements of Zp for a prime p ≥ max(d, 8). Define
v0(x), v1(x), . . . , vm(x) as the degree d− 1 polynomials satisfying

v0(rj) = bj − 1 and vi(rj) = Vi,j .

We can now reformulate Corollary 1 again. The circuit C is satisfiable if and
only if there exists a ∈ Zmp such that for all rj(

v0(rj) +

m∑
i=1

aivi(rj)

)2

= 1.

Since the evaluations in r1, . . . , rd uniquely determine the polynomial v(x) =
v0(x) +

∑m
i=1 aivi(x) we can rewrite the condition as(

v0(x) +

m∑
i=1

aivi(x)

)2

≡ 1 mod

d∏
j=1

(x− rj).

Theorem 2. A circuit C with m wires and n fan-in 2 gates has for any prime
p ≥ max(n, 8) a square span program of size m and degree d = m+n that verifies
it over Zp.

Proof. From the discussion above, we see that for any circuit C with m wires
and n gates there exists polynomials v0(x), v1(x), . . . , vm(x) and distinct roots
r1, . . . , rd such that C is satisfiable if and only if

d∏
j=1

(x− rj) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1.

Define t(x) =
∏d
j=1(x − rj) to get an SSP Q =

(
v0(x), v1(x), . . . , vm(x), t(x)

)
that verifies C over Zp. �

2.3 Example

As a small example of the process of generating a square span program, consider
a circuit consisting of a single XOR-gate a3 = a1 ⊕ a2 (here ` = `u + `w = 2
with `u = 0 and `w = 2). To guarantee a1, a2, a3 ∈ {0, 1} and the XOR-gate is
respected we use the constraints 2ai ∈ {0, 2} and a1+a2+a3 ∈ {0, 2}. The output
should be a3 = 1, which we represent with the constraint 3ā3 = 3(1 − a3) = 0.
We add the latter constraint to the output wire’s equation to get the combined
a1 + a2 − 2a3 + 3 ∈ {0, 2}, which at the same time guarantees a3 = a1 ⊕ a2 and
a3 = 1. We can represent the constraints as

aV + b = (a1, a2, a3)

 2 0 0 1
0 2 0 1
0 0 2 −2

+ (0, 0, 0, 3) ∈ {0, 2}4.

The satisfiability of the circuit can therefore be represented by 4 quadratic equa-
tions

(2a1 − 1)2 = 1 (2a2 − 1)2 = 1 (2a3 − 1)2 = 1 (a1 + a2 − 2a3 + 2)2 = 1

corresponding to (aV + b− 1) ◦ (aV + b− 1) = 1.
To get a square span program, let p ≥ 8 be a prime and r1, r2, r3, r4 be four

distinct elements in Zp. Pick degree 3 polynomials v0(x), v1(x), v2(x), v3(x) such
that (

v0(r1), v0(r2), v0(r3), v0(r4)
)

= b− 1 = (−1,−1,−1, 2)

and  v1(r1) v1(r2) v1(r3) v1(r4)
v2(r1) v2(r2) v2(r3) v2(r4)
v3(r1) v3(r2) v3(r3) v3(r4)

 = V =

 2 0 0 1
0 2 0 1
0 0 2 −2

 .

Let t(x) = (x − r1)(x − r2)(x − r3)(x − r4) to get a square span program(
v0(x), v1(x), v2(x), v3(x), t(x)

)
for the circuit such that

t(x) divides
(
v0(x) + a1v1(x) + a2v2(x) + a3v3(x)

)2

− 1

if and only if a1, a2, a3 satisfy the circuit, i.e., a1, a2 ∈ {0, 1}, a3 = 1 and a3 =
a1 ⊕ a2.

2.4 Comparison to quadratic span programs

Square span programs can be seen as a simplification of quadratic span programs.
Below we recall the definition of quadratic span programs given by Gennaro,
Gentry, Parno and Raykova [GGPR13].

Definition 2. A quadratic span program over a field F contains two sets of
polynomials V = {v′0(x), . . . , vm(x)} and W = {w′0(x), . . . , wm(x)} and a target
polynomial t(x). It also contains a partition of the indices I = {1, . . . ,m} into

I = Ilabeled ∪ Ifree and a further partition Ilabeled = ∪`,1i=1,j=0 Ii,j.
For input4 y ∈ {0, 1}`, let Iy = Ifree ∪`i=1 Ii,yi be the set of indices that

“belong” to y. The quadratic span program accepts an input y ∈ {0, 1}` if and
only if there exist ai, bi ∈ F such that

t(x) divides

v′0(x) +
∑
i∈Iy

aivi(x)

 ·
w′0(x) +

∑
i∈Iy

biwi(x)

 .

We say the quadratic span program verifies a boolean function f : {0, 1}` →
{0, 1} if it accepts exactly those inputs y where f(y) = 1. We say the size of the
quadratic span program is m and the degree is deg(t(x)).

4 In the rest of the paper, we will be using inputs of the form y = (u,w) where u of
size `u is considered public and w is considered private.

Size and degree of Span Programs

Size Degree

Quadratic span programs [GGPR13] 36n 130n
Quadratic span programs (Lipmaa) [Lip13] 14n− 14`− 2 11n− 12`− 2
Square span programs m m+ n− `u

Table 2. Costs compared with prior work (` input wires, out of which `u are public,
m wires in total and n gates). In a circuit with fan-in 2 gates m ≤ 2n + 1, so we get
rough bounds of size 2n and degree 3n when computed as a function of the number of
gates n only (ignoring `u).

A square span program uses the simpler condition

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1,

which is equivalent to

t(x) divides

(
v0(x) + 1 +

m∑
i=1

aivi(x)

)
·

(
v0(x)− 1 +

m∑
i=1

aivi(x)

)
.

A square span program can therefore be seen as a particularly simple type
of quadratic span program where w′0(x) = v′0(x) − 2 and wi(x) = vi(x) and
ai = bi. Furthermore, Ilabeled = {1, . . . , `} with Ii,yi = {i} and Ii,ȳi = ∅, and
Ifree = {`+ 1, . . . ,m}.

The compilation of a circuit into a quadratic span programs in [GGPR13] has
a significant overhead. For a circuit with ` input wires and m wires in total and
n gates, the size of the resulting quadratic span program is 36n and the degree
is 130n. Lipmaa [Lip13] gave a class of more efficient quadratic span programs.
Included in this class is a quadratic span program of size 14n − 14` − 2 and
degree 11n − 12` − 2. In comparison with these works our (square) quadratic
span programs are much more compact with size m − `u and degree m + n −
`u (assuming the verifier checks its inputs are all in {0, 1}.) These costs are
summarised in Table 2.

A further advantage compared to the previous works is that we consider all
types of logic gates, whereas they only consider NAND, AND and OR gates. We
would expect that their constructions can be generalized to handle other logic
gates but do not know whether this would increase the cost.

Remark. All three results prove that a circuit—fixed when the quadratic span
program is generated—is satisfied for public input u and private input w. Uni-
versal circuits allow using a single program for all n′ gate circuits at the cost of
n = n′ · 19 log n′ [Val76].

3 Succinct non-interactive arguments of knowledge

We will now use square span programs to construct succinct non-interactive
zero-knowledge arguments of knowledge using bilinear groups.

Notation. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when
|f(λ)− g(λ)| = λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f is
overwhelming when f(λ) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume it is possible to sample uniformly at random from
sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on
input x outputs y and XA on the same input (including random coins) outputs z.

3.1 Non-interactive zero-knowledge arguments of knowledge

Let {Rλ}λ∈N be a sequence of families of efficiently decidable binary relations R.
For pairs (u,w) ∈ R we call u the statement and w the witness. A non-interactive
argument for {Rλ}λ∈N is a quadruple of efficient algorithms (Setup,Prove,Vfy,
Sim) working as follows:

(σ, τ)← Setup(1λ, R): the setup algorithm takes as input a security parameter λ
and a relation R ∈ Rλ and returns a common reference string σ and a
simulation trapdoor τ for the relation R.

π ← Prove(σ, u, w): the prover algorithm takes as input a common reference
string σ for a relation R and (u,w) ∈ R and returns an argument π.

0/1← Vfy(σ, u, π): the verification algorithm takes as input a common reference
string, a statement u and an argument π and returns 0 (reject) or 1 (accept).

π ← Sim(τ, u): the simulator takes as input a simulation trapdoor and a state-
ment u and returns an argument π.

Definition 3. We say (Setup,Prove,Vfy,Sim) is a perfect non-interactive zero-
knowledge argument of knowledge for {Rλ}λ∈N if it has perfect completeness,
perfect zero-knowledge and computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement,
an honest prover should be able to convince an honest verifier. For all λ ∈ N,
R ∈ Rλ, (u,w) ∈ R

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) : Vfy(σ, u, π) = 1

]
= 1.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak
any information besides the truth of the statement. We say (Setup,Prove,Vfy,

Sim) is perfect zero-knowledge if for all λ ∈ N, R ∈ Rλ, (u,w) ∈ R and all
adversaries A, we have

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) : A(σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(1λ, R);π ← Sim(τ, u) : A(σ, τ, π) = 1

]
.

Computational knowledge soundness. We call (Setup,Prove,Vfy,Sim) an
argument of knowledge if there is an extractor that can compute a witness when-
ever the adversary produces a valid argument. The extractor gets full access to
the adversary’s state, including any random coins.

Formally, we require that, for all sequences (Rλ)λ∈N of polynomially bounded
relations in {Rλ}λ∈N and non-uniform polynomial time adversaries A, there
exists a non-uniform polynomial time extractor XA such that

Pr

[
(σ, τ)← Setup(1λ, Rλ)
((u, π);w)← (A ‖ XA)(σ)

:
(u,w) /∈ Rλ

Vfy(σ, u, π) = 1

]
≈ 0.

Remark. Our notion of knowledge soundness guarantees security against an
adaptive adversary, cf. [AF07], that chooses the instance u depending on the
CRS σ. However, to get adaptive security for circuit satisfiability, Rλ has to
be universal, i.e., it has to check that a circuit u is satisfiable. For performance
reasons, this is usually not what one wants, and adaptive soundness for a more
restrictive Rλ is preferable. See Lipmaa [Lip14] for how to achieve adaptive
soundness for some NP-complete languages, not including circuit satisfiability,
while avoiding universal circuits.

3.2 Bilinear groups

Let G be a bilinear group generator that, on security parameter λ, returns
(p,G, Ĝ,GT , e)← G(1λ) with the following properties:

– G, Ĝ,GT are groups of prime order p;
– e : G × Ĝ → GT is a bilinear map, that is, for all U ∈ G, V ∈ Ĝ, a, b ∈ Z,

we have e(Ua, V b) = e(U, V)ab;

– if G is a generator for G and Ĝ is a generator for Ĝ then e(G, Ĝ) is a generator
for GT ; and

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, deciding equality of group
elements and sampling generators of the groups.

There are many ways to set up bilinear groups both as symmetric bilinear
groups where G = Ĝ and as asymmetric bilinear groups where G 6= Ĝ. Our con-
struction works for both symmetric and asymmetric bilinear groups. Currently,
asymmetric bilinear groups are more efficient and therefore the most appropriate
choice in practice [GPS08].

The q-power knowledge of exponent assumption. The knowledge of ex-
ponent assumption (KEA) introduced by Damg̊ard [Dam91] says that given
G,G′ = Gα it is infeasible to create V, V ′ such that V ′ = V α without knowing a
such that V = Ga and V ′ = G′

a
. Bellare and Palacio [BP04] extended this to the

KEA3 assumption, which says that given G,Gs, G′, G′
s

it is infeasible to create
V, V ′ = V α without knowing a0, a1 such that V = Ga0(Gs)a1 . This assumption
has been used also in symmetric bilinear groups by Abe and Fehr [AF07] who
called it the extended knowledge of exponent assumption.

The q-power knowledge of exponent assumption is a generalization of these
assumptions in bilinear groups. It says that given (G, Ĝ,Gs, Ĝs, . . . , Gs

q

, Ĝs
q

)
it is infeasible to create V, V̂ such that e(V, Ĝ) = e(G, V̂) without knowing

a0, . . . , aq such that V =
∏q
i=0(Gs

i

)ai . The q-power knowledge of exponent as-

sumption was introduced in [Gro10] for symmetric bilinear groups using Ĝ = Gα

with α chosen at random. Here we adapt it with minor modifications to the gen-
eral setting where it may be the case that G 6= Ĝ and G, Ĝ belong to different
groups.

Definition 4 (q-PKE). The q(λ)-power knowledge of exponent assumption
holds relative to G for the class Z of auxiliary input generators if, for every non-
uniform polynomial time auxiliary input generator Z ∈ Z and non-uniform poly-
nomial time adversary A, there exists a non-uniform polynomial time extrac-
tor XA such that

Pr


gk := (p,G, Ĝ,GT , e)← G(1λ);G← G∗

s← Z∗p; z ← Z(gk,G, . . . , Gs
q

); Ĝ← Ĝ∗

(V, V̂ ; a0, . . . , aq)← (A ‖ XA)(gk,G, Ĝ, . . . , Gs
q

, Ĝs
q

, z) :

e(V, Ĝ) = e(G, V̂) ∧ V 6= G
∑q

i=0 ais
i

 ≈ 0.

An adaptation of the proof in Groth [Gro10] shows that the q-PKE assumption
holds in the generic bilinear group model.

As demonstrated by Bitansky, Canetti, Paneth and Rosen [BCPR13], if in-
distinguishability obfuscators [BGI+12,GGH+13] exist, then there are auxiliary
input generators for which the q-PKE assumption does not hold. However, their
counterexample is specifically tailored to make extraction difficult and, as they
explain, the q-PKE assumption may hold for “benign” auxiliary input genera-
tors. We will later use auxiliary input generators that generate group elements
in G and Ĝ in a specific manner according to the relations Rλ and we will
conjecture that such auxiliary input generators are benign and that the q-PKE
assumption holds with respect to them.

The q-power Diffie-Hellman assumption. The q-power Diffie-Hellman as-
sumption says given (G, Ĝ, . . . , Gs

q

, Ĝs
q

, Gs
q+2

, Ĝs
q+2

, . . . , Gs
2q

, Ĝs
2q

) it is hard

to compute the missing element Gs
q+1

.

Definition 5 (q-PDH). The q(λ)-power Diffie-Hellman assumption holds rel-
ative to G if for all non-uniform probabilistic polynomial time adversaries A

Pr

 gk := (p,G, Ĝ,GT , e)← G(1λ);G← G∗; Ĝ← Ĝ∗; s← Z∗p
Y ← A(gk,G, Ĝ, . . . , Gs

q

, Ĝs
q

, Gs
q+2

, Ĝs
q+2

, . . . , Gs
2q

, Ĝs
2q

) :

Y = Gs
q+1

 ≈ 0.

An adaptation of the proof in Groth [Gro10] shows that the q-PDH assumption
holds in the generic bilinear group model.

The q-target group strong Diffie-Hellman assumption. We adapt the
strong Diffie-Hellman assumption [BB08] in the target group [PHGR13] to the
asymmetric setting. It says that given (G, Ĝ, . . . , Gs

q

, Ĝs
q

) it is hard to find an

r ∈ Zp and compute e(G, Ĝ)
1

s−r .

Definition 6 (q-TSDH). The q(λ)-target group strong Diffie-Hellman assump-
tion holds relative to G if for all non-uniform probabilistic polynomial time ad-
versaries A

Pr

 (p,G, Ĝ,GT , e)← G(1λ);G← G∗; Ĝ← Ĝ∗; s← Z∗p
(r, Y)← A(p,G, Ĝ,GT , e,G, Ĝ, . . . , Gs

q

, Ĝs
q

) :

r ∈ Zp \ {s} ∧ Y = e(G, Ĝ)
1

s−r

 ≈ 0.

An adaptation of the proof in Boneh and Boyen [BB08] shows that the q-TSDH
assumption holds in the generic bilinear group model.

3.3 Succinct perfect NIZK arguments

We will now construct succinct and perfect NIZK arguments of knowledge for any
functions `u, `w and families {R}λ of relations R of pairs (u,w) ∈ {0, 1}`u(λ) ×
{0, 1}`w(λ) that can be computed by polynomial size circuits with m(λ) wires
and n(λ) gates for a total size of d(λ) = m(λ) + n(λ).

(σ, τ)← Setup(1λ, R): Run gk := (p,G, Ĝ,GT , e)← G(1λ). ParseR as a boolean
circuit CR : {0, 1}`u × {0, 1}`w → {0, 1}. Generate a square span program
Q =

(
v0(x), . . . , vm(x), t(x)

)
that verifies CR over Zp. Pick G ← G∗ and

Ĝ, G̃← Ĝ∗ and β, s← Z∗p such that t(s) 6= 0. Return

σ = (gk,G, Ĝ, . . . , Gs
d

, Ĝs
d

, {Gβvi(s)}i>`u , Gβt(s), G̃, G̃β , Q)

τ = (σ, β, s).

π ← Prove(σ, u, w): Parse u as (a1, . . . , a`u) ∈ {0, 1}`u and use w to compute

a`u+1, . . . , am such that t(x) divides
(
v0(x) +

∑m
i=1 aivi(x)

)2

− 1.

Pick δ ← Zp and let

h(x) =
(v0(x) +

∑m
i=1 aivi(x) + δt(x))

2 − 1

t(x)
.

Use linear combinations of the elements in σ to compute

H = Gh(s) Vw = G
∑m

i>`u
aivi(s)+δt(s)

Bw = Gβ(
∑m

i>`u
aivi(s)+δt(s)) V̂ = Ĝv0(s)+

∑m
i=1 aivi(s)+δt(s)

and return π = (H,Vw, Bw, V̂).

0/1← Vfy(σ, u, π): Parse u as (a1, . . . , a`u) ∈ {0, 1}`u and π as (H,Vw, Bw, V̂) ∈
G3 × Ĝ. Compute V = Gv0(s)+

∑`u
i=1 aivi(s)Vw and return 1 if and only if

e(V, Ĝ) = e(G, V̂) e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1 e(Vw, G̃
β) = e(Bw, G̃).

π ← Sim(τ, u): Parse u as (a1, . . . , a`u) ∈ {0, 1}`u and pick δw ← Zp at random.
Let

h =

(
v0(s) +

∑`u
i=1 aivi(s) + δw

)2

− 1

t(s)

and return π = (Gh, Gδw , Gβδw , Ĝv0(s)+
∑`u

i=1 aivi(s)+δw).

Let Z be a family of non-uniform polynomial time auxiliary input generators Z
such that each of them corresponds to sequences of relations (Rλ)λ∈N in a family
of relations {Rλ}λ∈N. They work such that Z corresponding to (Rλ)λ∈N on in-

put (p,G, Ĝ,GT , e,G, . . . , Gs
q

) generates the final part of the common reference
string, i.e., returns z = ({Gβvi(s)}i>`u , Gβt(s), G̃, G̃β , Q).

Theorem 3. The construction above is a perfect NIZK argument for the family
of relations {Rλ}λ∈N bounded by d(λ) with computational knowledge soundness
if the d(λ)-PKE, d(λ)-PDH and d(λ)-SDH assumptions hold relative to G and
the family of auxiliary input generator Z defined above.

Proof. Perfect completeness follows by direct verification.
Perfect zero-knowledge follows from observing that both a real argument

and a simulated argument have a uniformly random Vw because t(s) 6= 0 and
δ, δw are chosen uniformly at random. Once Vw has been fixed, the verification
equations uniquely determine Bw, V̂ and H. This means that for any (u,w) ∈ R
both the real arguments and the simulated arguments are chosen uniformly at
random such that the verification equations will be satisfied.

We now describe the witness-extractor for computational knowledge sound-
ness. The setup algorithm first generates a bilinear group (p,G, Ĝ,GT , e) ←
G(1λ) and picks G ← G∗ and s ← Z∗p, which are used to compute G, . . . , Gs

d

.
This is exactly like the input given to the auxiliary input generator in a d-
PKE challenge. The setup algorithm now generates a square span program Q
over Zp for the relation Rλ and elements {Gβvi(s)}i>`u and G̃, G̃β . We can con-
sider this as part of the auxiliary input z that Z outputs in the d-PKE defini-
tion. More precisely, let A′ be the d-PKE adversary that, on (p,G, Ĝ,GT , e,
G, Ĝ, . . . , Gs

d

, Ĝs
d

) and auxiliary input z = ({Gβvi(s)}i>`u , Gβt(s), G̃, G̃β , Q)

runs (u,H, Vw, Bw, V̂) ← A(σ) with σ = (p, . . . , Ĝs
d

) and returns (V, V̂) where

V = Gv0(s)+
∑`u

i=1 aivi(s)Vw when u = (a1, . . . , a`u) ∈ {0, 1}`u . Let XA′ be the cor-
responding extractor according to the d-PKE assumption that returns c0, . . . , cd
such that V = G

∑d
i=0 cis

i

when e(V, Ĝ) = e(G, V̂). Our witness-extractor XA
given σ runs (V, V̂ ; c0, . . . , cd)← (A′ ‖ XA′)(p,G, Ĝ,GT , e,G, Ĝ, . . . , Gs

d

, Ĝs
d

, z),

which defines a polynomial
∑d
i=0 cix

i. Define δ = cd to get a degree d− 1 poly-

nomial v(x) =
∑d
i=0 cix

i − δt(x). If it is possible to write the polynomial on the
form v(x) = v0(x)+

∑m
i=1 aivi(x) such that (a1, . . . , am) ∈ {0, 1}m is a satisfying

assignment for the circuit CR with u = (a1, . . . , a`u) then the extractor returns
w = (a`u+1, . . . , a`u+`w).

We will now show that with all but negligible probability the extracted
polynomial v(x) does indeed provide a valid witness w ∈ {0, 1}`w such that
(u,w) ∈ Rλ. Let Q be the square span program (v0(x), . . . , vm(x), t(x)) speci-
fied in σ that verifies Rλ over Zp. We know by Theorem 2 that if t(x) divides

v(x)2−1 and vmid(x) =
∑d
i=0 cix

i− v0(x)−
∑`u
i=1 aivi(x) belongs to the span of

{vi(x)}i>`u then indeed w ∈ {0, 1}`w and (u,w) ∈ Rλ. So we will in the following
show that the two cases, t(x) does not divide v(x)2 − 1 or vmid(x) is not in the
appropriate span both happen with negligible probability breaking the d-TSDH
assumption or the d-PDH assumption respectively.

Given a d-TSDH challenge (p,G, Ĝ,GT , e,G, Ĝ, . . . , Gs
d

, Ĝs
d

), we pick β ←
Z∗p and roots r1, . . . , rd in the same way the setup algorithm does and simulate
a common reference string σ. Suppose the adversary and extractor return u =
(a1, . . . , a`u) ∈ {0, 1}`u , a valid proof π = (H,Vw, Bw, V̂) and c0, . . . , cd such

that V = Gv0(s)+
∑`u

i=1 aivi(s)Vw = G
∑d

i=0 cis
i

. Let v(x) =
∑d
i=0 cix

i − δt(x) with

δ = cd as before and define p(x) = (v(x) + δt(x))
2 − 1 and suppose p(x) is not

divisible by t(x). Let ri be a root of t(x) such that x− ri does not divide p(x).
We can write p(x) = a(x)(x− ri) + b, where a(x) is a degree 2d− 1 polynomial
in Zp[x] and b ∈ Z∗p. The verification equation e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1

gives us e(H, Ĝ
t(s)
s−ri) = e(G, Ĝ)

a(s)+ b
s−ri . The adversary can use generic group

operations on the d-TSDH challenge to compute Ĝ
t(s)
s−ri and e(G, Ĝ)a(s), which

allows it to deduce e(G, Ĝ)
b

s−ri . Rasing this to the power b−1 gives a solution

(ri, e(G, Ĝ)
1

s−ri) to the d-TSDH challenge.

Given a d-PDH challenge (p,G, Ĝ,GT , e,G, Ĝ, . . . , Gs
d

, Ĝs
d

, Gs
d+2

, Ĝs
d+2

, . . . ,

Gs
2d

, Ĝs
2d

) we pick a random degree d polynomial a(x) such that a(x)vi(x) has
coefficient 0 for xd for all `u < i ≤ m and a(x)t(x) also has coefficient 0 for
xd. There are d + `u − m − 1 > 0 degrees of freedom in choosing a(x) so for
a polynomial vmid(x) outside the span of {vi(x)}mi=`u and t(x) the polynomial

a(x)vmid(x) has a random coefficient for xd.

Now pick at random b ← Zp and define β(x) = a(x)x + b and let β = β(s).
Observe that Gβvi(s) = G(a(s)s+b)vi(s) can be constructed from our challenge

without knowing Gs
d+1

; and the same goes for Gβt(s). Pick ρ ← Z∗p at random

and compute G̃ = Ĝρt(s) and G̃β = Ĝρβt(s). Give to the adversary a simulated

common reference string

σ = (p,G, Ĝ,GT , e,G, Ĝ, . . . , Gs
d

, Ĝs
d

, {Gβvi(s)}i>`u , Gβt(s), G̃, G̃β , Q).

Suppose the adversary and extractor return u = (a1, . . . , a`u) ∈ {0, 1}`u , a

valid proof π = (H,Vw, Bw, V̂) and c0, . . . , cd such that V = G
∑

i=0 cis
i

. Define

vmid(x) =
∑d
i=0 cix

i − v0(x)−
∑`u
i=1 aivi(x). Due to the random choice of b the

value β(s) = a(s)s+b does not reveal anything about a(x), so if vmid(x) is outside
the span of {vi(x)}i>`u and t(x) then a(x)vmid(x) has a random coefficient for
xd+1. With probability 1− 1

p this means the adversary returns Bw = Gβ(s)vmid(s)

where β(x)vmid(x) =
∑2d
i=0 bix

i is a known polynomial with a non-trivial coeffi-
cient bd+1 6= 0 for xd+1. We can now take an appropriate linear combination of

Bw and the elements G, . . . , Gs
d

, Gs
d+2

, . . . , Gs
2d

to compute Gs
d+1

, which solves
the d-PDH challenge. �

The proof of Theorem 3 suffers a computational overhead in the reduction
by using an extractor XA for A. Except for this computational overhead, the
security reduction for knowledge soundness is tight. It is possible to eliminate
the q-TSDH assumption and rely solely on the q-PKE and q-PDH assumptions,
but then the security reduction loses a factor q and is therefore not tight.

3.4 Efficiency

In this section, we will assume our NIZK argument is instantiated with the
square span program that we constructed in Section 2.2. This choice of square
span program enables a number of optimizations that makes the argument highly
efficient.

The prover has to compute

Vw = G
∑m

i>`u
aivi(s)+δt(s)

Bw = Gβ(
∑m

i>`u
aivi(s)+δt(s))

V̂ = Ĝv0(s)+
∑m

i=1 aivi(s)+δt(s).

It is possible to compute the polynomials
∑m
i>`u

aivi(x) + δt(x) and v0(x) +∑m
i=1 aivi(x) + δt(x) and then compute the appropriate exponentiations of the

polynomials evaluated in s using the elements G, Ĝ, . . . , Gs
d

, Ĝs
d

, {Gβvi(s)}i>`u ,
and Gβt(s) from the common reference string. However, this requires O(d) expo-
nentations to the coefficients of the polynomials. Following [GGPR13] a signifi-
cant saving can be made by precomputing {Gvi(s)}i>`u , Gt(s) and {Ĝvi(s)}mi=0,

Ĝt(s). Since each ai ∈ {0, 1} this makes it possible to compute Vw, Bw and V̂ us-
ing at most 3m+ 1− 2`u multiplications and 3 exponentiations. (Pragmatically,
taking advantage of our uniform support for all gates, we can profile the SSP
and ‘flip’ internal values from ai to ai to ensure that ai is more often equal to 0
than to 1, thereby on average performing less than half of those multiplications.)

The prover also has to compute H = Gh(s), where h(x) = (v(x)+δt(x))2−1
t(x) with

v(x) = v0(x) +
∑m
i=1 aivi(x) and t(x) =

∏d
i=1(x− ri). We can evaluate h(x) in

d points r′1, . . . , r
′
d using two discrete Fourier transforms as follows. The degree

d − 1 polynomial v(x) is uniquely determined by its evaluation in the d points
r1, . . . , rd. In our square span program the evaluations in the points r1, . . . , rd can
be computed easily given the values of the wires in the circuit. Using an inverse
discrete Fourier transform, we compute the coefficients of v(x) =

∑d−1
i=0 cix

i.
Let γ ∈ Z∗p be given such that r′1, . . . , r

′
d defined as r′i = γiri gives us 2d dis-

tinct values r1, . . . , rd, r
′
1, . . . , r

′
d. Compute c′i = γici to get the coefficients of the

polynomial v′(x) =
∑d−1
i=0 c

′
ix
i and use a discrete Fourier transform to evaluate

v′(x) in r1, . . . , rd. This gives us evaluations of v(x) in the points r′1, . . . , r
′
d

since v(r′j) = v′(rj). We have h(x) = v(x)2−1
t(x) + 2δv(x) + δ2t(x). Assuming

t(r′1)−1, . . . , t(r′d)
−1 have been precomputed, it only costs 3d multiplications in

Zp to evaluate v(x)2−1
t(x) + 2δv(x) in the d points r′1, . . . , r

′
d. Using Lagrange inter-

polation in the exponent, this allows us to compute

G
v(s)2−1

t(s)
+2δv(s) =

d∏
j=1

(G`
′
j(s))

v(r′j)
2−1

t(r′
j
)

+2δv(r′j)

where `′j(x) is the Lagrange basis polynomial for r′j . By multiplying with (Gt(s))δ
2

we then get Gh(s).
To speed up the computation, we can set up a modified common reference

string for the prover

σProve =

(
p,G, Ĝ,GT , e,G, Ĝ, {Gvi(s)}i>`u , {Ĝvi(s)}i>`u , {Gβvi(s)}i>`u ,

Gβt(s), G̃, G̃β , γ, {t(r′j)−1}dj=1, {G`
′
j(s)}dj=1, G

t(s), Q

)
.

The computational cost for the prover is dominated by d exponentations in G
and 2 discrete Fourier transforms in Zp. The two discrete Fourier transforms
cost O(d log2 d) multiplications in general but the computation can be reduced
to O(d log d) multiplications when Zp is of a form amenable to using the fast
Fourier transform.

The verifier needs to compute V = Gv0(s)+
∑`u

i=1 aivi(s)Vw and evaluate three
pairing product equations e(V, Ĝ) = e(G, V̂), e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1,
and e(Vw, G̃

β) = e(Bw, G̃). The verifier does not need the full common reference
string but can use a more compact common reference string

σVfy =
(
p,G, Ĝ,GT , e,G, {Gvi(s)}`ui=0, Ĝ, Ĝ

t(s), G̃, G̃β
)
,

which only has `u + 6 group elements.5 Verification is also computationally effi-
cient, in the worst case it requires `u+1 multiplications in G, one multiplication
in GT and 6 pairings if we precompute e(G, Ĝ)−1.

For a large circuit, the cost of verification can be much smaller than the cost of
evaluating the circuit itself, even if the witness w is known to the verifier. This

5 Using the binary representation of the public input u from [PHGR13] this can be
further reduced to d `u

λ
e+O(1) group elements.

Proof size and verification cost comparison with Pinocchio

Proof Size (elements) Verification cost

Pinocchio [PHGR13] 8 14P + (`u + 4)G + 1GT
This work 4 6P + (`u + 1)G + 1GT

Table 3. Size in number of group elements (either G or Ĝ), performance in terms of
pairings (P) or multiplications in G or GT respectively.

makes the NIZK argument a succinct non-interactive argument of knowledge
that is suitable for verifiable computation protocols.6

Partly due to the lack of benchmarks, it is hard to compare the performance of
SNARK protocols quantitatively without carefully reimplementing them. Table 3
compares the proof sizes and operations performed by the verifier between our
protocol and Pinocchio, arguably the state of the art in terms of proof size
and verification speed for QAPs. On this basis and the numbers reported in
[PHGR13], we conservatively estimate that an SSP implementation based on
the Pinocchio library would offer 160-byte proofs verified in less than 6 ms.

4 Conclusion

We introduce a representation of logic circuits, or predicates on propositional
formulae, using quadratic constraints on an affine map. The map is built using a
linearization of each gate, and a set of constraints to ensure all values of wires are
binary. This leads to a simple and elegant formulation of square span programs,
and in turn to efficient, minimalistic constructions for NIZKs and SNARKs.

The simplifications are twofold: (i) our representation of boolean functions
no longer requires wire checkers and (ii) square span programs consist of only
a single set of polynomials that are summed and squared. The former improves
prover efficiency, while the key advantage of the latter are SNARKs with an
extremely compact proof, consisting of only four group elements, and an efficient
verification procedure compared to more generic QSP characterisations of the
same program.

As can be expected, binary programs such as SSPs remain less efficient than
arithmetic programs for verifying computations on integers, involving e.g. 32-bit
additions and multiplications. Those operations have to be encoded as binary
adders and multipliers, leading to a significant blow-up in circuit size and com-
putation costs for the prover. It remains an open problem how to extend the SSP
approach with ideas from QAPs to verify such computations without sacrificing
its conceptual simplicity and short proofs.

6 In some cases, for instance when outsourcing computation, the verifier may be the
one that sets up the common reference string. In that case the verifier may know β
and s, which can further decrease the cost of verification.

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In
TCC, volume 4392 of Lecture Notes in Computer Science, pages 118–136,
2007.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random ora-
cles and the sdh assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, 2008.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguisha-
bility obfuscation vs. auxiliary-input extractable functions: One must fall.
IACR Cryptology ePrint Archive, Report 2013/641, 2013.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. Journal of the ACM, 59(2):6, 2012.

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key en-
cryption without random oracles. In ASIACRYPT, volume 3329 of Lecture
Notes in Computer Science, pages 48–62, 2004.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Practical decen-
tralized anonymous e-cash from bitcoin. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy. IEEE, May 2014.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO, volume 576 of Lecture Notes in Computer
Science, pages 445–456, 1991.

[DFKP13] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Pinocchio coin: building zerocoin from a succinct pairing-based proof sys-
tem. In Martin Franz, Andreas Holzer, Rupak Majumdar, Bryan Parno,
and Helmut Veith, editors, PETShop@CCS, pages 27–30. ACM, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS, pages 40–49, 2013.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–
645, 2013.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of the ACM, 59(3):11:1–11:35, 2012.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 321–340, 2010.

[KW93] M. Karchmer and A. Wigderson. On span programs. In In Proc. of the
8th IEEE Structure in Complexity Theory, pages 102–111. IEEE Computer
Society Press, 1993.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In ASIACRYPT, volume
8269 of Lecture Notes in Computer Science, pages 41–60, 2013.

[Lip14] Helger Lipmaa. Almost optimal short adaptive non-interactive zero
knowledge. Cryptology ePrint Archive, Report 2014/396, 2014.
http://eprint.iacr.org/.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symposium on Security
and Privacy, pages 238–252, 2013.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In STOC, pages
196–203, 1976.

[vEB81] Peter van Emde Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Technical report at
http://staff.science.uva.nl/ peter/vectors/mi8104c.html, 1981.

