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Abstract. We study the maximal achievable accuracy of distributed dif-
ferentially private protocols for a large natural class of boolean functions,
in the computational setting.
In the information theoretic model, McGregor et al. [FOCS 2010] and
Goyal et al. [CRYPTO 2013] demonstrate several functionalities whose
differentially private computation results in much lower accuracies in the
distributed setting, as compared to the client-server setting.
We explore lower bounds on the computational assumptions under which
this accuracy gap can possibly be reduced for two-party boolean output
functions. In the distributed setting, it is possible to achieve optimal ac-
curacy, i.e. the maximal achievable accuracy in the client-server setting,
for any function, if a semi-honest secure protocol for oblivious transfer
exists. However, we show the following strong impossibility results:
– For any general boolean function and fixed level of privacy, the max-

imal achievable accuracy of any (fully) black-box construction based
on existence of key-agreement protocols is at least a constant smaller
than optimal achievable accuracy. Since key-agreement protocols im-
ply the existence of one-way functions, this separation also extends
to one-way functions.

– Our results are tight for the AND and XOR functions. For AND,
there exists an accuracy threshold such that any accuracy up to
the threshold can be information theoretically achieved; while no
(fully) black-box construction based on existence of key-agreement
can achieve accuracy beyond this threshold. An analogous statement
is also true for XOR (albeit with a different accuracy threshold).

Our results build on recent developments in black-box separation tech-
niques for functions with private input [1, 16, 27, 28]; and translate infor-
mation theoretic impossibilities into black-box separation results.
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1 Introduction

Differential privacy [7] provides strong input privacy guarantees to individuals
participating in a statistical query database. Consider the quintessential example
of trying to publish some statistic computed on a database holding confidential
data hosted by a trusted server [31]. For example, consider a query that checks
if there is an empirical correlation between smoking and lung cancer instances
from the medical records of patients stored at a hospital. The server wants
to provide privacy guarantees to each record holder as well as help the client
compute the statistic accurately. Even in this setting, where privacy concerns lie
at the server’s end only, it is clear that privacy and accuracy are antagonistic
to each other. The tradeoff between accuracy and privacy is non-trivial and well
understood only for some classes of functions (for e.g. [30, 15]). For any level of
privacy, we refer to the maximal achievable accuracy in the client-server setting
for a particular functionality, as the optimal accuracy.

In the distributed setting, where multiple mutually distrusting servers host
parts of the database, privacy concerns are further aggravated. Continuing the
previous example, consider the case of two hospitals interested in finding whether
a correlation exists between smoking and lung cancer occurrences by consider-
ing their combined patient records. In such a setting, we want the servers to
engage in a protocol, at the end of which the privacy of each record of both
the servers is guaranteed without a significant loss in accuracy. Note that the
privacy requirements must be met for both servers, even given their view of the
protocol transcript, not just the computed output ; thus, possibly, necessitating an
additional loss in accuracy.

At a basic level, we wish to study privacy-accuracy tradeoffs that arise in the
distributed setting. Following [15], in order to obtain results for a wide class of
functions, we focus on the computation of functions with Boolean output, with
accuracy defined (very simply) as the probability that the answer is correct. The
intuition that privacy in the distributed setting is more demanding is, in fact,
known to be true in the information theoretic setting: For any fixed level of pri-
vacy, it was shown that for all boolean functions that the maximal achievable
accuracy in the distributed setting is significantly lower than the optimal accu-
racy achievable in the client-server setting [15], as long as the boolean function
depends on both server’s inputs. But in the computational setting, this gap van-
ishes if a (semi-honest1) protocol for oblivious-transfer exists. The two servers
would then be able to use secure multi-party computation [14] to simulate the
client-server differentially private computation, thereby achieving optimal accu-
racy on the union of their databases. Although this computational assumption
suffices, it is not at all clear whether this assumption is necessary as well.

Indeed, this is a fascinating question because even for very simple functions,
like XOR, that require no computational assumptions to securely compute in

1 In this work, as in previous works on distributed differential privacy, we restrict
ourselves to the semi-honest setting where all parties follow the specified protocol,
but remember everything they have seen when trying to break privacy.



the semi-honest setting, the question of differentially private computation is
non-trivial. Could there be any simple functions that can be computed differen-
tially privately with weaker assumptions? For the general class of boolean output
functions, our paper considers the following problem:

“What are the computational assumptions under which there exist distributed
differentially private protocols for boolean f with close to optimal accuracy?”

Goyal et al. [15] showed that for any boolean function such that both parties’
inputs influence the outcome, achieving close to optimal accuracy would imply
the existence of one-way functions. Could one-way functions also be sufficient
to achieve optimal accuracy for certain simple functions?

Our results give evidence that the answer is no. Indeed, we provide evidence
that achieving optimal accuracy for any boolean function that depends on both
parties’ inputs is not possible based on one-way functions. We go further and
provide similar evidence that this goal is not possible even based on the exis-
tence of key-agreement protocols (which also implies one-way functions; and,
thus, is a stronger computational assumption). More precisely, we show a (fully
black-box) separation [35] of the computational assumptions necessary to bridge
the accuracy gap from the existence of key-agreement protocols. A black-box
separation between two cryptographic primitives has been widely acknowledged
as strong evidence that they are distinct [23]. Indeed, we note that a black-box
separation is particularly meaningful in the context of protocols with guarantees
only against semi-honest adversaries, like the differentially private protocols we
consider in this work. (Recall that an impossibility result like ours is strongest
when it applies to the weakest security setting possible – this is why we focus
on just semi-honest security.) This is because the most common non-black-box
techniques used in cryptography typically apply only to the setting of malicious
adversaries: for example, cryptographic proof systems like zero-knowledge proofs
are sometimes applied in a non-black-box manner in order for a party to prove
that it behaves honestly. However, in the semi-honest security context, such
proofs are never needed since even adversarial parties must follow the protocol
as specified. We crucially employ recently developed separation techniques for
protocols with private inputs from key-agreement protocols [27, 28].

Our work is reminiscent of, but also quite different from, the work of Hait-
ner et al. [16], who proved that the information theoretic impossibility of accu-
rate distributed differentially private evaluation of the inner-product functional-
ity [30] could be extended to a black-box separation result from one-way func-
tions. Our results are different both qualitatively and technically: Qualitatively,
our results differ in that they apply to the wide class of all boolean functions
where the output of the function is sensitive to both parties’ inputs. Further-
more, we show separations from key-agreement protocols as well. Moreover, our
separation results for extremely simple binary functions like AND and XOR show
that differentially private distributed computation even of very simple functions
may also require powerful computational assumptions.

At a technical level, a crucial ingredient of our proofs is the recently developed
toolset of [27, 28] which deal with private inputs of parties even in presence of



the “idealized key-agreement oracle,” while Haitner et al. [16] adapt the analysis
of McGregor et al. [30] to a setting where the input is part of the local random
tape of parties, i.e. parties have no private inputs.

1.1 Our Contribution

Before we elaborate upon our results, we briefly summarize what is known so far
about accuracy gaps in boolean distributed differentially private computation.

Suppose Alice and Bob have inputs x and y, respectively; and they are inter-
ested in computing f(x, y) in a differentially private manner in the distributed
setting. An ε-differentially private protocol for some functionality f ensures
that the probability of Alice’s views conditioned on y and y′ are λ:= exp(ε)
multiplicatively-close to each other, where y and y′ represented as bit-strings
differ only in one coordinate (i.e. they are adjacent inputs). Let x and y be the
private inputs of parties Alice and Bob respectively. A protocol between them
is α-accurate if for any x and y, the output of the protocol agrees with f(x, y),
with probability at least α.

For boolean functions, the optimal accuracy (in the client-server model) is
α∗ε :=

λ
(λ+1) , where λ = exp(ε).2 Goyal et al. [15] showed that, in the information

theoretic setting, f = AND can only be computed ε-differentially privately up to

accuracy α
(AND)
ε :=λ(λ2+λ+2)

(λ+1)3 . Similarly, when f = XOR the maximal achievable

accuracy is α
(XOR)
ε := (λ2+1)

(λ+1)2 . Note that α
(XOR)
ε < α

(AND)
ε < α∗ε , for any finite

ε > 0. By observing that any boolean function f which is sensitive to both
parties’ inputs either contains an embedded XOR or AND3 [3], the maximal
achievable accuracy is bounded by:

α(f)
ε :=

{
α
(XOR)
ε , if f contains an embedded XOR

α
(AND)
ε , otherwise.

(1)

Note that in the computational setting, if semi-honest secure protocol for
oblivious-transfer exists then we can achieve accuracy α = α∗ε for any boolean
f . We explore the necessary computational assumptions for which this gap in
accuracy in the distributed and client-server setting vanishes. Although Goyal
et al. [15] showed that achieving close to optimal accuracy implies one-way func-
tions, we show that it is highly unlikely that such constructions can solely be
based on one-way functions. In fact, we show a (fully) black-box separation from
a weaker variant of differential privacy, namely computational differential privacy
(see Section 2).

2 In the client-server setting, any boolean function f can be computed ε-differentially
privately by evaluating a suitably noisy version of f .

3 We say that f contains an embedded XOR if there exists x0, x1, y0, y1, z0, z1 such
that f(xa, yb) = zXOR(a,b) for all a, b ∈ {0, 1}. Similarly, we define en embedded
AND. Note that embedded OR is identical to embedded AND (by interchanging z0
and z1).



Informal Theorem 1. For any boolean f and privacy threshold ε > 0, there
exists a constant c > 0 such that any ε-differentially private α-accurate evalua-
tion of f (in the distributed setting) which uses key-agreement protocols in fully
black-box manner cannot have accuracy α > (α∗ε − c), where α∗ε = λ

(λ+1) and

λ = exp(ε).

Further, our result is tight for f ∈ {AND,XOR} and, in fact, a stronger lower
bound is exhibited. We show that for f ∈ {AND,XOR}: 1) In the information
theoretic setting, it is possible to ε-differentially privately α-accurately evaluate f

in the distributed setting [15], if α 6 α
(f)
ε , and 2) In the computational setting,

it is impossible to construct (by using key-agreement protocols in black-box

manner) an ε-differentially private α-accurate evaluation of f , for α > α
(f)
ε +

1/poly(κ) (where, κ is the statistical security parameter). In fact, this gives a
(fully) black-box separation of a weaker notion of differential privacy, namely
computational differential privacy (see Section 2). Note that it suffices to just
consider f ∈ {AND,XOR} because the maximal achievable accuracy for a general

boolean function is bounded in terms of α
(AND)
ε and α

(XOR)
ε . As a primer, we begin

with the separation result from existence of one-way functions.

Separation from One-way Functions. Random oracles serve as an idealization of
one-way functions because they cannot be inverted at non-negligible fraction of
their image by any algorithm whose query complexity is polynomial in query-
length of the random oracle [23, 12].

Suppose there exists a purported ε-differentially private α-accurate protocol
for f ∈ {AND,XOR} in the random oracle world, where parties have unbounded
computational power and their query complexity is at most n. We show that

if α > α
(f)
ε + σ then one of the parties could perform additional poly(n/σε)

queries to the random oracle and break the ε-differential privacy of the protocol.
The existence of this strategy relies on the recent progress of “Eavesdropper
strategies in the random oracle setting” for protocols with private inputs [27].
For more details, refer to Imported Theorem 1.

This impossibility result easily translates into a fully black-box separation
as defined in [35]. This translation of impossibility in the random-oracle model
into a black-box separation uses techniques introduced in [23, 13, 1, 5, 16, 27].

Informal Theorem 2 (Separation from One-way Functions). For f ∈
{AND,XOR}, ε > 0 and α > α

(f)
ε +1/poly(κ), where κ is the security parameter,

there cannot exist an ε-differentially private α-accurate protocol for f in the
distributed setting which uses one-way functions in fully black-box manner.

Note that this separation also extends to primitives which can be constructed
from one-way functions in black-box manner, like pseudorandom generators [21,
18, 19] and digital signatures/universal one-way hash functions [33, 36, 26]. More-
over, it is also applicable to other computational primitives like ideal-ciphers [4,
20] (which are indifferentiable [29] from random oracles) and one-way permuta-
tions (which themselves cannot be based on one-way function [37, 25]).



Separation from Public-key Encryption. To show a similar separation result from
key-agreement protocols, it suffices to show a separation from public-key encryp-
tion; because public-key encryption is equivalent to two-round key agreement
which in turn directly implies (any round) key-agreement protocols. Before we
proceed further, we introduce the idealization of public-key encryption as an
oracle [13].

Our public-key encryption oracle is a triplet of correlated oracles PKE ≡
(Gen,Enc,Dec). The key-generation oracle Gen is a length tripling random oracle

which maps sk ∈ {0, 1}n to pk ∈ {0, 1}3n, i.e. Gen(sk) = pk. The encryption or-
acle, is a collection of 23n independent length-tripling oracles which maps a mes-
sage m, using a public-key pk ∈ {0, 1}3n, to a cipher text c, i.e. Enc(m; pk) = c.

The decryption oracle Dec decrypts a cipher text c ∈ {0, 1}3n using a secret key
sk ∈ {0, 1}n. It maps it to (the lexicographically first) m such that Gen(sk) = pk
and Enc(m; pk) = c; otherwise outputs ⊥, i.e. Dec(c, sk) ∈ {m,⊥}.

This oracle is too powerful and yields a semi-honest secure protocol for
oblivious-transfer (see discussion in [13]). Thus, it cannot be used to show the
intended separation result. An additional Test oracle is provided, which allows
testing of whether pk lies in the range of the Gen oracle, and whether c lies
in the range of the Enc oracle with public key pk. Intuitively, the Test oracle
can be thought of as part of Gen and Enc oracles themselves. Such oracles with
image-testability are referred to as image-testable random oracles (ITRO) [28].

To tackle the decryption oracle, we follow the technique introduced by [28].
Suppose there exists a purported ε-differentially private α-accurate protocol for
f in the PKE-oracle world. Then there exists an (ε + γ)-differentially private
(α − γ)-accurate protocol for f in the “PKE minus decryption oracle” world,
i.e. in the (Gen,Enc) oracle world (with implicitly included Test oracles), with
query complexity poly(n/γε) and identical round complexity. The slight loss in
parameter γ can be made arbitrarily small 1/poly(n).

Finally, similar to the separation from one-way functions, we show that if

(α− γ) > α
(f)
ε+γ + (σ/2) then one of the parties can perform poly(n/σγε) queries

and violate the (ε + γ)-differential privacy of this protocol. This part of the
result crucially relies on the recently proven result of [28] which shows that
image-testable random oracles mimics several properties of random-oracles and
the “eavesdropper strategies” in the random oracle model extend to (collections
of) image-testable random oracles as well. Hence, we have the following result.

Informal Theorem 3 (Separation from Key-Agreement). For f ∈
{AND,XOR}, ε > 0 and α > α

(f)
ε +1/poly(κ), where κ is the security parameter,

there cannot exist an ε-differentially private α-accurate protocol for f in the
distributed setting which uses key-agreement protocols in fully black-box manner.

We emphasize that our negative results not only hold for ε-differential pri-
vacy, but also hold for a weaker (ε, δ)-indistinguishability based computational
differential privacy (see Section 2 for definition). For a precise statement refer
to our main theorem, Theorem 1.



1.2 Related Work

Differential Privacy. Differential privacy [8, 7, 10, 11, 6] has been popular as a
strong privacy guarantee to participants of statistical databases. In settings
where the database could possibly be split among various parties, Dwork et al.
[9] obtained distributed differential privacy via SFE and secure noise genera-
tion. Subsequently, [2] studied trade-offs between distributed privacy and SFE.
A computational relaxation of differential privacy was defined by Mironov et al.
[31], that would help improve the range of achievable accuracies while still main-
taining this relaxed notion of privacy.

A gap in the maximal achievable accuracy of differentially private proto-
cols, between the client-server and distributed settings, was first observed by
McGregor et al. [30] for specific large functions such as the inner product and
hamming distance. Recently, Goyal et al. [15] showed the existence of a constant
information theoretic gap between the accuracies of boolean output functions,
in the client-server and distributed settings. They also showed that any hope of
bridging this gap necessitates the assumption that one-way functions exist.

Black-box Separations. Impagliazzo and Luby [22] showed that most non-trivial
cryptographic primitives imply existence of one-way functions. Subsequently, it
turned out that several primitives like pseudorandom generators [21, 18] and
digital signatures/universal one-way hash functions [33, 36] can indeed be con-
structed from one-way functions; thus, establishing equivalence of these primi-
tives to existence of one-way functions. It is highly unlikely, on the other hand,
that primitives like key-agreement [23] protocols and semi-honest secure oblivious-
transfer protocol [13] can be securely constructed from one-way functions using
black-box construction. A black-box separation result between two cryptographic
primitives is widely acknowledged as an evidence that they should be treated as
separate computational assumptions.

Reingold et al. [35] formally defined (several variants of) black-box separa-
tions. And Gertner et al. [12] provided a technique to translate information the-
oretic impossibility results in random oracle model into unconditional black-box
separation results.

Recently, there has been significant progress in black-box separation tech-
niques where parties have private inputs due to [27, 28]. They show that if semi-
honest secure function evaluation of any two-party deterministic function exists
by using one-way functions or key-agreement protocols in black-box manner then
there exists a semi-honest secure protocol for that function in the information
theoretic plain model itself. Haitner et al. [16] show that the information the-
oretic impossibility of evaluating the inner-product functionality both differen-
tially privately and accurately [30], in the client-server model, can be translated
into a black-box separation result from one-way functions.

1.3 Technical Outline

Our black-box separation results are a consequence of amalgamation of the fol-
lowing techniques: 1) Information theoretic lower bounds for ε-differentially pri-



vate α-accurate protocols for f ∈ {AND,XOR} in the distributed setting [15], and
2) Recent progress in black-box separation techniques as introduced in [1, 16, 27,
28]. Our separation from key-agreement protocols especially relies on the recent
results of [28]. We essentially show that based on computational assumptions like
“existence of one-way functions” and “existence of (any round) key-agreement
protocol” it is highly unlikely to construct ε-differentially private α-accurate

protocols for f ∈ {AND,XOR}, if α > α
(f)
ε .

Henceforth, we shall assume that f ∈ {AND,XOR} and understand the com-
putational assumptions necessary to realize ε-differentially private α-accurate

protocols for f , where α > α
(f)
ε .

Information theoretic result. Before we begin, we sketch an intuitive summary of
the proof technique of Goyal et al. [15]. They leveraged the Markov-chain prop-
erty of distribution of next-message function in the information theoretic setting,
i.e. the next message sent by a party is solely a (deterministic) function of its cur-
rent view. Suppose the public transcript generated thus far is m. Then, using this
Markov-chain property of protocols in the information theoretic setting and the
fact that they begin with independent views, one can obtain the following proto-
col compatibility constraint: Pr[m|x, y] ·Pr[m|x′, y′] = Pr[m|x, y′] ·Pr[m|x′, y], for
private inputs x, x′ ∈ X and y, y′ ∈ Y. By considering every complete transcript
m, the protocol compatibility constraint implies a set of constraints. For every
privacy parameter ε > 0, they show that there exists an ε-differentially private

α-accurate protocol for f , if α ∈ [0, α
(f)
ε ].

Separation from one-way functions. Although the result presented in this section
is subsumed by our main theorem, we feel that an independent presentation of
this result adds clarity to the overall proof.

Suppose we have a (purportedly) ε-differentially private α-accurate protocol
for f in the random oracle model, where each party performs at most n private
queries to the random oracle. A random oracle randomly maps κ-length bit-
strings to κ-length bit-strings, where κ is the statistical security parameter.

Assume that α > α
(f)
ε +σ, where σ = 1/poly(κ). To show a black-box separation

result from one-way functions, we need to show that if α is significantly larger

than α
(f)
ε , then differential privacy must be violated by one of the parties.

But, the Markov-chain property (upon which the information theoretic char-
acterization crucially relies) is not a priori guaranteed in the random oracle
model. So, a logical starting point is to consider an algorithm which perform
additional queries to the random oracle to kill correlations between parties
and ensures this property (with high probability), cf. [23, 1, 5, 16, 27]. For any
ρ > 0, there exists a (deterministic) algorithm Eveρ which performs additional
poly(n/ρ) queries to the random oracle based on the public transcript; and ap-
pends the sequence of query-answer pairs to the current transcript. This Eveρ
ensures that when she stops, the joint view of Alice and Bob is ρ-close to a prod-
uct distribution with (1 − ρ) probability. Being agnostic to the private inputs
used by the parties, Eveρ can ensure this Markov-chain property only when,



for any complete transcript m, the probabilities Pr[y|m] and Pr[x|m], for every
x ∈ {0, 1} and y ∈ {0, 1}, is at least a constant [27].

Note that the ε-differential privacy constraint implies that Pr[x|m] and Pr[x′|m]
are λ = exp(ε) (multiplicative) approximations of each other for all adjacent x
and x′. If f is a function such that both parties’ inputs influence the output,
then it has an embedded AND or XOR minor in its truth table. Let X and Y
be the respective input sets of Alice and Bob such that f restricted to X × Y
is an AND or XOR minor. Given such a minor, our negative result shall exhibit
violation of the differential privacy guarantee. So, for all our negative results we
have |X | = |Y| = 2. Consequently, Pr[x|m] is a constant for every x ∈ X ; other-
wise the complete transcript m is a witness to violation of ε-differential privacy.
Analogously, the same holds for every y ∈ Y.

For Alice inputs in X and Bob inputs in Y, for any ρ > 0, there exists Eveρ
with query complexity poly(n/ρ) such that, with probability (1−ρ) over the gen-
erated public transcript, the joint view of Alice-Bob is ρ-close to a product distri-
bution. Now, consider the augmented protocol where the original ε-differentially
private α-accurate protocol is augmented with Eveρ, who adds her sequence
of query-answer pairs to the public transcript. In this augmented protocol, we

show that ε-differentially private α-accurate protocol implies α 6 α
(f)
ε,ρ , which

can be made arbitrarily close to α
(f)
ε by choosing suitably small value of ρ. In-

tuitively, this result relies on the fact that the polytope of feasible solutions to
the constraints in the information theoretic setting cannot change significantly
if each of them has bounded slope and is weakened slightly (see full version for

details). When α = α
(f)
ε + σ, where σ = 1/poly(n), by choosing suitably small

ρ = poly(σε), one of the parties can violate the ε-differential privacy guarantee
by performing poly(n/ρ) additional queries to the random oracle.

This technique is applied in a significantly sophisticated manner to show the
separation from key-agreement protocols.

Separation from key-agreement. We show a separation from public-key encryp-
tion, which is equivalent to a 2-round key-agreement protocol. Separation from
2-round key-agreement implies separation from (any round) key-agreement pro-
tocols. This separation relies on the recent results pertaining to the “ideal public-
key encryption oracle” (PKE-oracle, introduced by [13]) as shown in [28].

Our result depends on two technical results proven in [28]. First, they show
that, against semi-honest adversaries, queries to the decryption-oracle of PKE-
oracle are (nearly) useless; and, finally, the PKE-oracle minus the decryption-
oracle (closely) mimics properties of (collection of) random oracles.

The first part shows that if there exists an ε-differentially private α-accurate
protocol for f in the PKE-oracle world, then there exists another (closely re-
lated) (ε + γ)-differentially private (α − γ)-differentially private protocol for f
in the “PKE-oracle minus the decryption-oracle” world with query complexity
poly(n/γ). Here, the parameter γ can be made arbitrarily small 1/poly(n).

Finally, we use the property that “PKE-oracle minus decryption-oracle” is
similar to the random oracle world [28]. We use the fact that, relative to this



oracle, there exists an Eveρ which can make the joint distribution of Alice-Bob

joint views ρ-close to product with high probability. Since (α− γ) > α
(f)
ε+γ,ρ, one

of the parties can violate the (ε+ γ)-differential privacy of the protocol.

Overall, if δ is at least α
(AND)
ε + σ, where σ = 1/poly(n), we can choose

γ, ρ = poly(σε) to show that the ε-differential privacy is violated by performing
only poly(n/σε) queries to the PKE-oracle. In fact, our final theorem rules out
a stronger form of differentially private protocols, namely, (ε, δ)-computational
differential privacy (see Section 2 for definitions). Intuitively, δ = 0 corresponds
to the previously discussed notion of ε-differential privacy. Our final theorem is:

Theorem 1. For any boolean function f whose output is sensitive to both par-

ties’ inputs, ε > 0 and λ = eε, define α
(f)
ε as follows:

α(f)
ε :=

{
α
(XOR)
ε = λ2+1

(λ+1)2 , if f contains an embedded XOR

α
(AND)
ε = λ(λ2+λ+2)

(λ+1)3 , otherwise.

Then for any α > α
(f)
ε + σ, where σ = 1/poly(κ) and κ is the statistical security

parameter, there exists a δ̂ = poly(σε) such that any (ε, δ)-computational differ-
entially private α-accurate protocol for f in the distributed setting constructed
in a fully black-box manner from key-agreement protocols must have δ > δ̂.
Further, when f ∈ {AND,XOR} and ε > 0, there exists an ε-differentially private

α-accurate protocol for f , if α 6 α
(f)
ε .

The negative result rules out fully-BB constructions of ε indistinguishable
computationally differentially private (ε-IND-CDP) α-accurate protocols with

α > α
(f)
ε , based on existence of key agreement. The second part of the theorem

(the positive result) is with respect to the stronger notion of ε-differential privacy.
An overview of the separation from one-way functions is provided in Sec-

tion 3. An overview of the proof of Theorem 1 is presented in Section 4. Comp-
plete proofs are deferred to the full version.

2 Preliminaries

We introduce important definitions in this section, with details in the full version.

Differential Privacy. The following definitions of differential privacy are provided
for the distributed setting:

Definition 1 ((ε, δ)-Differential Privacy). A two-party protocol Π is (ε, δ)-
differentially private, referred to as (ε, δ)-DP, if for any subset S of Alice-views,
for all Alice inputs x and for any pair of adjacent4 Bob inputs y, y′, we have:

Pr[S|x, y] 6 exp(ε) · Pr[S|x, y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ and all Bob’s inputs
y with respect to Bob private views.

4 Two inputs are adjacent if they differ only in one coordinate.



Definition 2 ((ε, δ)-(IND)-Computational Differential Privacy). A two-
party protocol Π is (ε, δ)-computational differentially private, referred to as
(ε, δ)-IND-CDP, if for any efficient adversary A, for all Alice inputs x and any
pair of adjacent Bob inputs y, y′, we have:

Pr[A(VA, 1
κ) = 1|x, y] 6 exp(ε) · Pr[A(VA, 1

κ) = 1|x, y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ and all Bob’s inputs
y, with respect to Bob private views.

We refer (ε, negl(κ))-IND-CDP as ε-IND-CDP, defined first in [31]. We note
that this indistinguishability based definition is weaker than the simulation based
one (SIM-CDP privacy [31]). Our separations hold even for this weaker differ-
ential privacy definition. In the above definition, the protocol Π, ε and δ are
parameterized by the security parameter κ as well, but is not explicitly men-
tioned for ease of presentation. Without loss of generality, we assume that ε is
not an increasing function (of κ); and in all our analysis we shall have δ as a
decreasing function.

Accuracy. Following [15] we measure the accuracy of two-party protocols in
evaluating a boolean function as follows:

Definition 3 (α-Accuracy). A two party protocol Π evaluates a function f
α-accurately, if, for every private input x and y of Alice and Bob respectively,
the output of the protocol is identical to f(x, y) with probability at least α.

Information theoretic bounds on the maximal achievable accuracy for ε-DP pro-
tocols computing the AND and XOR functions, are known in the Plain Model [15].

Define λ = exp(ε), then α
(AND)
ε = λ(λ2+λ+2)

(λ+1)3 is the maximal achievable accuracy

of any protocol for the AND function, and α
(XOR)
ε = λ2+1

(λ+1)2 , is the maximal

achievable accuracy of any protocol for the XOR function.

Black-box Separations. We use the definition of fully black-box construction as
introduced by Reingold et al. [35]. To show a separation of (ε, δ)-IND-CDP α-
accurate protocol from key-agreement protocols, we need to show existence of
an oracle relative to which key-agreement protocol exists but there exists an
adversary which violates the (purported) (ε, δ)-IND-CDP guarantee.

3 Separation from One-way Functions

Our main result shows a separation from key-agreement protocols. Despite the
fact that the separation from one-way functions will be subsumed by our sepa-
ration from key-agreement protocols, we present this result separately because
it is conceptually simpler and captures several of the crucial ideas required to
show such black-box separation results.



For ε > 0 differential privacy parameter, suppose α ∈ [α
(f)
ε + 1/poly(κ), α∗ε ].

We shall show that, for such choices of α, we cannot construct ε-IND-CDP α-
accurate protocols for boolean f , in the information theoretic random oracle
world. It suffices to show this result for f ∈ {AND,XOR}. This is done by
showing an impossibility result in the random oracle model against information
theoretic adversaries but with polynomially bounded query complexity. However,
we shall show existence of an adversary who can break the ε-IND-CDP.

3.1 Notations and Definitions

We introduce some notations for our separation result. For security parameter
κ, let Oκ denote the set of all functions from {0, 1}κ → {0, 1}κ.

We will consider private-input randomized two party protocols Π, such that

Alice and Bob have access to a common random oracle O
$← Oκ. As in the

plain model, parties send messages to each other in alternate rounds, starting
with Alice in the first round. However, they have (private) access to a common
random oracle.

For odd i, at the beginning of the ith round, Alice queries the random oracle
multiple times based on her current view (private input x, local randomness
rA, private query-answer pairs and the transcript m(i−1) so far). She appends
the new set of query-answer pairs PA,i to her partial sequence of query-answers.

The complete set of private query-answers at this point is denoted by P
(i)
A .

She then computes her next-message mi as a function of her current view,

(x, rA,m
(i−1), P

(i)
A ). The ith round ends when she sends message mi. Her view

at the end of round i is V
(i)
A ≡ (x, rA,m

(i), P
(i)
A ). Similarly, Bob queries the

oracle followed by computing and sending his message in even rounds as a func-
tion of his view. His view at the end of round i is (analogously) defined to be

V
(i)
B ≡ (y, rB ,m

(i), P
(i)
B ). At the end of n rounds, both parties locally obtain

outputs as an efficiently computable deterministic function out of their view,

zA = out(V
(n)
A ) and zB = out(V

(n)
B ). We note at this point, that we our analysis

will only be over functions with boolean output, such that zA, zB ∈ {0, 1}. Our
underlying sample space in the random oracle world is the joint distribution over

Alice-Bob views when rA, rB ∼ U and O
$←Oκ.

Two-party protocols in the Random Oracle World Before we present our
separation result, we need to introduce the notion of public-query strategy and
augmentation of a protocol with a public-query strategy.

Definition 4 (Public Query strategy). A public query strategy is a deter-
ministic algorithm, which, after every round of the protocol, queries the oracle
multiple times based on the transcript generated thus far. It then adds this se-
quence of query-answers to the transcript being generated.

Definition 5 (Augmented Protocol). Given a protocol Π, the augmented
protocol Π+:=(Π,Eve) denotes Π augmented with a public query strategy “Eve”



which generates public query-answer sequences after every message in Π and
appends them to the protocol transcript after the messages in Π.

Now, we define the views of parties (Alice, Bob and Eve) in an augmented
protocol Π+:=(Π,Eve). The protocol Π proceeds with parties sending messages
in alternate rounds and Eve appending query-answer pairs after the message of
the underlying protocol Π is sent.

Formally, consider an odd i. Alice is supposed to generate the message mi

in round i. Round i begins with Alice querying the random oracle based on

her view (x, rA,m
(i−1), P

(i−1)
A , P

(i−1)
E ), where P

(i−1)
E is the sequence of query-

answer pairs added by Eve thus far. Alice performs additional queries PA,i and
sends the next message mi. Thereafter, the public query strategy Eve performs
additional queries to the random oracle and adds the corresponding sequence of
query-answer pairs PE,i to the transcript. This marks the end of round i. At this

point, the views of parties Alice, Bob and Eve are: V
(i)
A ≡ (x, rA,m

(i), P
(i)
A , P

(i)
E ),

V
(i)
B ≡ (y, rB ,m

(i), P
(i)
B , P

(i)
E ) and V

(i)
E ≡ (m(i), P

(i)
E ), respectively.

(ε, δ)-IND-CDP in the Random Oracle Model

Definition 6 ((`, n) Two-party Protocol). An (`, n) two-party protocol is a
two-party protocol of round complexity at most n such that both parties have
query complexity at most `.

Definition 7 ((ε, δ)-IND-CDP (`, n) Protocol).
A two-party protocol Π is (ε, δ)-IND-CDP if for any computationally un-

bounded adversary (but polynomial-query complexity) A and any pair of adjacent
Bob inputs y, y′, we have:

Pr[AO(VA, 1
κ) = 1|y] 6 exp(ε) · Pr[AO(VA, 1

κ) = 1|y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ with respect to Bob
private views.

We emphasize that the adversary A gets access to an oracle O with respect
to which the view VA is generated. Accuracy is defined identically as in the plain
model.

Remark: We briefly motivate the reasons behind choosing A as computa-
tionally unbounded adversary with polynomially bounded query complexity.
Consider a world where “random oracle plus PSPACE” oracle is provided. A
computationally bounded adversary in that oracle world shall correspond to an
unbounded computational power adversary with polynomially bounded query
complexity in the random oracle world. Therefore, we define ε-IND-CDP with
respect to such adversaries because we shall exhibit such an adversary to show
the separation from one-way functions. Note that we allow the adversary A to
perform additional queries to the random oracle, because, in the computational
setting, a computationally bounded adversary can perform additional queries to
the one-way function itself.

We shall use the following definition on “closeness to product distribution.”



Definition 8 (Close to Product Distribution). A joint distribution (X,Y)
is ρ-close to product distribution if ∆ ((X,Y),X×Y) 6 ρ. Here, X and Y are
the respective marginal distributions.

3.2 Imported Results

The crux of the information theoretic bounds derived by [15] was the leveraging
of an important Markov-chain property of the distribution of the next-message
function of parties in the information theoretic setting. More specifically, the
next message sent by a party is solely a deterministic function of its current
view. Then, using the Markov chain property of protocols in the information
theoretic plain model, it is easy to conclude that if the views of both parties were
independent before protocol execution, they remain independent conditioned on
the public transcript m(n). For any private inputs x, x′ ∈ X and y, y′ ∈ Y, the
following protocol compatibility constraint can be obtained directly:

Pr[m(n)|x, y] · Pr[m(n)|x′, y′] = Pr[m(n)|x′, y] · Pr[m(n)|x, y′]

We begin with the observation that this constraint is not guaranteed a-priori
in the information theoretic random oracle world. Intuitively, the views of both
parties may be correlated via the common random oracle and not just the tran-
script. However, there are algorithms which query the random oracle polynomi-
ally many times to obtain independent views [23, 1, 5, 16, 27]. The state of the
art (where parties have private inputs) is due to [27], from where we import the
following theorem.

Imported Theorem 1 (Independence of Views in RO World [27]). Given
any two-party (`, n) protocol Π (where parties have private inputs), there ex-
ists a public query strategy Eveρ which performs at most poly(n`/ρ) queries
such that in the augmented protocol Π+:=(Π,Eveρ), with probability (1 − ρ)
over VE ∼ VE, we have: For all (x, y) ∈ X × Y, if Pr[x, y|VE ] > ρ, then
(VA,VB |VE , x, y) is ρ-close to product distribution, i.e.

∆ ((VA,VB |VE , x, y), (VA|VE , x)× (VB |VE , y)) 6 ρ

3.3 Impossibility in the RO World

Instead of a key agreement enabling oracle, if we just have a random oracle, it
suffices to show the following lemma:

Lemma 1 (Key Lemma for RO-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗ε ] and (positive) decreasing δ. If there

exists an (ε, δ)-IND-CDP α-accurate protocol for f in the information theoretic
random oracle world, then there exists a public query strategy Eveρ with query
complexity poly(n`/ρ), where ρ = σ2ε/ exp(2ε), such that in the augmented pro-
tocol Π+:=(Π,Eveρ), (at least) one of the following is true:



1. There exists (ŷ, ŷ′, x̂) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |x̂, ŷ] > exp(ε) · Pr[VE |x̂, ŷ′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).
2. There exists (x̂, x̂′, ŷ) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |ŷ, x̂] > exp(ε) · Pr[VE |ŷ, x̂′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).

Proof Overview: Let pVE
denote the probability of obtaining public transcript

VE over the sample space. Let pVE |x,y denote the probability of obtaining public
transcript VE from Π, when inputs of Alice and Bob are x ∈ X , y ∈ Y.

We first observe that if some input occurs with very low probability, then
ε-IND-CDP can be trivially broken. Therefore, we can directly invoke Imported
Theorem 1 such that Eveρ generates a close-to product distribution on the
views of both parties with high probability. This gives an approximate protocol
compatibility constraint on most transcripts.

Next, we observe that if the views of parties are nearly independent, then
with high probability, for any inputs x, x′ ∈ X and y, y′ ∈ Y the distributions
pVE |x,y · pVE |x′,y′ and pVE |x,y′ · pVE |x′,y must be close. We obtain the following
equation (refer full version for proof),

pVE |x,y · pVE |x′,y′ = pVE |x,y′ · pVE |x′,y ± 96ρp2VE

Next, using the differential privacy constraint we mimic the proof of Goyal et
al. [15] to obtain that for some transcript VE , for some adjacent (x, y, y′), there

are δ̂ = poly(σ) transcripts such that for δ′ = poly(σ):

pVE |x,y > λpVE |x,y′ + δ′pVE

Using averaging arguments, it is possible to show the existence of a tuple
(ŷ, ŷ′, x̂) or (x̂, x̂′, ŷ) satisfying the conditions of the lemma. ut

4 Separation from Key-agreement Protocols

For ε > 0 differential privacy parameter, suppose α ∈ [α
(f)
ε + 1/poly(κ), α∗ε ]. In

this section, we shall show that, for such choices of α, there exists an oracle rel-
ative to which public-key encryption exists but ε-IND-CDP α-accurate protocols
for boolean f do not exist. It suffices to show this result for f ∈ {AND,XOR}.
This is done by showing an impossibility result in the key agreement world
against information theoretic adversaries but with polynomially bounded query
complexity. However, we shall show existence of an adversary who can break the
ε-IND-CDP.

Note that public-key encryption is equivalent to 2-round key-agreement pro-
tocols and hence this separation translates into a separation of non-trivial (ε, δ)-
differentially private protocols for AND or XOR from (any round) key-agreement
protocols.



4.1 Notations and Definitions

We give some notation and definitions. These definitions were introduced in [28].

Oracle Classes

Image-testable Random Oracle Class. This is the set Oκ consisting of all possible
pairs of correlated oracles O ≡ (R, T ) of the form:

– R : {0, 1}κ → {0, 1}3κ which is a length-tripling (injective) random oracle.
– T : {0, 1}3κ → {0, 1} which is a test oracle defined by: T (β) = 1 if there

exists α ∈ {0, 1}κ such that R(α) = β; otherwise T (β) = 0.

The length of a query uniquely determines whether it is a query to the R
oracle (called R-query) or to the T oracle (called T -query).

Keyed version of Image-testable Random Oracle Class. Given a set K of keys,

consider oracle O
(K)

such that for every k ∈ K, O(k) ∈ Ok (the class of image-
testable random oracles). A query is parsed as 〈k, q〉, the answer to which is

O(k)(q). Let O(K)
k denote the set of all possible oracles O(K). Then, O(K)

k is the
keyed version of the class of image-testable random oracles.

Public Key Encryption Oracle Class. We define a class of “PKE-enabling” ora-
cles, from [28]. With access to this oracle, a semantically secure PKE scheme can
be readily constructed, yet we shall show that it does not give (ε, δ)-IND-CDP
protocols with any better than information theoretic accuracy. This oracle, called
PKEκ is a collection of oracles (Gen,Enc,Test1,Test2,Dec) defined as follows:

– Gen: A length-tripling injective random oracle {0, 1}κ → {0, 1}3κ that takes
as input a secret key sk and returns the corresponding public key pk, i.e.,
Gen(sk) = pk. A public key pk is valid only if it is in the range of Gen.

– Enc: A collection of keyed length-tripling injective random oracles, with keys
in {0, 1}3κ. For each pk ∈ {0, 1}3κ, the oracle implements a random injective
function {0, 1}κ → {0, 1}3κ. When queried on any (possibly invalid) random
public key pk, the oracle provides the corresponding ciphertext c ∈ {0, 1}3κ.

– Test1: This is a function that tests if a public key pk is valid, that is, it
returns 1 if and only if pk is in the range of Gen

– Test2: This is a function that tests if a public key and ciphertext pair is valid,
i.e., it returns 1 if and only if c is in the range of the Enc oracle keyed by pk.

– Dec: This is the decryption oracle, {0, 1}κ×{0, 1}3κ → {0, 1}κ ∪{⊥}, which
takes as input a secret key, ciphertext pair and returns the unique m, such
that Enc(Gen(sk),m) = c. If such an m does not exist, it returns ⊥.

We note that Enc produces ciphertexts for public key pk irrespective of
whether there exists sk satisfying Gen (sk) = pk. This is crucial because we
want the key set K to be defined independent of the Gen oracle.

We also note that PKEκ without Dec is exactly the same as the image-

testable random oracle O(K)
k , with K = {0, 1}3κ ∪ {⊥}. This fact will be used

very crucially in the sections that follow, where we compile out the Decryption

oracle and work with the resulting image-testable random oracle O(K)
k .



Our Setting. We will consider private-input randomized two party protocols Π,
such that Alice and Bob have access to a common oracle PKEκ. As in the plain
model, parties send messages to each other in alternate rounds, starting with
Alice in the first round. However, they have (private) access to a the common
PKEκ oracle consisting of (Gen,Enc,Test1,Test2,Dec).

The views with respect to the PKEκ oracle remain the same as views in the
random oracle world. Our underlying sample space in the random oracle world is
the joint distribution over Alice-Bob views when rA, rB ∼ U and PKEκ ∼ PKEκ.

We use the definition of (ε, δ)-IND-CDP protocols in the oracle world and
accuracy of protocols as introduced in previous section.

4.2 Compiling out the Decryption Oracle

Using the query techniques of [28], for any arbitrarily small γ, it is possible to
construct an (ε + γ, δ + γ) differentially private protocol with accuracy α − γ,

that uses only the family of image testable random oracles O(K)
k oracle from an

(ε, δ) differentially private protocol that uses the PKEk oracle.

Imported Theorem 2 (Decryption Queries are Useless [28]). Suppose Π
is an (`, n) (ε, δ)-differentially private α-accurate protocol for f in the PKEκ ora-
cle world. For every γ > 0, there exists a protocol Π ′ in the (Gen,Enc,Test1,Test2)
oracle world which is an (ε+ γ, δ + γ) differentially private (α − γ)-accurate
(poly(n`/γ), n) protocol for f .

4.3 Impossibility in ITRO World

Recall that the PKE-oracle without the decryption oracle is in fact a collection
of keyed image-testable random oracles, where the key-set is K = {0, 1}3κ∪{⊥}.
We import the following result of eavesdropper strategy:

Imported Theorem 3 (Independence of Views in ITRO World [28]).
For any key-set K and any (`, n) protocol Π (where parties have private inputs),
there exists a public query strategy Eveρ which performs at most poly(`/ρ) queries
such that in the augmented protocol Π+:=(Π,Eveρ), the following holds over
the views of Eveρ, when VE ∼ VE, with probability at least (1 − ρ): For all
(x, y) ∈ X × Y, if Pr[x, y|VE ] > ρ then (VA,VB |VE , x, y) is ρ-close to product
distribution, i.e.

∆ ((VA,VB |VE , x, y), (VA|VE , x)× (VB |VE , y)) 6 ρ

This gives us exactly the same independence characterization as Section 3.3,
and we can obtain the following Lemma for the ITRO world (analogously to the
random oracle world).

Lemma 2 (Key Lemma for ITRO-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗ε ] and (positive) decreasing δ. For any key-

set K, if there exists an (ε, δ)-IND-CDP α-accurate protocol for f in the image-
testable random oracle world with respect to key-set K, then there exists a public



query strategy Eveρ with query complexity poly(n`/ρ), where ρ = σ2ε/ exp(2ε),
such that in the augmented protocol Π+:=(Π,Eveρ), (at least) one of the follow-
ing is true:

1. There exists (ŷ, ŷ′, x̂) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |x̂, ŷ] > exp(ε) · Pr[VE |x̂, ŷ′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).
2. There exists (x̂, x̂′, ŷ) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |ŷ, x̂] > exp(ε) · Pr[VE |ŷ, x̂′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).

4.4 Impossibility in Key Agreement World

To prove Theorem 1, it suffices to show the following Lemma:

Lemma 3 (Key Lemma for KA-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗ε ] and (positive) decreasing δ. If there

exists an (ε, δ)-IND-CDP α-accurate protocol for f in the PKEκ world, then for
γ = σ3, the corresponding protocol Π ′ as defined in Imported Theorem 2 is an

(ε+ γ, δ + γ)-IND-CDP (α− γ)-accurate (poly(n`/γ), n) protocol in O(K)
k , where

K = {0, 1}3κ ∪ {⊥}. Then, there exists a public query strategy Eveρ with query
complexity poly(n`/γρ), where ρ = σ2ε/ exp(2ε), such that in the augmented
protocol Π ′+:=(Π ′,Eveρ), δ + γ > γ5/6.

Proof Overview: Note that we can use Imported Theorem 2 to compile any
given two-party (ε, δ)-IND-CDP (`, n) protocol Π in the key agreement world

with accuracy α > α
(AND)
ε +σ for the AND function (resp. α > α

(XOR)
ε +σ for the

XOR function), to an (ε + γ, δ + γ)-IND-CDP (`, n) protocol Π ′ with accuracy
(α− γ) in the ITRO world (which closely mimics the RO world).

In fact, while moving from the key agreement to the ITRO world, there is
a γ-loss in protocol accuracy and a corresponding (say γ′) increase in maximal
achievable accuracy. These parameters can be carefully tied to σ such that setting
γ + γ′ = σ6, helps obtain δ + γ > γ5/6, thereby giving δ = poly(σ) transcripts
violating the differential privacy constraint.

In fact, we can show (refer full version) that if σ = 1/poly(κ), it is possible to
construct an adversary that breaks (ε+γ)-IND-CDP of the (ε+γ, δ+γ)-IND-CDP
(`, n) protocol Π ′ in the ITRO world, with accuracy (α− γ) according to Defi-
nition 2. This gives a contradiction and completes the proof. ut
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