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Léo Ducas?, Vadim Lyubashevsky??, and Thomas Prest? ? ?

Abstract. Efficient implementations of lattice-based cryptographic sche-
mes have been limited to only the most basic primitives like encryption
and digital signatures. The main reason for this limitation is that at
the core of many advanced lattice primitives is a trapdoor sampling al-
gorithm (Gentry, Peikert, Vaikuntanathan, STOC 2008) that produced
outputs that were too long for practical applications. In this work, we
show that using a particular distribution over NTRU lattices can make
GPV-based schemes suitable for practice. More concretely, we present
the first lattice-based IBE scheme with practical parameters – key and
ciphertext sizes are between two and four kilobytes, and all encryp-
tion and decryption operations take approximately one millisecond on
a moderately-powered laptop. As a by-product, we also obtain digital
signature schemes which are shorter than the previously most-compact
ones of Ducas, Durmus, Lepoint, and Lyubashevsky from Crypto 2013.
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1 Introduction

Recent improvements in efficiency have firmly established lattice-based cryptog-
raphy as one of the leading candidates to replace number-theoretic cryptography
after the eventual coming of quantum computing. There are currently lattice-
based encryption [HPS98,LPR13a,LPR13b], identification [Lyu12], and digital
signature schemes [GLP12,DDLL13] that have run-times (both in software and
in hardware), key sizes, and output lengths that are more or less on par with
traditional number-theoretic schemes. But unfortunately, the extent of practi-
cal lattice-based cryptography stops here. While number-theoretic assumptions
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allow for very efficient constructions of advanced schemes like identity-based en-
cryption [BF01], group signatures [CS97,BBS04], etc. none of these schemes yet
have practical lattice-based realizations.

One of the major breakthroughs in lattice cryptography was the work of
Gentry, Peikert, and Vaikuntanathan [GPV08], that showed how to use a short
trap-door basis to generate short lattice vectors without revealing the trap-door.1

In [GPV08], this was used to give the first lattice-based construction of secure
hash-and-sign digital signatures and identity-based encryption schemes. This
vector-sampling algorithm has since become a key component in many other
lattice constructions, ranging from hierarchical IBEs [CHKP12,ABB10] to the
recent breakthrough in multi-linear map constructions [GGH13]. Unfortunately,
even when using improved trap-doors [AP11,MP12] and instantiating with ideal
lattices [LPR13a], signature schemes that used the GPV trap-door approach
were far less practical (by about two orders of magnitude) than the Fiat-Shamir
ones [GLP12,DDLL13], and identity-based encryption had ciphertexts that were
even longer - having ciphertexts on the order of millions of bits.2

1.1 Our results

Our main result is showing that the GPV sampling procedure can in fact be used
as a basis for practical lattice cryptography. The two main insights in our work
are that one can instantiate the GPV algorithm using a particular distribution of
NTRU lattices that have nearly-optimal trapdoor lengths, and that a particular
parameter in the GPV algorithm can be relaxed, which results in shorter vectors
being output with no loss in security. As our main applications, we propose
identity-based encryption schemes that have ciphertext (and key) sizes of two
and four kilobytes (for approximately 80-bit and 192-bit security, respectively)
and digital signatures that have outputs (and keys) of approximately 5120 bits
for about 192-bits of security. We believe that this firmly places GPV-based
cryptographic schemes into the realm of practicality. The IBE outputs are orders
of magnitude smaller than previous instantiations and the signature sizes are
smaller by about a factor of 1.3 than in the previously shortest lattice-based
scheme based on the same assumption [DDLL13].

Our schemes, like all other practical lattice-based ones, work over the poly-
nomial ring Zq[x]/(xN + 1), where N is a power of 2 and q is a prime congruent
to 1 mod 2N . For such a choice of q, the polynomial xN + 1 splits into N linear
factors over Zq, which greatly increases the efficiency of multiplication over the
ring. Our hardness assumption is related to the hardness, in the random oracle
model, of solving lattice problems over NTRU lattices. These assumptions under-
lie the NTRU encryption scheme [HPS98], the NTRU-based fully-homomorphic
encryption scheme [LTV12], and the recent signature scheme BLISS [DDLL13].

1 A very similar algorithm was earlier proposed by Klein [Kle00], but was utilized in
a different context and was not fully analyzed.

2 The only works that we are aware of that give actual parameters for candidate
constructions that use trapdoor sampling are [MP12,RS10].
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Table 1. Comparing our IBE (GPV) with a recent implementation [Gui13] of the
Boneh-Franklin scheme (BF). Our implementation was done in C++, using the NTL

and GnuMP libraries. Timings were performed on an Intel Core i5-3210M laptop with
a 2.5GHz CPU and 6GB RAM. The complete implementation can be found on
github.com/tprest/Lattice-IBE/.

Scheme GPV-80 GPV-192 BF-128 BF-192

User Secret key size 11 kbits 27 kbits 0.25 kbits 0.62 kbits
Ciphertext size 13 kbits 30 kbits 3 kbits 15 kbits

User Key Generation 8.6 ms 32.7 ms 0.55 ms 3.44 ms
Encryption 0.91 ms 1.87 ms 7.51 ms 40.3 ms
Decryption 0.62 ms 1.27 ms 5.05 ms 34.2 ms

Table 2. IBE scheme parameters (see Section 5).

Security parameter λ 80 192
Root Hermite factor [GN08] γ 1.0075 1.0044

Polynomial degree N 512 1024
Modulus q ≈ 223 ≈ 227

User Public key size 13 Kbits 30 Kbits
User Secret key size 11 Kbits 27 Kbits

Ciphertext size 13 Kbits 30 Kbits
Ciphertext expansion factor 26 30

And even though this assumption is not related to the hardness of worst-case lat-
tice problems via some worst-case to average-case reduction3, in the fifteen years
that the assumption has been around, there were no serious cryptanalytic threats
against it. The work of [DDLL13] also provided experimental evidence that the
computational complexity of finding short vectors in these special NTRU lattices
was consistent with the extensive experiments of Gama and Nguyen on more gen-
eral classes of lattices [GN08], some of which are connected to the hardness of
worst-case lattice problems.

We implemented our schemes in software (see Table 1), and most of the
algorithms are very efficient. The slowest one is user key generation, but this
procedure is not performed often. More important is the underlying encryption
scheme, which in our case is the Ring-LWE scheme from [LPR13a,LPR13b],
which already has rather fast hardware implementations [PG13]. And as can be
seen from the tables, decryption and encryption are very fast in software as well
and compare very favorably to state-of-the-art implementations of pairing-based
constructions.

3 The work of [SS11] showed a connection between problems on NTRU lattices and
worst-case problems, but for choices of parameters that do not lead to practical
instantiations.



4 Léo Ducas, Vadim Lyubashevsky, and Thomas Prest

1.2 Related Work

Following the seminal work of [GPV08], there were attempts to improve sev-
eral aspects of the algorithm. There were improved trap-doors [AP11], more
efficient trap-door sampling algorithms [Pei10,MP12], and an NTRU signature
scheme proposal [SS13]. All these papers, however, only considered parameters
that preserved a security proof to lattice problems that were known to have an
average-case to worst-case connection. To the best of our knowledge, our work
is the first that successfully utilizes GPV trapdoor sampling in practice.

1.3 Identity-Based Encryption Scheme

In a public-key IBE scheme, the public key of every user in the system is a combi-
nation of the master authority’s public key along with an evaluation of a publicly-
computable function on the user’s name or i.d.. The secret key of each user is
then derived by the master authority by using his master secret key. We now
give a brief description of the IBE in this paper, which is built by using the GPV
algorithm to derive the user’s secret keys from an NTRU lattice [GPV08,SS13],
and then using the Ring-LWE encryption scheme of [LPR13a,LPR13b] for the
encryption scheme.

The master public key in the scheme will be a polynomial h and the secret
key will consist of a “nice basis” for the 2N -dimensional lattice generated by the

rows of Ah,q =

(
−A(h) IN
qIN ON

)
, where A(h) is the anti-circulant matrix whose ith

row consists of the coefficients of the polynomial hxi mod xN + 1 (see Definition
1). A user with identity id will have a public key consisting of h as well as t =
H(id), where H is some publicly-known cryptographic hash function mapping
into Zq[x]/(xN + 1). The user’s secret key will consist of a small polynomial s2

such that s1 +s2h = t, where s1 is another small polynomial (how one generates
these keys is explicited in Alg. 3 in Section 5). Encryption and decryption will
proceed as in the Ring-LWE scheme of [LPR13a]. To encrypt a message m ∈
Z[x]/(xN + 1) with binary coefficients, the sender chooses polynomials r, e1, e2

with small coefficients and sends the ciphertext

(u = rh+ e1, v = rt+ e2 + bq/2cm).4

To decrypt, the receiver computes v − us2 = rs1 + e2 + bq/2cm − s2e1. If the
parameters are properly set, then the polynomial rs1 + e2− s2e1 will have small
coefficients (with respect to q), and so the coordinates in which m is 0 will be
small, whereas the coordinates in which it is 1 will be close to q/2. Notice that
for decryption, it is crucial for the polynomial rs1 + e2 − s2e1 to have small
coefficients, which requires s1 and s2 to be as small as possible.

While the above follows the usual encryption techniques based on LWE, we
need a little tweak to make the security proof based on KL-divergence work

4 In fact, one can save almost a factor of 2 in the ciphertext length by only sending
the three highest order bits of v, rather than all of v
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Table 3. Signature scheme parameters (see Section 5).

Security parameter λ 80 192
Root Hermite factor γ 1.0069 1.0042

Polynomial degree N 256 512
Modulus q ≈ 210 ≈ 210

Public key size 2560 bits 5120 bits
Secret key size 1280 bits 2048 bits
Signature size 2560 bits 5120 bits

Signature time 8.6 ms 32.7 ms
Verification time 0.62 ms 1.27 ms

(see Section 4), since this argument only applies to search problems (while CPA
security is a decisional problem). To do so we use a key-encapsulation mechanism,
that is we encrypt a random key k rather than m, and then use it as a one-time-
pad to send m⊕H ′(k) where H ′ is a hash function.

1.4 Interlude: A Hash-and-Sign Digital Signature Scheme

The first part of the above IBE is actually a hash-and-sign digital signature
scheme. The public (verification) key corresponds to the master authority’s pub-
lic key, the secret (signing) key is the master secret key, messages correspond
to user i.d.’s, and signatures are the user secret keys. To sign a message m,
the signer uses his secret key to compute short polynomials s1, s2 such that
s1 + s2h = H(m), and transmits s2. The verifier simply checks that s2 and
H(m)−hs2 are small polynomials. In the IBE, the modulus q is set deliberately
large to avoid decryption errors, but this is not an issue in the signature scheme.
By selecting a much smaller q, which allows one to sample from a tighter distri-
bution, the signature size can be made more compact than the user secret key
size in the IBE.

In Table 3, we present some possible parameters for such signature schemes.
The size of the keys and signatures compare very favorably to those of the
BLISS signature scheme [DDLL13]. For example, for the 192 bit security level,
the signature size in BLISS is approximately 6500 bits, whereas signatures in this
paper are approximately 5000 bits. In fact, further improvements to the signature
size may be possible via similar techniques that were used for BLISS. The main
drawback of the hash-and-sign signature scheme is that signing requires sampling
a discrete Gaussian over a lattice, whereas the Fiat-Shamir based BLISS scheme
only required Gaussian sampling over the integers. At this point, the signature
scheme in this paper yields smaller signatures but BLISS is much faster. Since
both BLISS and this current proposal are very new, we believe that there are
still a lot of improvements left in both constructions.

1.5 Techniques and Paper Organization

The main obstacle in making the above schemes practical is outputting short
s1, s2 such that s1 +s2h = t while hiding the trap-door that allows for this gener-
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ation. [GPV08] provided an algorithm where the length of s1, s2 crucially depend
on the length of the Gram-Schmidt orthogonalized vectors in the trap-door ba-
sis of the public lattice. In Section 3 we show, by experimental evidence backed
up by a heuristic argument, that there exist distributions of NTRU lattices that
have trap-doors whose lengths are within a small factor of optimal. Once we have
such short trap-doors (which correspond to the master secret key in the IBE),
we can use the GPV algorithm to sample s1, s2 such that s1 + s2h = t. In order
for (s1, s2) to reveal nothing about the trap-door, it’s important that s1, s2 come
from a distribution such that seeing (h, s1, s2, t) does not reveal whether s1, s2

were generated first and then t was computed as s1 + hs2 = t, or whether t was
first chosen at random and then s1, s2 were computed using the GPV sampler.

To prove this, [GPV08] showed that the distribution of s1, s2 produced by
their sampler is statistically-close to some trapdoor-independent distribution. In
Section 4, we show that the requirement of statistical closeness can be relaxed,
and we can instead use Kullback-Leibler divergence to obtain shorter secret keys.
The intuition behind using KL-divergence can be described by the following ex-
ample. If Bc denotes a Bernoulli variable with probability c on 1, then trying to
distinguish with constant probability B1/2+ε/2 from B1/2 requires O(1/ε2) sam-
ples. Therefore if there is no adversary who can forge in time less than t (for
some t > 1/ε2) on a signature scheme where some parameter comes from the
distribution B1/2, then we can conclude that no adversary can forge in time
less than approximately 1/ε2 if that same variable were distributed according to
B1/2+ε/2. This is because a successful forger is also clearly a distinguisher be-
tween the two distributions (since forgeries can be checked), but no distinguisher
can work in time less than 1/ε2. On the other hand, distinguishing Bε from B0

requires only O(1/ε) samples. And so if there is a time t forger against a scheme
using B0, all one can say about a forger against the scheme using Bε is that he
cannot succeed in time less than 1/ε. In both cases, however, we have statisti-
cal distance ε between the two distributions. In this regard, statistical distance
based arguments are not tight; but the KL-divergence is finer grained and can
give tighter proofs. Indeed, in the first case, we can set 1/ε to be the square
root of our security parameter, whereas in the second case, 1/ε would have to be
the security parameter. In Section 4, we show that the GPV algorithm produces
samples in a way that allows us to work with parameters for which the inverse
of the statistical distance is the square root of the security parameter, whereas
previous work required it to be the security parameter itself.

1.6 Conclusions and Open Problems

Trapdoor sampling is at the heart of many “advanced” lattice constructions, yet
it has not been previously considered to be viable in practice. In this paper, we
showed that with a proper distribution on the trap-door as well as analyzing
the outputs using KL divergence instead of statistical distance, one can have
schemes that are rather efficient and have their security based on the hardness
of lattice problems over NTRU lattices. We believe that this opens the door to
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further practical implementations of lattice primitives having the GPV trap-door
sampling algorithm at their core.

Our work used a distribution over NTRU lattices that is somewhat new –
rather than having very short vectors, our secret key has vectors with a small
Gram-Schmidt maximum. It is unclear how this compares in terms of dificulty
to the hardness of lattice problems under the ”standard” NTRU distribution.
On the one hand, the vectors in our secret key are longer, but on the other hand,
our secret key is more ”orthogonal”. General lattice algorithms (such as BKZ)
don’t seem to exploit this feature, but it is an interesting open problem whether
other techniques could be used for improved cryptanalysis of our schemes.

2 Preliminaries

2.1 The Ring Z[x]/(xN + 1)

For the rest of the paper, N will be a power-of-two integer. We will work in the

ring R ∆
= Z[x]/(xN + 1) (and occasionally R′ ∆= Q[x]/(xN + 1)). Among other

useful properties, xN + 1 is irreducible, so R′ is a cyclotomic field.
We clarify a few notations. Let f =

∑N−1
i=0 fix

i and g =
∑N−1
i=0 gix

i be polyno-
mials in Q[x].

– fg denotes polynomial multiplication in Q[x], while f∗g ∆
= fg mod (xN+1).

– (f) is the vector whose coefficients are f0, ..., fN−1. (f, g) ∈ R2N is the con-
catenation of (f) and (g).

– bfe is the coefficient-wise rounding of f . The same notation applies for vec-
tors.

2.2 Anticirculant matrices

Definition 1 (Anticirculant matrix). An N -dimensional anticirculant ma-
trix of f is the following Toeplitz matrix:

AN (f) =


f0 f1 f2

. . . fN−1

−fN−1 f0 f1

. . . fN−2

. . .
. . .

. . .
. . .

. . .

−f1 −f2

. . .
. . . f0

 =


(f)

(x ∗ f)
...

(xN−1 ∗ f)



When it is clear from context, we will drop the subscript N , and just write
A(f). Anticirculant matrices verify this useful property:

Lemma 1. Let f, g ∈ R. Then AN (f) + AN (g) = AN (f + g), and AN (f) ×
AN (g) = AN (f ∗ g).



8 Léo Ducas, Vadim Lyubashevsky, and Thomas Prest

2.3 Gaussian Sampling

Gaussian sampling was introduced in [GPV08] as a technique to use a short
basis as a trap-door without leaking any information about the short basis; in
particular it provably prevents any attack in the lines of [NR06,DN12b] designed
against the NTRUSign scheme. The discrete distribution is defined as follows.

Definition 2 (Discrete Gaussians). The n-dimensional Gaussian function
ρσ,c : Rn → (0, 1] is defined by:

ρσ,c(x)
∆
= exp

(
−‖x− c‖2

2σ2

)
For any lattice Λ ⊂ Rn, ρσ,c(Λ)

∆
=
∑

x∈Λ ρσ,c(x). Normalizing ρσ,c(x) by ρσ,c(Λ),
we obtain the probability mass function of the discrete Gaussian distribution
DΛ,σ,c.

Using an algorithm inspired by Klein [Kle00], Gentry et al. [GPV08] showed
that it was possible to sample vectors according to this discrete Gaussian dis-
tribution using a short basis B of the lattice Λ. There is a requirement on the
width of the Gaussian σ related to the so called smoothing parameter. In sec-
tion 4 we detail this sampler and show, using KL-divergence that the condition
on the width σ can be reduced by a factor

√
2.

2.4 Hardness Assumptions

We can base the hardness of our IBE scheme on two assumptions that have
been previously used in the literature. The first assumption deals with NTRU
lattices and states that if we take two random small polynomials f, g ∈ Rq, their
quotient g/f is indistinguishable from random in Rq. This assumption was first
formally stated in [LTV12], but it has been studied since the introduction of
the NTRU cryptosystem [HPS98] in its computational form (i.e. recovering the
polynomials f and g from h). Despite more than fifteen years of cryptanalytic
effort, there has not been any significant algorithmic progress towards solving
either the search or decision version of this problem. As a side note, Stehle and
Steinfeld [SS11] showed that for large enough f and g generated from a discrete
Gaussian distribution, the quotient g/f is actually uniform in Rq. Thus if one
were to use larger polynomials, the NTRU assumption would be unnecessary.
Using smaller polynomials, however, results in much more efficient schemes.

The other assumption we will be using is the Ring-LWE assumption [LPR13a]
stating that the distribution of (hi, his+ ei), where hi is random in Rq and s, ei
are small polynomials, is indistinguishable from uniform. When the number of
such samples given is polynomial (with respect to the degree of s), the coefficients
of ei cannot be too small [AG11], however, if we only give one or two samples (as
is done for Ring-LWE encryption), there have been no specific attacks found if
the coefficients of s, e1, e2 are taken from a very small set like {−1, 0, 1}. In our
work, we choose to sample them from such a small set, but the scheme can be
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changed to sample from any other slightly larger set at the expense of slightly
increasing the size of the modulus. For the concrete parameter choices, we will be
using the standard methods of Gama and Nguyen [GN08] based on the currently
most efficient lattice reduction algorithms [CN11].

3 Optimizing the Master Key Generation

One of the most important parameters in the scheme is the Master Secret Key:
its size impacts the speed of the computations and, more importantly, the size
of the users’ secret keys. The smaller these secret keys will be, the more secure
and efficient the scheme is (with the additional advantage that these keys can be
sent more easily). While our scheme can be instantiated in any ring lattice, we
choose to work in the family of NTRU lattices because the Gram-Schmidt norm
of some bases are both small and easy to compute. In the end, this is what will
determine the size of the users’ secret keys.

3.1 The NTRU Lattices

Definition 3 (NTRU lattices). Let N be a power-of-two integer, q a positive
integer, and f, g ∈ R. Let h = g ∗ f−1 mod q. The NTRU lattice associated to
h and q is

Λh,q = {(u, v) ∈ R2|u+ v ∗ h = 0 mod q}

Λh,q is a full-rank lattice of Z2N generated by the rows of Ah,q =

(
−AN (h) IN
qIN ON

)
.

This basis is storage-efficient since it is uniquely defined by a single polynomial
h ∈ Rq, however it proves to be a poor choice if one wants to perform standard
lattice operations. Assuming h is uniformly distributed in Rq, Ah,q has a very
large orthogonal defect.

This makes this basis not very appropriate for solving usual lattice problems
such as finding the closest lattice vector to a target point. However, as explained
in [HHGP+03], another basis can be found by computing F,G ∈ R such that:

f ∗G− g ∗ F = q (1)

Finding such (F,G) can be achieved efficiently and we describe one way (which is
not new) of doing it in Section 5. A short basis is then provided by the following
proposition.

Proposition 1. Let f, g, F,G ∈ R verifying (1) and h = g ∗ f−1 mod q. Then

Ah,q =

(
−A(h) IN
qIN ON

)
and Bf,g =

(
A(g) −A(f)
A(G) −A(F )

)
generate the same lattice.

Proof. Consider P = Ah,q ×B−1
f,g the change-of-basis matrix between Ah,q and

Bf,g. One can check that qP = O2N mod q, so P ∈ Z2N×2N . Also, |det(P)| = 1
so P−1 ∈ Z2N×2N . We can conclude that Ah,q and Bf,g both generate the same
lattice. ut
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Definition 4 (Gram-Schmidt norm [GPV08]). Let B = (bi)i∈I be a fi-
nite basis, and B̃ = (b̃i)i∈I be its Gram-Schmidt orthogonalization. The Gram-
Schmidt norm of B is the value

‖B̃‖ = max
i∈I
‖b̃i‖

An interesting property of NTRU lattices is related to the Gram-Schmidt
norm of their bases: they can be small and can be computed quickly. These two
facts and their benefits for our scheme are discussed in the following subsection.

3.2 Bounding the Gram-Schmidt norm

The lattice over which we do Gaussian sampling is Λh,q, and the size of the

secret keys we sample will be proportional to ‖B̃‖, where B is the basis of Λh,q
used in the Gaussian sampler. It is very important then that the Gram-Schmidt
norm ‖B̃‖ of B is as small as possible.
Proposition 1 tells us that Bf,g is a basis of Λh,q. The second step is to compute

its Gram-Schmidt norm ‖B̃f,g‖. For general lattices, this is done by applying
the Gram-Schmidt process to the basis and computing the maximum length of
the resulting vectors. In the case of NTRU lattices, however, Lemmas 2 and 3
allow to compute ‖B̃f,g‖ much faster, in time O(N log(N)) instead of O(N3).

Lemma 2. Let Bf,g be as defined in Proposition 1, and b1, ...,b2N be the row

vectors of Bf,g. Then ‖B̃f,g‖ = max{‖b̃1‖, ‖b̃N+1‖}

Proof. For V a subspace of R2N and b ∈ R2N , let us denote ProjV(b) the
orthogonal projection of b over V. We also call r the linear isometry (f, g) 7→
(x∗ f, x∗ g) (see the notations from Subsection 2.1), so that for any i 6 N , bi =
ri−1(b1) and bN+i = ri−1(bN+1). Let Vi = Span(b1, ...,bi)

⊥. By definition of
the Gram-Schmidt orthogonalization, for any i ∈ J1, 2NK, b̃i = ProjVi−1

(bi).
Moreover, one can check the two following properties :
– ‖ProjV(b)‖ 6 ‖b‖
– V ⊆W⇒ ‖ProjV(b)‖ 6 ‖ProjW(b)‖

From the first property comes the fact that for any i ∈ J1, NK, ‖b̃i‖ 6 ‖b1‖ =

‖b̃1‖. Proving ‖b̃N+i‖ 6 ‖b̃N+1‖ is a bit trickier. Since Span(b1, ...bN ) is stable
by r, so is VN . One can check that ProjVN

(bN+i) = ri−1(ProjVN
(bN+1)). Now

VN+i−1 ⊆ VN , so :
‖b̃N+i‖ = ‖ProjVN+i−1

(bN+i)‖ 6 ‖ProjVN (bN+i)‖ = ‖ProjVN (bN+1)‖ = ‖b̃N+1‖
Which concludes this proof. ut

Figure 1 illustrates the result of Lemma 2. Before the reduction, all the vectors
of each semi-basis are of the same size, but after the reduction, the largest vector
of B̃f,g is either b̃1 or b̃N+1.

Instead of computing 2N values ‖b̃1‖, ..., ‖b̃2N‖, there is now only two of
them to compute. We already know that ‖b̃1‖ = ‖b1‖, and we introduce a
notation which will provide us an expression for ‖b̃N+1‖.



Efficient Identity-Based Encryption over NTRU Lattices 11

0

√
q

2
√
q

3
√
q

4
√
q

5
√
q

6
√
q

7
√
q

0 N 2N

N=512, q=224

‖bi‖
‖b̃i‖

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦

0

√
q

2
√
q

4
√
q

6
√
q

8
√
q

10
√
q

0 N 2N

N=1024, q=226

‖bi‖
‖b̃i‖

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦

Fig. 1. Size of the vectors of B̃f,g before and after Gram-Schmidt reduction

Definition 5. Let f ∈ R′. We denote f̄ the unique polynomial in R′ such that
A(f)t = A(f̄). If f(x) =

∑N−1
i=0 fix

i, then f̄(x) = f0 −
∑N−1
i=1 fN−ix

i

This notation is only needed in the master key generation, to compute the Gram-
Schmidt norm of the basis as well as reducing (G,−F ) modulo (g,−f). The
following lemma gives an exact expression for ‖b̃N+1‖.

Lemma 3. ‖b̃N+1‖ =
∥∥∥( qf̄

f∗f̄+g∗ḡ ,
qḡ

f∗f̄+g∗ḡ

)∥∥∥
Proof. Let k = f̄∗F+ḡ∗G

f∗f̄+g∗ḡ mod (xN + 1) and write k(x) =
∑N−1
i=0 kix

i. Then

c
∆
= bN+1−

N−1∑
i=0

kibi+1 = (G,−F )−(k∗g,−k∗f) =

(
qf̄

f ∗ f̄ + g ∗ ḡ
,

qḡ

f ∗ f̄ + g ∗ ḡ

)
is orthogonal to Span(b1, ...,bN ). By the uniqueness of the Gram-Schmidt de-
composition, c = b̃N+1 and the result follows. ut

This enables us to compute ‖B̃f,g‖ only from (f, g), gaining some time when
generating the Master Key. Knowing (f, g) is enough to know almost instantly
whether the basis B̃f,g will be a good one for Gaussian sampling. After deriving

this formula for ‖B̃f,g‖, we ran experiments to compute it for different values of
N, q and initial vector b1.

For fixed values of ‖b1‖ and q, experiments show no correlation between the
dimension N and ‖B̃f,g‖. Moreover, they suggest that ‖b̃N+1‖ is actually pretty
close to its lower bound q/‖b1‖ (see Lemma 4 for the proof of this bound).
Both experiments and a heuristic indicate that the optimal choice for ‖b1‖ is
‖b1‖ ≈

√
qe
2 , since we then get ‖b̃N+1‖ ≈ ‖b̃1‖. And so in our experiments, we

sample b1 with a norm slightly bigger than
√

qe
2 ≈ 1.1658

√
q. The heuristic can

be found in the full version of this paper.
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√
q

0
√
q 2

√
q

Norm of b1

N = 512, q = 1048576

‖b̃1‖
q/‖b1‖

◦

◦

◦
◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
‖b̃N+1‖

√
q

√
q

√
qe/2

Norm of b1

N = 512, q = 1048576

‖b̃1‖
q/‖b1‖

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
‖b̃N+1‖

Fig. 2. Values of candidates ‖b̃N+1‖ and ‖b̃1‖ for ‖B̃f,g‖, with N = 512, q = 220.
q/‖b1‖ is the lower bound for ‖b̃N+1‖ given in Lemma 4.

The following lemma provides a theoretical lower bound for ‖b̃N+1‖, given
q and ‖b1‖. In our case, ‖b̃N+1‖ is very close to its lover bound.

Lemma 4. Let B = (bi)16i62N be a NTRU basis. ‖b̃N+1‖ admits the following

lower bound: ‖b̃N+1‖ > q/‖b1‖.

Proof. We have |det(Bf,g)| = |det(B̃f,g)| =
N∏
i=1

‖b̃i‖. We know that |det(Bf,g)| =

qN and that for any k in J1;NK, ‖b̃i‖ 6 ‖b̃1‖ and ‖b̃N+i‖ 6 ‖b̃N+1‖. So
qN 6 ‖b1‖N‖b̃N+1‖N . ut

With the results of these experiments, we can now design an efficient Master
Key Generator found in Section 5.

4 Optimizing the User Key Generation

Many arguments in lattice based cryptography are driven by a smoothing condi-
tion, that is that the parameter σ of some Gaussian is greater than the smoothing
parameter. We recall that DΛ,σ,c is defined in Definition 2.

Definition 6 (Smoothing parameter [MR07]). For any n-dimensional lat-
tice Λ and real ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such
that ρ1/s

√
2π,0(Λ∗ \ 0) 6 ε. We also define a scaled version η′ε(Λ) = 1√

2π
ηε(Λ).

This is in particular the case for the correctness of the sampling algorithm
of [GPV08]: it is correct up to negligible statistical distance for any choice of
s = ω(

√
log n) · ‖B̃‖. A concrete sufficient condition to ensure λ-bits of security

was computed in [DN12a]
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Theorem 1 (Theorem 1 of [DN12a], Concrete version of [GPV08, Th.
4.1]). Let n, λ be any positive integers, and ε = 2−λ/(2n). For any basis B ∈
Zn×n, and for any target vector c ∈ Z1×n, Alg. 1 is such that the statistical
distance ∆(DΛ(B),σ,c, Gaussian Sampler(B, σ, c)) is less than 2−λ, provided:

σ ≥ ‖B̃‖ · η′ε(Z) where η′ε(Z) ≈ 1

π
·

√
1

2
ln

(
2 +

2

ε

)
.

Algorithm 1 Gaussian Sampler(B, σ, c)

Require: Basis B of a n-dimensional lattice Λ, standard deviation σ > 0, center
c ∈ Zn

Ensure: v sampled in DΛ,σ,c
1: vn ← 0
2: cn ← c
3: for i← n, ..., 1 do
4: c′i ← 〈ci, b̃i〉/‖b̃i‖2
5: σ′i ← σ/‖b̃i‖
6: zi ← SampleZ(σ′i, c

′
i)

7: ci−1 ← ci − zibi and vi−1 ← vi + zibi
8: end for
9: return v0

The sub-algorithm SampleZ(σ′, c′) samples a 1-dimensional Gaussian DZ,σ′,c′ . This can
be achieved in various ways: rejection sampling, look-up tables, etc. For our imple-
mentation, we chose an hybrid method using the discrete Gaussian sampling from
[DDLL13] and “standard” rejection sampling.

Fig. 3. Description of Klein-GPV Gaussian Sampler

In this section, we sketch why the condition ε = 2−λ/(4N) can be relaxed to

ε ≤ 2−λ/2/(4
√

2N);

asymptotically square-rooting the minimal value of ε; this impacts the value of
η′ε(Z) by a factor

√
2, that is one can use the same algorithm with a standard

deviation σ shorter by a factor
√

2. To do so we rely on a finer grained mea-
sure of “distance”5 between distributions, called Kullback-Leibler Divergence
(or KL Divergence). Interestingly, this common notion from information theory,
has to our knowledge been used in cryptography only in the context of symmet-
ric key cryptanalysis [Vau03]. The use of KL Divergence recently found similar
application in lattice based Cryptography, namely for an enhanced implementa-
tion [PDG14] of Bliss [DDLL13]. It is defined as follows:

5 Technically it is not a distance: it is neither symmetric nor does it verifies the triangle
inequality.
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Definition 7 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the support of P. The
Kullback-Leibler Divergence, noted DKL of Q from P is defined as:

DKL(P‖Q) =
∑
i∈S

ln

(
P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

For complements the reader can refer to [CT91]. We only require two essential
properties, additivity: DKL(P0 × P1‖Q0 ×Q1) = DKL(P0‖Q0) + DKL(P1‖Q1),
and the data processing inequality: DKL(f(P)‖f(Q)) ≤ DKL(P‖Q)).

Lemma 5 (Bounding Success Probability Variations [PDG14]). Let EP
be an algorithm making at most q queries to an oracle sampling from a dis-
tribution P and outputting a bit. Let ε ≥ 0, Q be a distribution such that
DKL(P‖Q) ≤ ε, and x (resp. y) denote the probability that EP (resp. EQ) outputs
1. Then,

|x− y| ≤ 1√
2

√
qε.

Concrete security. This lemma lets us conclude that if a scheme is λ-bit secure
with access to a perfect oracle for distribution P, then it is also about λ-bit
secure with oracle access to Q if DKL(P‖Q) ≤ 2−λ.

To argue concrete security according to Lemma 5, consider a search problem
SP using oracle access to a distribution P, and assume it is not λ-bit hard; that
is there exists an attacker A that solve SP with probability p and has running
time less than 2λ/p; equivalently (repeating the attack until success) there exists
an algorithm A′ that solves SP in time ≈ 2λ with probability at least 3/4. Such
algorithms make q ≤ 2λ queries to P. If DKL(P‖Q) ≤ 2−λ, Lemma 5 ensures
us that the success of A′ against SQ will be at least 1/4; in other word if SQ is
λ-bit secure, SP is also about λ-bit secure.

Note that this applies to search problems only, therefore, it is unclear if
it could be directly applied to any CPA scheme: CPA security is a decisional
problem, not a search problem. Yet our IBE design makes this argument valid:
we designed encryption using key-encapsulation mechanism, the random key k
being fed into a hash function H ′ to one-time-pad the message. Modeling H ′ as
a random oracle, one easily proves that breaking CPA security with advantage
p is as hard as recovering k with probability p; which is a search problem. ut

The point is that the KL Divergence is in some cases much smaller than statisti-
cal distance; and it will indeed be the case for Klein sampling as used in [GPV08]
and described in Fig. 3.

Theorem 2 (KL Divergence of the Gaussian Sampler). For any ε ∈
(0, 1/4n), if σ > η′ε(Z) · ‖B̃‖ then the KL Divergence between DΛ(B),c,σ and the

output of Gaussian Sampler(B, σ, c) is bounded by 2
(

1−
(

1+ε
1−ε

)n)2

≈ 8n2ε2.
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Proof. The probability that Klein’s algorithm outputs x = x̃ on inputs σ,B, c
is proportional to

n∏
i=1

1

ρσi,c′i(Z)
· ρσ,c(x̃)

for σi = σ/‖b̃i‖ and some c′i ∈ R that depends on c and B. as detailed
in [GPV08]. By assumption, σi ≥ ηε(Z), therefore ρσi,c′i(Z) ∈ [ 1−ε

1+ε , 1] · ρσi(Z)
(see [MR07, Lemma 4.4]). The relative error to the desired distribution (propor-

tional to ρσ,c(x̃)) is therefore bounded by 1 −
(

1+ε
1−ε

)n
; we can conclude using

Lemma 2 from [PDG14]. ut

This last theorem implies that the condition ε ≤ 2−λ

4N of [DN12a] can be

relaxed to ε ≤ 2−λ/2

4
√

2N
which conclude this section.

5 The Schemes and their Security Analysis

5.1 The IBE Scheme

We recall that an IBE scheme is composed of four algorithms: Master Keygen,
which generates the Master Keys, Extract, which uses the Master Secret Key
to generate users’ secret keys for any identity, Encrypt, which allows anybody
to encrypt a message for an user given the Master Public Key and the user’s
identity, and Decrypt which enables an user to decrypt the messages intended
to him with his secret key.

Algorithm 2 Master Keygen(N, q)

Require: N, q
Ensure: Master Secret Key B ∈ Z2N×2N

q and Master Public Key h ∈ Rq
1: σf = 1.17

√
q

2N
{σf chosen such that E[‖b1‖] = 1.17

√
q}

2: f, g ← DN,σf
3: Norm ← max

(
‖(g,−f)‖ ,

∥∥∥( qf̄
f∗f̄+g∗ḡ ,

qḡ
f∗f̄+g∗ḡ

)∥∥∥) {We compute ‖B̃f,g‖}
4: if Norm> 1.17

√
q, go to step 2

5: Using extended euclidean algorithm, compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that
– ρf · f = Rf mod (xN + 1)
– ρg · g = Rg mod (xN + 1)

6: if GCD(Rf , Rg) 6= 1 or GCD(Rf , q) 6= 1, go to step 2
7: Using extended euclidean algorithm, compute u, v ∈ Z such that u ·Rf +v ·Rg = 1
8: F ← qvρg, G← −quρf
9: k =

⌊
F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R

10: Reduce F and G: F ← F − k ∗ f,G← G− k ∗ g
11: h = g ∗ f−1 mod q

12: B =

(
A(g) −A(f)
A(G) −A(F )

)
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Here, B is a short basis of Λh,q, making it a trapdoor for sampling short ele-
ments (s1, s2) such that s1 +s2 ∗h = t for any t, without leaking any information
about itself.

Algorithm 3 Extract(B, id)

Require: Master Secret Key B ∈ Z2N×2N
q , hash function H : {0, 1}∗ → ZNq , user

identity id
Ensure: User secret key SKid ∈ Rq
1: if SKid is in local storage then
2: Output SKid to user id
3: else
4: t← H(id) ∈ ZNq
5: (s1, s2)← (t, 0)− Gaussian Sampler(B, σ, (t, 0)) {s1 + s2 ∗ h = t}
6: SKid ← s2

7: Output SKid to user id and keep it in local storage
8: end if

Algorithm 3 stores the secret key for each user that has made a query. The
reasons behind this choice, and alternatives are discussed in the full version of
this paper.

Algorithm 4 Encrypt(id,m)

Require: Hash functions H : {0, 1}∗ → ZNq and H ′ : {0, 1}N → {0, 1}m, message
m ∈ {0, 1}m, Master Public Key h ∈ Rq, identity id

Ensure: Encryption (u, v, c) ∈ R2
q of m under the public key of id

1: r, e1, e2 ← {−1, 0, 1}N ; k ← {0, 1}N (uniform)
2: t← H(id)
3: u← r ∗ h+ e1 ∈ Rq
4: v ← r ∗ t+ e2 + bq/2c · k ∈ Rq
5: Drop the least significant bits of v: v ← 2`

⌊
v/2`

⌉
6: Output (u, v,m⊕H ′(k))

Note that encryption is designed using a key-encapsulation mechanism; the
hash of the key k is used to one-time-pad the message. If H ′ is modeled as
a random oracle, this makes the CPA security (a decisional problem) of the
scheme as hard as finding the key k exactly (a search problem). Basing the
security argument on a search problem is necessary for our KL Divergence-based
security argument to hold, as explained in Section 4.

In order for an user to decrypt correctly, y = r ∗ s1 + e2 − e1 ∗ s2 must have
all its coefficients in (− q4 ,

q
4 ), so we need to set q big enough. In practice, this

gives q > 5.1 · 106 for λ = 80, and q > 5.6 · 106 for λ = 192.



Efficient Identity-Based Encryption over NTRU Lattices 17

Algorithm 5 Decrypt(MSid, (u, v, c))

Require: User secret key SKid, encryption (u, v, c) of m
Ensure: Message m ∈ {0, 1}N
1: w ← v − u ∗ s2

2: k ←
⌊
w
q/2

⌉
3: Output m← c⊕H ′(k)

Dropping bits can also lead to incorrect decryption. However, for ` 6 blog2 qc−
3, it doesn’t significantly affect the correct decryption rate of the scheme, so we
take this value of ` as standard.

The computations leading to these values of q and ` can be found in the full
version of this paper.

The scheme described above is only CPA-secure. In practice, we would want to
make it CCA-secure by using one of the standard transformations (e.g. [FO99]).

5.2 Security analysis of the IBE scheme

We now use the techniques in [GN08,CN11,DDLL13] to analyze the concrete
security of the scheme. The way lattice schemes are analyzed is to determine the
hardness of the underlying lattice problem, which is measured using the “root
Hermite factor” introduced in [GN08]. If one is looking for a vector v in an
n-dimensional lattice that is larger than the nth root of the determinant, then
the associated root Hermite factor is

‖v‖
det(Λ)1/n

= γn (2)

If one is looking for an unusually-short planted vector v in an NTRU lattice, then
the associated root Hermite factor, according to the experiments in [DDLL13] is√

n/(2πe) · det(Λ)1/n

‖v‖
= .4γn. (3)

Based on the results in [GN08,CN11], one can get a very rough estimate of the
hardness of the lattice problem based on the value of γ (unfortunately, there
has not been enough lattice cryptanalysis literature to have anything more that
just a rough estimate). For values of γ ≈ 1.007, finding the vector is at least
280-hard. For values less that 1.004, the problem seems completely intractable
and is approximated to be at least 192-bits hard.

The most vulnerable part of our IBE scheme will be the actual encryption.
Still, we will first run through the best attacks on the master public key and user
secret keys because these correspond exactly to attacks on the key and signature
forgery, respectively, in the hahs-and-sign digital signature scheme. Our master
public key polynomial h is not generated uniformly at random, but rather as
g ∗ f−1. The best-known attack for distinguishing an NTRU polynomial from
a random one is to find the polynomials f, g that are “abnormally short”. This
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involves finding the short f and g such that h ∗ f − g = 0 mod q. This is equiv-
alent to finding the vector (f, g) in a 2N -dimensional lattice with determinant
qN . From Section 3, we know that the euclidean norm of the vector (f, g) is
approximately 1.17

√
q and so calculating the value of γ using (3), we get√

2N/(2πe) · √q
1.17
√
q

= .4γ2N =⇒ γ = (
√
N/1.368)1/2N ,

which is 1.0054 for N = 256 and 1.0027 for N = 512, which is already beyond
the realm of practical algorithms. The secret user keys (s1, s2) are generated
with standard deviation of about σ = 1.17η′ε(Z) ·‖B̃‖, which gives σ = 1.5110

√
q

for N = 256 (resp. σ = 2.2358
√
q for N = 512), and so the vector has length

σ
√

2N , which by (2) results in a value of γ,

σ
√

2N
√
q

= γ2N =⇒
{
γ = (2.137

√
N)1/2N for N = 256

γ = (3.162
√
N)1/2N for N = 512

which is 1.0069 for N = 256 and 1.0042 for N = 512.

We now move on to the hardness of breaking the CPA-security of the scheme.
Encryption (disregarding the message) consists of (u = r ∗h+ e1, v = r ∗ t+ e2),
where the coefficients of r, e1, e2 have coefficients chosen from {−1, 0, 1}. In order
to avoid decryption errors, the value of the modulus q has to be set fairly high
(see Table 1). The best-known attack against the encryption scheme involves
essentially recovering the errors e1, e2. From the ciphertext (u, v), we can set
up the equation (t ∗ h−1) ∗ e1 − e2 = (t ∗ h−1) ∗ u − v mod q, which can be
converted into the problem of finding the 2N + 1-dimensional vector (e1, e2, 1)
in a 2N + 1-dimensional lattice with determinant qN . Using (3), we get√

2N/(2πe) · √q
‖(e1, e2, 1)‖

= .4γ2N =⇒ γ = (.74
√
q)1/2N ,

which gives us γ = 1.0075 for N = 512 and γ = 1.0044 for N = 1024.

5.3 Analysis of the signature scheme

In our signature scheme, the Keygen is provided by Algorithm 2, Signature by
Algorithm 3 and Verification by checking the norm of (s1, s2) as well as the
equality s1 + s2 ∗ h = H(message). Since there is no encryption, we can discard
the CPA-security analysis at the end of the previous section, as well as the issues
regarding correctness of the encryption. This leads to much smaller values for N
and q, which can be found in the Table 3 of Section 1.

We now analyze the bitsize of the secret key, public key and signature. The
public key is h ∈ Rq, as well as the signature s1, so their bitsizes are Ndlog2 qe.
The secret key is f such that f ∗h = g mod q. Given the procedure to generate
b1 = (f, g), with high probability each coefficient of f has absolute value at most
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equal to 6σf (if it isn’t the case, one just need to resample the coefficient). f can
therefore be stored using N(1 + dlog2(6σf )e) bits, where σf = 1.17

√
q

2N .6
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