
Bootstrapping Obfuscators
via

Fast Pseudorandom Functions

Benny Applebaum ?

School of Electrical Engineering, Tel-Aviv University
benny.applebaum@gmail.com

Abstract. We show that it is possible to upgrade an obfuscator for a
weak complexity class WEAK into an obfuscator for arbitrary polyno-
mial size circuits, assuming that the class WEAK can compute pseu-
dorandom functions. Specifically, under standard intractability assump-
tions (e.g., hardness of factoring, Decisional Diffie-Hellman, or Learning
with Errors), the existence of obfuscators for NC1 or even TC0 implies
the existence of general-purpose obfuscators for P. Previously, such a
bootstrapping procedure was known to exist under the assumption that
there exists a fully-homomorphic encryption whose decryption algorithm
can be computed in WEAK. Our reduction works with respect to virtual
black-box obfuscators and relativizes to ideal models.

1 Introduction

General-purpose program obfuscation allows us to transform an arbitrary com-
puter program into an “unintelligible” form while preserving its functionality.
The latter property is formalized via the notion of Virtual Black-Box which as-
serts that the code of the obfuscated program reveals nothing more than what
can be learned via oracle access to its input-output behavior. The seminal re-
sult of [7] shows that general purpose obfuscation is impossible in the standard
model. Nevertheless, in a sequence of recent exciting works [10, 8, 6], it was shown
that general-purpose obfuscation can be achieved in idealized models such as the
Generic Colored Matrix Model, or the Generic Graded Encoding model.

All these works share a similar outline. First it is shown how to use the ide-
alized model to obfuscate a weak complexity class such as NC1, and then the
weak obfuscator is bootstrapped into a general-purpose obfuscator for arbitrary
polynomial-size circuits.1 The bootstrapping step in all these works employs a
fully homomorphic encryption [11] whose decryption algorithm can be imple-
mented in NC1. While recent constructions of FHE (e.g., [9]) make the latter

? Supported by Alon Fellowship, ISF grant 1155/11, Israel Ministry of Science and
Technology (grant 3-9094), GIF grant 1152/2011, and the Check Point Institute for
Information Security..

1 The class NC1 is the class of polynomial-size circuits with logarithmic depth and
bounded fan-in gates.

assumption reasonable, the existence of FHE is still a strong public-key assump-
tion and it is natural to ask whether it can be relaxed. Indeed, NC1 obfuscation
already seems to put us at the “Heights of Cryptomania” [12], and so one may
suspect whether the extra power of FHE is really needed for bootstrapping.

1.1 Our Results

In this note we show that bootstrapping can be based on a “Minicrypt” type
assumption.

Theorem 1 (main theorem – informal). Assume that the complexity class
WEAK can compute a pseudorandom function (PRF). Then an obfuscator for
WEAK (in some idealized model) can be bootstrapped into an obfuscator for
every polynomial-size circuit family.

(See Theorem 5 for a formal statement.) Since practical and theoretical imple-
mentations of PRFs tend to be highly efficient, we can instantiate the theorem
with relatively low complexity classes. For example, by relying on PRFs con-
structions from [18, 5], we derive the following corollary.

Corollary 1. Assuming the hardness of factoring, Decisional Diffie-Hellman,
or Learning with Errors, the following holds. If TC0 can be obfuscated (in some
idealized model), then every polynomial-size circuit family can be obfuscated as
well.2

Tightness. One may ask whether the PRF assumption in Theorem 1 can be
further relaxed and replaced with the existence of a weaker primitive such as a
one-way function or a pseudorandom generator. We note that the answer seems
to be negative as such primitives can be computed in NC0 (under standard
assumptions [4]), a class which is learnable and therefore trivially obfuscatable
in the standard model. Therefore, such a strengthening of Theorem 1 would
contradict the impossibility results of [7].

In fact, we do not expect to prove a statement like Corollary 1 for classes
lower than TC0, as TC0 is the lowest complexity class for which the impossibility
results of [7] apply. More generally, [7] essentially show that if a complexity class
WEAK contains a PRF then it cannot be obfuscated in the standard model. Our
results complement the picture by showing that if such a class can be obfuscated
in some idealized model, then everything can be obfuscated. This suggests the
existence of a zero-one law: if an idealized model admits non-trivial obfuscation
(i.e., for some class which is non-obfuscatable in the standard model) then it
admits general purpose obfuscation for all (polynomial-size) circuits.

2 The class TC0 is the class of all Boolean circuits with constant depth and polynomial
size, containing only unbounded-fan in AND gates, OR gates, and majority gates.
This class is a subclass of NC1.

Virtual Black-Box vs. Indistinguishability Obfuscation. Our results hold with re-
spect to the strongest security notion ofVirtual Black-Box (VBB) obfuscation [7]
relative to some ideal model. An alternative (weaker) notion of security is in-
distinguishability Obfuscation. The latter notion is highly attractive as it may
be achievable in the standard model (no impossibility results are known), and,
quite surprisingly, it suffices for a wide range of applications [19]. In this work
we focus on VBB obfuscators, as we believe that when constructing obfuscators
it is best to strive for the strongest form of security. (See a detailed discussion
in [6].) We do not know whether our results apply in the indistinguishability
setting, and leave this question for future research. Interestingly, the FHE-based
bootstrapping works in both settings [10, 8].

1.2 Techniques

Our main technical tool is randomized encoding (RE) of functions [17, 4]. In-

tuitively, a function f(x) is encoded by a randomized function f̂(x; r) if the

distribution f̂(x), induced by a random choice of r, reveals nothing but f(x).

Formally, a sample from f̂(x) can be decoded to f(x), and vice versa, given f(x)

one can efficiently simulate the distribution f̂(x) – so the functions are essen-
tially “equivalent”. REs become non-trivial (and useful) when their complexity
is smaller than the complexity of f . This “equivalence” between a complicated
function f to a simpler encoding f̂ , was exploited in various applications to re-
duce a complex task to a simpler one. (See the surveys [1] and [16].) We can
adopt a similar approach in our context as well.

In order to obfuscate a function f taken from a family F let us obfuscate its
low-complexity encoding f̂ and release the latter obfuscated program composed
with the decoder algorithm. For this to work, let us assume the existence of
universal decoder and universal simulator that work uniformly for all functions in
F . (This can be guaranteed by encoding the evaluation function of the collection
F which maps a circuit of f and an input x to the value f(x).)

Unfortunately, this approach is somewhat problematic as the encoding f̂
employs internal randomness. One potential solution is to treat the randomness
as an additional input and let the user of the obfuscated program choose it. While
decoding still succeeds, this solution fails to be secure. Once the randomness r is
revealed, the function f can be fully recovered. (Technically, universal simulation
cannot be achieved anymore.) Another (flawed) solution, is to fix some secret

randomness r and obfuscate the mapping x 7→ f̂(x; r). Unfortunately, the privacy
of the encoding holds only when fresh randomness is being used, and one can
easily recover the circuit of f when r is fixed.

The problem is solved via the extra use of a PRF. Specifically, we choose a

PRF h
R← H and obfuscate the function f̂(x;h(x)). The security of the PRF en-

sures that this function behaves essentially as a standard encoding whose internal
randomness is freshly chosen in each invocation, and so simulation succeeds. By
using the low-complexity encoding from [3], the complexity of f̂ is dominated

by the complexity of the PRF H ∈ WEAK (assuming that the class WEAK
satisfies some basic closure properties), and one can prove Theorem 1.

We note that a similar usage of PRF-derandomized randomized encoding
was made by [14] in the context of Functional Encryption.

2 Preliminaries

We say that a function ε : N → R is negligible if for every constant c > 0
there exists an integer n0 ∈ N such that ε(n) < n−c for every n > n0. We will
sometimes use neg(·) to denote an unspecified negligible function.

One-way functions. An efficiently computable function g : {0, 1}∗ → {0, 1}∗ is
one-way if for every (non-uniform) efficient adversary A we have that

Pr
x

R←{0,1}n
[A(1n, f(x)) ∈ f−1(f(x))] < neg(n). (1)

Circuit families. A family of polynomial-size boolean circuits F is an infinite
sequence of circuit families {Fn}n∈N where for every n ∈ N the family Fn consists
of boolean circuits with n inputs, m(n) outputs, and circuit size `(n) where m, `
are polynomials in n. For such a family there is always a universal efficient
evaluator F such that for every length parameter n, circuit f ∈ Fn and input
x ∈ {0, 1}n, we have that F (f, x) = f(x).

Pseudorandom functions [13]. Let H = {Hn}n∈N be a family of polynomial-size
boolean circuits and let K be a PPT sampling algorithm that on input 1n samples
a circuit in Hn. (The probability distribution induced by K is not necessarily
uniform.) We say that H is a pseudorandom function family (PRF) if for every
(non-uniform) efficient oracle-aided adversary A we have that∣∣∣∣∣ Pr

h
R←K(1n)

[Ah(1n) = 1]− Pr
Rn

[ARn(1n) = 1]

∣∣∣∣∣ ≤ neg(n), (2)

where Rn is a uniformly chosen function with the same input and output lengths
as the functions in Hn. To simplify notation, we will typically make the sampler

implicit and write h
R← Hn with the understanding that the distribution is

induced by some efficient sampler.

2.1 Randomized Encoding of Functions

Let F be a polynomial-time computable function that maps n bits to m(n) bits.
Intuitively, a randomized function F̂ is an “encoding” of F if for every input x the
distribution F̂ (x) reveals the value of F (x) but no other additional information.
We formalize this via the notion of computationally private randomized encoding
from [3].

Definition 1 (Computational randomized encoding). Let F : {0, 1}n →
{0, 1}m(n) be an efficiently computable function and let F̂ be an efficiently com-
putable randomized function. We say that F̂ is a computational randomized
encoding of F (or encoding for short), if there exist an efficient decoder algo-
rithm D and an efficient probabilistic simulator algorithm Sim that satisfy the
following:

– Perfect correctness. For every n and every input x ∈ {0, 1}n,

D(1n, F̂ (x)) = F (x).

– Computational privacy. For every non-uniform efficient oracle-aided ad-
versary A we have∣∣∣Pr[AF̂n(1n) = 1]− Pr[ASim(1n,Fn(·))(1n) = 1]

∣∣∣ ≤ neg(n), (3)

where F̂n and Fn are the restrictions of F̂ and F to n-bit inputs, and both
oracles are probabilistic functions (and fresh randomness is used in each
invocation).

Encoding Collections. We encode a family of polynomial-size boolean circuits F
by encoding its evaluation algorithm F (f, x). Specifically, for every f ∈ F we

define the randomized function f̂(x; r) = F̂ (f, x; r) where F̂ is the encoder of F .
By definition, the decoder D and the simulator Sim of F apply universally for
all f ∈ F . Formally, for every n and f ∈ Fn:

D(1|x|, f̂(x)) = f(x) ∀x ∈ {0, 1}n.

Also for every non-uniform efficient oracle-aided adversary A and every sequence

of functions {fn} and their encodings
{
f̂n

}
we have that∣∣∣Pr[Af̂n(1n) = 1]− Pr[ASim(1n,fn(·))(1n) = 1]

∣∣∣ ≤ neg(n). (4)

(The oracles in (4) are simply the restriction of the oracles in (3) to inputs of
the form (fn, ·) and so (4) follows immediately from (3).)

2.2 Obfuscation

Definition 2 (Virtual Black-Box Obfuscator [7]). Let F = {Fn}n∈N be
a family of polynomial-size boolean circuits. An obfuscator O for F is a PPT
algorithm which maps a circuit f ∈ Fn to a new circuit [f] (not necessarily in
F) such that the following properties hold:

1. Preserving Functionality. For every n ∈ N, every f ∈ Fn and every input
x ∈ {0, 1}n

Pr
[f]

R←O(f)

[[f](x) 6= f(x)] ≤ neg(n).

2. Polynomial slowdown. There exists a polynomial p such that for every
n ∈ N and f ∈ Fn the circuit O(f) is of size at most p(|f |).

3. Virtual Black-Box. For every (non-uniform) efficient adversary A there
exists a (non-uniform) efficient simulator Sim such that for every n and
every f ∈ Fn:∣∣∣Pr[A(O(f)) = 1]− Pr[Simf (1|f |, 1n) = 1]

∣∣∣ ≤ neg(n). (5)

A complexity class C is obfuscatable if there exists an efficiently computable
mapping that maps every efficiently computable function family F ∈ C (repre-
sented by its evaluator F) to an obfuscator O for F .

Obfuscation in an idealized model. An idealized model is captured by a sequence
of probabilistic stateful oraclesM = {Mn}n∈N indexed by a security parameter
n. We consider obfuscators which are implementable relative toM. This means
that the obfuscator O is allowed to make oracle queries to Mn and that Eq. 5
should hold even when A is allowed to query Mn. (The circuit f cannot have
oracle gates to M.) In this case, Properties (1) and (2) should hold for every
possible coins of M.

3 Our Reduction

Let F be a family of polynomial-size boolean circuits with an evaluator F . We
will construct an obfuscator O for F based on the following ingredients. (1) An
encoding F̂ of F ; (2) a pseudorandom function family H where the output length
of functions in Hn equals to the length of the random input of F̂n; and (3) a
weak obfuscator weakO for the circuit family G = {Gn} where Gn contain all
circuits of the form

gf,h : x 7→ F̂ (f, x;h(x)), ∀f ∈ Fn, h ∈ Hn.

We allow the weak obfuscator to be implementable in some idealized modelM,
but assume that the PRF and the randomized encoding are implemented in the
standard model and make no calls to M.

Construction 2. Given a circuit f ∈ Fn the obfuscator OMn does the follow-
ing:

– Sample a random h
R← H and obfuscate gf,h by [g] := weakOMn(gf,h).

– Output the circuit [f] = D ◦ [g] where D is the RE decoder and ◦ denotes
function composition.

Note that the construction is syntactically well defined as gf,h makes no calls
to the oracle M. (For this purpose, we had to assume that the PRF and the
randomized encoding do not use M.)

It is easy to verify that [f] preserves the functionality of f .

Lemma 1. The obfuscator O is functionality preserving.

Proof. Fix some x and h ∈ H, and let us condition on the event that the weak
obfuscator preserves the functionality, namely, [g](x) = gf,h(x). Then, by the
correctness of the encoding, we have

[f](x) = D([g](x)) = D(gf,h(x)) = D(F̂ (f, x;h(x))) = f(x).

Since the weak obfuscator is correct with all but negligible probability the claim
follows. ut

In the next section, we will prove that the obfuscator is secure.

Lemma 2. The obfuscator O satisfies the Virtual Black-Box property relative
to M.

3.1 Security (Proof of Lemma 2)

Let A be an efficient adversary for the new obfuscator O. Our goal is to construct
a simulator Sim that simulates A. For this aim, let us first define an oracle-aided
adversary B for the weak obfuscator weakO as follows. Given an obfuscated
circuit [f], the adversary B applies A to the circuit D ◦ [f] where D is the
(universal) decoder of the encoding. If A makes oracle queries to the oracleMn

then B answers them using his own oracle Mn. Let weakSim be the simulator
of weakO which simulates the adversary B, and let reSim be the (universal) RE
simulator.

We define the simulator Simf (1n) for the adversary A as follows. Invoke the
oracle-aided weak simulator weakSimg(1n), and whenever weakSim makes a new
oracle query x ∈ {0, 1}n, answer it with reSim(1n, f(x)), where the latter is
computed via the help of the oracle f . If x was previously queried, respond with
the same answer as before.

Fix some f ∈ Fn. We will prove that∣∣∣Pr[AMn(O(f)) = 1]− Pr[Simf (1n) = 1]
∣∣∣ ≤ ε1(n) + ε2(n) + ε3(n) (6)

where ε1 (resp., ε2, ε3) upper-bounds the distinguishing advantage of efficient
adversaries against the weak obfuscator (resp., against the PRF, against the
encoding). Through the proof, we simplify notation by omitting the unary input
1n; also for a binary random variable Y we write Pr[Y] to denote Pr[Y = 1].

Let f̂(x; r) be the circuit that computes the encoding of f(x), i.e., f̂(x; r) =

F̂ (f, x; r). For a function h ∈ H, let f̂h denote the circuit that computes f̂(x;h(x))
and let O(f ;h) denote the output of the obfuscator O with input f and PRF h.
Then, by definition, for every h, we have that

Pr[AMn(OMn(f ;h))] = Pr[BMn(weakOMn(f̂h))], (7)

Also, by the VBB property of the weak obfuscator, for every h we have that∣∣∣Pr[BMn(weakOMn(f̂h))]− Pr[weakSimf̂h]
∣∣∣ ≤ ε1(n). (8)

By relying on the security of the PRF we will prove the following claim.

Claim 3. ∣∣∣∣∣ Pr
h

R←Hn

[weakSimf̂h]− Pr[weakSimf̂]

∣∣∣∣∣ ≤ ε2(n),

where f̂(·) is viewed as a randomized function and repeated queries to this func-
tion are answered consistently based on the first answer.

Proof. If the claim does not hold, we can break the PRF as follows. Let TR be
an oracle aided adversary which calls weakSim and whenever weakSim makes a
query x to its oracle, T answers the query with f̂(x;R(x)). Observe that if R is

a truly random function then T accepts with probability exactly Pr[weakSimf̂].

On the other hand, if the oracle is R
R← Hn then the acceptance probability is

exactly Pr
h

R←Hn
[weakSimf̂h]. It follows that T breaks the security of the PRF,

and the claim follows. ut

Finally, we rely on the privacy of the randomized encoding to prove the
following claim.

Claim 4. ∣∣∣Pr[weakSimf̂]− Pr[Simf]
∣∣∣ ≤ ε3(n),

where f̂(·) is viewed as a randomized function and repeated queries to this func-
tion are answered consistently based on the first answer.

Proof. Recall that Simf(·) is simply weakSimreSim(f(·)), where repeated queries
are answered consistently. Therefore, if the claim does not hold, we can use
weakSim to distinguish between the randomized functions reSim(f(·)) and f̂(·),
in contradiction to the privacy of the RE (Eq. 4). (The distinguisher will simply
invoke weakSim and will answer repeated queries based on the first answer.) ut

The lemma (i.e., Eq. 6) now follows from Eqs. 7 and 8 and Claims 3 and 4. The
“furthermore” part follows by noting that the proof relativizes. ut

4 Main Result

We say that a circuit complexity class WEAK is admissible if it satisfies the
following basic properties:

1. The class WEAK contains the class NC0;
2. (Closure under concatenation) If each output bit of a multi-output function

f is computable in WEAK then so is f ;
3. (Closure under composition) if f ∈WEAK and g ∈WEAK then g ◦ f is

in WEAK, where ◦ denotes function composition.

We can now prove our main theorem.

Theorem 5. Let WEAK be an admissible complexity class, and letM be some
probabilistic oracle (an idealized model). Assume that there exists a one-way
function and a pseudorandom function H in WEAK. Then, if WEAK can be
obfuscated relative to M, every family of polynomial-size circuits can be obfus-
cated relative to M.

Proof. First, we claim that, under the above assumption, any efficiently com-
putable function F has an encoding F̂ computable in WEAK. In [3] it was
shown, based on Yao’s garbled circuit technique, that F (x) can be encoded by
an encoding F̂ (x; r) which is reducible to a minimal-stretch pseudorandom gen-
erator G : {0, 1}κ → {0, 1}κ+1 via a non-adaptive NC0 reduction. Namely,
F̂ (x; r) can be written as g(x, r,G(r1), . . . , G(rt)) where g is an NC0 function
and the ri’s are sub-blocks of the random string r. Such a PRG is also reducible
to a one-way function via a (non-adaptive) NC0 reduction by [4, 15] (see also [2,
Remark 4.5]). Therefore, F̂ (x; r) can be written as g′(x, r,G′(r1), . . . , G′(rt′))
where g′ is in NC0 and G′ is a one-way function. We can now instantiate G′

with a one-way function in WEAK whose existence is promised by the theo-
rem’s hypothesis. Since WEAK is closed under concatenation, we can view the
t′ copies G′(r1), . . . , G′(rt′) as a single function in WEAK. Now, the resulting
encoding can be written as a composition of an NC0 function with a function
in WEAK which results in a WEAK function.3

Next, we observe that, since WEAK is closed under concatenation, the
assumption implies the existence of a PRF in WEAK whose output length is
equal to the randomness complexity of the encoding. (By using direct product,
one can transform a WEAK PRF with a single output bit into a new WEAK
PRF with arbitrary polynomial number of output bits.) It follows that the circuit
family G (from Construction 2) can be written as a composition of two WEAK
functions, and the theorem follows from Lemmas 1 and 2. ut

Remark. We assume nothing on the complexity of the sampler of the PRF, and
therefore the sampler can preprocess the function h ∈ H. (This preprocessing
is exploited in fast implementations of PRFs [18, 5].) As a result, the additional
one-wayness assumption does not seem to follow from the fact that H is in
WEAK.4

Under standard intractability assumptions, one can instantiate WEAK with
NC1 or even TC0. Indeed, the existence of PRFs in TC0 can be based on
the hardness of factoring, the DDH assumption or the intractability of lat-
tice/learning problems [18, 5], and the existence of one-way functions in TC0

(or even in NC0) follow from these assumptions as well [4]. Therefore Corol-
lary 1 follows from Theorem 5.

3 We note that the construction of the RE makes a non black-box use of the code
of the one-way function. This does not affect the overall argument as none of these
primitives makes calls to the oracle M.

4 The one-wayness assumption becomes redundant if the mapping (k, x) 7→ hk(x)
(where hk = K(1n; k)) is computable in WEAK.

Acknowledgement. We thank Alon Rosen and Zvika Brakerski for useful discus-
sions.

References

1. B. Applebaum. Randomly encoding functions: A new cryptographic paradigm -
(invited talk). In ICITS, pages 25–31, 2011.

2. B. Applebaum. Cryptography in Constant Parallel Time. Springer Publishing
Company, Incorporated, 2014.

3. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. Computional Complexity, 15(2):115–162, 2006.

4. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J.
Comput., 36(4):845–888, 2006.

5. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
Advances in Cryptology - EUROCRYPT, pages 719–737, 2012.

6. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation
against algebraic attacks. In Advances in Cryptology - EUROCRYPT, pages 221–
238. Springer, 2014.

7. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. of the ACM, 59(2):6,
2012.

8. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25. Springer, 2014.

9. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS, 2011.

10. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In IEEE
54th Annual Symposium on Foundations of Computer Science, FOCS, pages 40–49,
2013.

11. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC, pages 169–178,
2009.

12. C. Gentry. Encrypted messages from the heights of cryptomania. In TCC, pages
120–121, 2013.

13. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. of the ACM, 33:792–807, 1986.

14. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In Advances in Cryptology -
CRYPTO, pages 162–179. Springer, 2012.

15. I. Haitner, O. Reingold, and S. P. Vadhan. Efficiency improvements in constructing
pseudorandom generators from one-way functions. SIAM J. Comput, 42(3):1405–
1430, 2013.

16. Y. Ishai. Randomization techniques for secure computation. In M. Prabhakaran
and A. Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology
and Information Security Series, pages 222–248. IOS press, Amsterdam, 2012.

17. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In IEEE 41st Annual
Symposium on Foundations of Computer Science, FOCS, pages 294–304, 2000.

18. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. of the ACM, 51(2):231–262, 2004.

19. A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, STOC, pages 475–484, 2014.

