
Compact VSS and Efficient Homomorphic UC
Commitments

Ivan Damg̊ard, Bernardo David, Irene Giacomelli, and Jesper Buus Nielsen?

Dept. of Computer Science, Aarhus University

Abstract. We present a new compact verifiable secret sharing scheme,
based on this we present the first construction of a homomorphic UC
commitment scheme that requires only cheap symmetric cryptography,
except for a small number of seed OTs. To commit to a k-bit string,
the amortized communication cost is O(k) bits. Assuming a sufficiently
efficient pseudorandom generator, the computational complexity is O(k)
for the verifier and O(k1+ε) for the committer (where ε < 1 is a con-
stant). In an alternative variant of the construction, all complexities are
O(k · polylog(k)). Our commitment scheme extends to vectors over any
finite field and is additively homomorphic. By sending one extra mes-
sage, the prover can allow the verifier to also check multiplicative rela-
tions on committed strings, as well as verifying that committed vectors
a, b satisfy a = ϕ(b) for a linear function ϕ. These properties allow us
to non-interactively implement any one-sided functionality where only
one party has input (this includes UC secure zero-knowledge proofs of
knowledge). We also present a perfectly secure implementation of any
multiparty functionality, based directly on our VSS. The communication
required is proportional to a circuit implementing the functionality, up
to a logarithmic factor. For a large natural class of circuits the overhead
is even constant. We also improve earlier results by Ranellucci et al. on
the amount of correlated randomness required for string commitments
with individual opening of bits.

1 Introduction

A commitment scheme is perhaps the most basic primitive in cryptographic
protocol theory, but is nevertheless very powerful and important both in theory
and practice. Intuitively, a commitment scheme is a digital equivalent of a secure
box: it allows a prover P to commit to a secret s by putting it into a locked
box and give it to a verifier V . Since the box is locked, V does not learn s at

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation and also from the
CFEM research center (supported by the Danish Strategic Research Council), within
which part of this work was performed. Partially supported by Danish Council for
Independent Research via DFF Starting Grant 10-081612. Partially supported by
the European Research Commission Starting Grant 279447.



commitment time, we say the commitment is hiding. Nevertheless, P can later
choose to give V the key to the box to let V learn s. Since P gave away the
box, he cannot change his mind about s after commitment time, we say the
commitment is binding.

Commitment schemes with stand-alone security (i.e., they only have the bind-
ing and hiding properties) can be constructed from any one-way function, and
already this most basic form of commitments implies zero-knowledge proofs for
all NP languages. Commitments with stand-alone security can be very efficient
as they can be constructed from cheap symmetric cryptography such as pseudo-
random generators [Nao91].

However, in many cases one would like a commitment scheme that composes
well with other primitives, so that it can be used as a secure module that will
work no matter which context it is used in. The strongest form of security we
can ask for here is UC security [Can01]. UC commitments cannot be constructed
without set-up assumptions such as a common reference string [CF01]. On the
other hand, a construction of UC commitment in such models implies public-
key cryptography [DG03] and even multiparty computation [CLOS02] (but see
[DNO10] for a construction based only on 1-way functions, under a stronger
set-up assumption).

With this in mind, it is not surprising that constructions of UC commit-
ments are significantly less efficient than stand-alone secure commitments. The
most efficient UC commitment schemes known so far are based on the DDH as-
sumption and requires several exponentiations in a large group [Lin11,BCPV13].
This means that the computational complexity for committing to k-bit strings
is typically Ω(k3).

Our Contribution We first observe that even if we cannot build practical UC
commitments without using public-key technology, we might still confine the use
of it to a small once-and-for-all set-up phase. This is exactly what we achieve:
given initial access to a small number of oblivious transfers, we show a UC secure
commitment scheme where the only computation required is pseudorandom bit
generation and a few elementary operations in a finite field. The number of
oblivious transfers we need does not depend on the number of commitments we
make later. The main observation we make is that we can reach our goal by
combining the oblivious transfers with a “sufficiently compact” Verifiable Secret
Sharing Scheme (VSS) that we then construct. The VSS has applications on its
own as we detail below.

To commit to a k-bit string, the amortized communication cost is O(k) bits.
The computational complexity is O(k) for the verifier and O(k1+ε) for the com-
mitter (where ε < 1 is a constant). This assumes a pseudorandom generator with
linear overhead per generated bit.1 In an alternative variant of the construction,

1 This seems a very plausible assumption as a number of different sufficient condi-
tions for such PRG’s are known. In [IKOS08] it is observed that such PRGs follow
Alekhnovich’s variant of the Learning Parity with Noise assumption. Applebaum
[App13] shows that such PRGs can be obtained from the assumption that a natural



all complexities are O(k · polylog(k)). After the set-up phase is done, the prover
can commit by sending a single string. Our construction extends to commit-
ment to strings over any finite field and is additively homomorphic, meaning
that given commitments to strings a, b, the verifier can on his own compute a
commitment to a+b, and the prover can open it while revealing nothing beyond
a + b. Moreover, if the prover sends one extra string, the verifier can also check
that committed vectors a, b, c satisfy c = a ∗ b, the component-wise product.
Finally, again by sending one extra string and allowing one extra opening, the
verifier can compute a commitment to ϕ(a), given the commitment to a, for any
linear function ϕ. These extra strings have the same size as a commitment, up
to a constant factor.

On the technical side, we take the work from [FJN+13] as our point of depar-
ture. As part of their protocol for secure 2-party computation, they construct
an imperfect scheme (which is not binding for all commitments). While this is
good enough for their application, we show how to combine their scheme with an
efficient VSS that is compact in the sense that it allows to share several values
from the underlying field, while shares only consist of a single field element. This
is also known as packed secret sharing [FY92].

Our construction generalises the VSS from [CDM00] to the case of packed
secret sharing. We obtain a VSS where the communication needed is only a
constant factor larger than the size of the secret. Privacy for a VSS usually
just says that the secret remains unknown to an unqualified subset of players
until the entire secret is reconstructed. We show an extended form of privacy
that may be of independent interest: the secret in our VSS is a set of ` vectors
s1, ..., s`, each of length `. We show that any linear combination of s1, ..., s`
can be (verifiably) opened and players will learn nothing beyond that linear
combination. We also build two new VSS protocols, both of which are non-trivial
extensions. The first allows the dealer to generate several sharings of the vector
0`. For an honest dealer, the shares distributed are random even given the extra
verification information an adversary would see during the VSS. This turns out
to be crucial in achieving secure multiplication of secret-shared or committed
values. The second new protocol allows us to share two sets of vectors s1, ..., s`
and s̃1, ..., s̃` such that it can be verified that ϕ(s1) = s̃1, . . . , ϕ(s`) = s̃` for a
linear function ϕ. In the commitment scheme, this is what allows us to verify
that two shared or committed vectors satisfy a similar linear relation.

Before we discuss applications, a note on an alternative way to view our
commitment scheme: A VSS is essentially a multiparty commitment scheme.
Therefore, given our observation that VSS and OT gives us efficient UC com-
mitment, it is natural to ask whether our construction could be obtained using
“MPC-in-the-head” techniques. Specifically, the IPS compiler [IPS08] is a general
tool that transforms a multiparty protocol into a 2-party protocol implementing

variant of Goldreich’s candidate for a one-way function in NC0 is indeed one-way.
The improved HILL-style result of Vadhan and Zheng [VZ12] implies that such PRGs
can be obtained from any exponentially strong OWF that can be computed by a
linear-size circuit.



the same functionality in the OT hybrid model. Indeed, applying IPS to our
VSS does result in a UC commitment protocol. However, while this protocol is
somewhat similar to ours, it is more complicated and less efficient.

Applications. One easily derived application of our commitment scheme is an
implementation of any two-party functionality where only one party has input,
we call this a one-sided functionality. This obviously includes UC secure zero-
knowledge proofs of knowledge for any NP relation. Our implementation is based
on a Boolean circuit C computing the desired output.

We will focus on circuits that are not too “oddly shaped”. Concretely, we
assume that every layer of the circuit is Ω(`) gates wide, except perhaps for
a constant number of layers. Here one may think of ` as a statistical security
parameter, as well as the number of bits one of our commitments contains.
Second, we want that the number of bits that are output from layer i in the
circuit and used in layer j is either 0 or Ω(`) for all i < j. We call such circuits
well-formed. In a nutshell, well-formed circuit are those that allow a modest
amount of parallelization, namely a RAM program computing the circuit can
always execute Ω(`) bit operations in parallel and when storing bits for later use
or retrieving, it can always address Ω(`) bits at a time. In practice, since we can
treat ` as a statistical security parameter, its value can be quite small(e.g., 80),
in particular very small compared to the circuit size, and hence a requirement
that the circuit be well-formed seems rather modest. Using the parallelisation
technique from [DIK10], we can evaluate a well-formed circuit using only parallel
operations on `-bit blocks, and a small number of different permutations of bits
inside blocks. This comes at the cost of a log-factor overhead.

Some circuits satisfy an even nicer condition: if we split the bits coming into
a layer of C into `-bit blocks, then each such block can be computed as a linear
function of blocks from previous layers, where the function is determined by the
routing of wires in the circuit. Such a function is called a block function. If each
block function depends only on a constant number of previous blocks and if each
distinct block function occurs at least ` times, then C is called regular (we can
allow that a constant number of block functions do not satisfy the condition).
For instance, block ciphers and hash functions do not spread the bits around
much in one round, but repeat the same operations over many rounds and hence
tend to have regular circuits. Also many circuits for arithmetic problems have a
simple repetitive structure and are therefore regular.

Theorem 1. For any one-sided two-party functionality F that can be computed
by Boolean circuit C, there exists a UC secure non-interactive implementation
of F in the OT hybrid model. Assuming C is well-formed and that there exists a
linear overhead PRG, the communication as well as the receiver’s computation
is in O(log(|C|)|C|). If C is regular, the complexities are O(|C|).

We stress that the protocol we build works for any circuit, it will just be
less efficient if C is not well-formed.2 We can also apply our VSS directly to

2 It is possible to use MPC-in-the-head techniques to prove results that have some
(but not all) of the properties of Theorem 1. Essentially one applies the IPS com-



implement multiparty computation in the model where there are clients who
have inputs and get outputs and servers who help doing the computation.

Theorem 2. For any functionality F , there exists a UC perfectly secure imple-
mentation of F in the client/server model assuming at most a constant fraction
of the servers and all but one of the clients may be corrupted. If C is well-formed,
the total communication complexity is in O(log(|C|)|C|). If C is regular, the
complexity is O(|C|).

We are not aware of any other approach that would allow us to get perfect
security and “constant rate” for regular circuits.3

A final application comes from the fact that our commitment protocol can
be interpreted as an unconditionally secure protocol in the model where corre-
lated randomness is given. In this model, it was shown in [RTWW11] that any
unconditionally secure protocol that allows commitment to N bits where each
bit can be individually opened, must use Ω(Nk) bits of correlated randomness,
where k the security parameter. They also show a positive result that partially
circumvents this lower bound by considering a functionality FN,rcom that allows
commitment to N bits where only r < N bits can be selectively and individually
opened. When r is O(1), they implement this functionality at constant rate, i.e.,
the protocol requires only O(1) bits of correlated randomness per bit committed
to. We can improve this as follows:

Theorem 3. There exists a constant-rate statistically secure implementation of
FN,rcom in the correlated randomness model, where r ∈ O(N1−ε) for any ε > 0.

We find it quite surprising that r can be “almost” N , and still the lower bound
for individual opening does not apply. What the actual cut-off point is remains
an intriguing open question.

Related Work In [DIK+08], a VSS was constructed that is also based on packed
secret sharing (using Shamir as the underlying scheme). This construction relies
crucially on hyper invertible matrices which requires the field to grow with the
number of players. Our construction works for any field, including F2. This
would not be so important if we only wanted to commit and reveal bits: we
could use [DIK+08] with an extension field, pack more bits into a field element
and still get constant communication overhead, but we want to do (Boolean)
operations on committed bits, and then “bit-packing” will not work. It therefore
seems necessary to construct a more compact VSS in order to get our results.
In [BBDK00], techniques for computing functions of shared secrets using both

piler to a multiparty protocol, either a variant of [DI06] (described in [IKOS09]),
or the protocol from [DIK10]. In the first case, the verifier’s computation will be
asymptotically larger than in our protocol, in the second case, one cannot obtain
the result for regular circuits since [DIK10] has at least logarithmic overhead for any
circuit since it cannot be based on fields of constant size.

3 Using [DIK10] would give at least logarithmic overhead for any circuit, using variants
of [DI06] would at best give statistical security.



broadcast channels and private interactive evaluation are introduced. However,
their constructions are based specifically on Shamir’s LSSS and do not allow
verification of share validity.

In recent independent work [GIKW14], Garay et al. also construct UC com-
mitments using OT, VSS and pseudorandom generators as the main ingredients.
While the basic approach is closely related to ours, the concrete constructions
are somewhat different, leading to incomparable results. In [GIKW14] optimal
rate is achieved, as well as a negative result on extension of UC commitments.
On the other hand, we focus more on computational complexity and achieve
homomorphic properties as well as non-interactive verification of linear relations
inside committed vectors.4

2 Preliminaries

In this section we introduce the basic definitions and notation that will be used
throughout the paper. We denote sampling a value r from a distribution D as
r ← D. We say that a function ε is negligible if there exists a constant c such that
ε(n) < 1

p(n) for every polynomial p and n > c. Two sequences X = {Xκ}κ∈N and

Y = {Yκ}κ∈N of random variables are said to be computationally indistinguish-

able, denoted by X
c
≈ Y , if for every non-uniform probabilistic polynomial-time

(PPT) distinguisher D there exists a negligible function ε(·) such that for every
κ ∈ N, | Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1] |< ε(κ). Similarly two sequences X
and Y of random variables are said to be statistically indistinguishable, denoted

by X
s
≈ Y , if the same relation holds for unbounded non-uniform distinguishers.

2.1 Universal Composability

The results presented in this paper are proven secure in the Universal Compos-
ability (UC) framework introduced by Canetti in [Can01]. We consider security
against static adversaries, i.e. all corruptions take place before the execution of
the protocol. We consider active adversaries who may deviate from the protocol
in any arbitrary way. It is known that UC commitments cannot be obtained in
the plain model [CF01]. In order to overcome this impossibility, our protocol is
proven secure in the FOT -hybrid model in, where all parties are assumed to have
access to an ideal 1-out-of-2 OT functionality. In fact, our protocol is constructed
in the F t,nOT -hybrid model (i.e. assuming access to t-out-of-n OT), which can be
subsequently reduced to the FOT -hybrid model via standard techniques for ob-
taining F t,nOT from FOT [Nao91,BCR86,NP99]. We denote by F t,nOT (λ) an instance
of the functionality that takes as input from the sender messages in {0, 1}λ. No-
tice that FOT can be efficiently UC-realized by the protocols in [PVW08], which
can be used to instantiate our commitment protocol. We define our commitment
functionality FHCOM in Figure 1 and F t,nOT in Figure 2, further definitions can be
found in the full version of this paper [DDGN14].

4 Our work has been recognised by the authors of [GIKW14] as being independent.



Functionality FHCOM

FHCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from
Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is fixed and
known to all parties.) Ignore any future commit messages with the same ssid
from Ps to Pr. If a message (abort, sid, ssid) is received from S, the functionality
halts.

– Reveal Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If
a tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid, Ps, ssid1, ssid2, ssid3)
from Pr: If tuples (ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) were previously
recorded and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the
message (add, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S.

– Multiplication: Upon receiving a message
(mult, sid, ssid, Ps, ssid1, ssid2, ssid3) from Pr: If tuples
(ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) and (ssid3, Ps, Pr,m3) were
previously recorded, and if m3 = m1 ∗ m2, send the message
(mult, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S. Otherwise,
send message (mult, sid, ssid, Ps, ssid1, ssid2, ssid3, fail) to Ps, Pr and S.

– Linear Function Evaluation: Upon receiving a message
(linear, sid, ssid, Ps, ϕ, ssid1, ssid2), where ϕ is a linear function, from Ps: If
the tuple (ssid1, Ps, Pr,m1) was previously recorded and ssid2 is unused, store
(ssid2, Ps, Pr, ϕ(m1)) and send (linear, sid, ssid, Ps, ssid1, ssid2, success) to Ps,
Pr and S.

Fig. 1. Functionality FHCOM

Functionality F t,nOT

F t,nOT interacts with a sender Ps, a receiver Pr and an adversary S.

– Upon receiving a message (sender, sid, ssid,x0, . . . ,xn) from Ps, where each
xi ∈ {0, 1}λ , store the tuple (ssid,x0, . . . ,xn) (The lengths of the strings λ
is fixed and known to all parties). Ignore further messages from Ps to Pr with
the same ssid.

– Upon receiving a message (receiver, sid, ssid, c1, . . . , ct) from Pr, check if a tuple
(ssid,x0, . . . ,xn) was recorded. If yes, send (received, sid, ssid,xc1 , . . . ,xct) to
Pr and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but
continue running).

Fig. 2. Functionality F t,nOT

2.2 Linear Secret Sharing

In very short terms, a linear secret sharing scheme is a secret sharing scheme
defined over a finite field F, where the shares are computed as a linear function
of the secret (consisting of one or more field elements) and some random field



elements. A special case is Shamir’s well known scheme. However, we need a
more general model for our purposes. We follow the approach from [CDP12] and
recall the definitions we need from their model.

Definition 1. A linear secret sharing scheme S over the finite field F is defined
by the following parameters: number of players n, secret length `, randomness
length e, privacy threshold t and reconstruction threshold r. Also, a n × (` + e)
matrix M over F is given and S must have r-reconstruction and t-privacy as
explained below. If ` > 1, then S is called a packed linear secret sharing scheme.

Let d = ` + e and let P = {P1, . . . , Pn} be the set of players, then the row
number i of M , denoted by mi, is assigned to player Pi. If A is a player subset,
then MA denotes the matrix consisting of rows from M assigned to players in
A. To share a secret s ∈ F`, one first forms a column vector f ∈ Fd where s
appears in the first ` entries and with the last e entries chosen uniformly at
random. The share vector of s in the scheme S is computed as c = M ·f and its
i-th component c[i] is the share given to the player Pi. We will use π` to denote
the projection that outputs the first ` coordinates of a vector, i.e. π`(f) = s.

Now, t-privacy means that for any player subset A of size at most t, the
distribution of MA · f is independent of s. It is easy to see that this is the case
if and only if there exists, for each position j in s, a sweeping vector wA,j . This
is a column vector of d components such that MA ·wA,j = 0 and π`(w

A,j) is a
vector whose j-th entry is 1 while all other entries are 0.

Finally, r-reconstruction means that for any player subset B of size at least r,
s is uniquely determined from MB ·f . It is easy to see that this is the case if and
only if there exists, for each position j in s, a reconstruction vector rB,j . This is
a row vector of |B| components such that for any f ∈ Fd, rB,j ·MB · f = f [j],
where f [j] is the j-th entry in f .

A packed secret sharing scheme was constructed in Franklin and Yung [FY92].
However, to get our results, we will need a scheme that works over constant size
fields, such an example can be found in [CDP12].

Multiplying shares: for v,w ∈ Fk, where v ⊗i w = (v[i]w[j])j 6=i, the vector

v⊗w ∈ Fk2 is defined by v⊗w = (v[1]w[1], . . . ,v[k]w[k],v ⊗1 w, . . . ,v ⊗k w).
If M is the matrix of the linear secret sharing scheme S, we can define a new
scheme Ŝ considering the matrix M̂ , whose i-th row is the vector mi ⊗mi.
Clearly M̂ has n rows and d2 columns and for any f1,f2 ∈ Fd it holds that(
M · f1

)
∗
(
M · f2

)
= M̂ ·

(
f1 ⊗ f2

)>
where ∗ is just the Schur product (or

componentwise product). Note that if t is the privacy threshold of S, then the

scheme Ŝ also has the t-privacy property. But in general it does not hold that
the Ŝ has r-reconstruction. However, suppose that Ŝ has (n− t)-reconstruction,
then S is said to have the t-strong multiplication property.

In particular, if S has the t-strong multiplication property, then for any player
set A of size at least n− t and for any index j = 1, . . . , ` there exists a row vector
r̂A,j such that r̂A,j ·

[(
MA · f1

)
∗
(
MA · f2

)]
= s1[j]s2[j] for any s1, s2 ∈ F`.



3 Packed Verifiable Secret-Sharing

In a Verifiable Secret-Sharing scheme (VSS) a dealer distributes shares of a secret
to the players in P in such a way that the honest players are guaranteed to get
consistent shares of a well-defined secret or agree that the dealer cheated. In this
section we present a packed verifiable secret sharing protocol that generalizes
and combines the ideas of packed secret sharing from [FY92] and VSS based
on polynomials in 2 variables from [BOGW88]. The protocol is not a full-blown
VSS, as it aborts as soon as anyone complains, but this is all we need for our
results. The proofs for all lemmas in this section can be found in the full version
of this paper [DDGN14].

The protocol can be based on any linear secret-sharing scheme S over F as
defined in Section 2. We assume an active adversary who corrupts t players and
possibly the dealer, and we assume that at least r players are honest. The pro-
tocol will secret-share ` column vectors s1, . . . , s` ∈ F`. In the following, F will
be a d× d matrix with entries in F and for 1 ≤ i ≤ n we will define hi = F ·m>i
and gi = mi ·F . It is then clear that mj ·hi = gj ·m>i for 1 ≤ i, j ≤ n. We will
use f b to denote the b-th column of F . The protocol is shown in Figure 3.

Packed Verifiable Secret-Sharing Protocol πV SS

1. Let s1, . . . , s` ∈ F` be the secrets to be shared. The dealer chooses a random
d× d matrix F with entries in F, subject to π`(f

b) = sb for any b = 1, . . . , `.
2. The dealer sends hi and gi to Pi.
3. Each player Pj sends gj ·m>

i to Pi, for i = 1, . . . , n.
4. Each Pi checks, for j = 1, . . . , n, that mj · hi equals the value received from

Pj . He broadcasts Accept if all checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , `, gj [b] as his share

of sb, otherwise the protocol aborts.

Fig. 3. The VSS protocol

For a column vector v ∈ Fd, we will say that v shares s ∈ F`, if π`(v) = s
and each honest player Pj holds mj · v. In other words, c = M · v forms a share
vector of s in exactly the way we defined in the previous section. We now show
some basic facts about πV SS :

Lemma 1 (completeness). If the dealer in πV SS is honest, then all honest
players accept and the column vector f b shares sb for any b = 1, . . . , `.

Lemma 2 (soundness). If the dealer in πV SS is corrupt, but no player rejects,
then for b = 1, . . . , `, there exists a column vector vb and a bit string sb such
that vb shares sb.5

5 Recall that this just means that π`(v
b) = sb and secret sharing with vb produces

the shares held by the honest parties in the protocol, i.e., (Mvb)[j] = gj [b] for all
honest Pj .



Finally, we show a strong privacy property guaranteeing that if we open any
linear function of sb’s, then no further information on the sb’s is released. To be
more precise about this, assume T : F` 7→ F`′ , where `′ ≤ `, is a surjective linear
function. By T (s1, . . . , s`), we mean a tuple (u1, . . . ,u`

′
) of column vectors in

F` s.t. ub[a] = T (s1[a], . . . , s`[a])[b]. Put differently, if we arrange the column
vectors s1, . . . , s` in a `×` matrix, then what happens is that we apply T to each
row, and let the ub’s be the columns in the resulting matrix. In a completely
similar way, we define a tuple of `′ column vectors of length d by the formula
T (f1, . . . ,f `) = (w1, . . . ,w`′). It is easy to see that if f1, . . . ,f ` share s1, . . . , s`,
then w1, . . . ,w`′ share u1, . . . ,u`

′
, since the players can apply T to the shares

they received in the first place, to get shares of u1, . . . ,u`
′
. In the following we

will abbreviate and use T (F ) to denote T (f1, . . . ,f `).
Now, by opening T (s1, . . . , s`), we mean that the (honest) dealer makes T (F )

public, which allows anyone to compute T (s1, . . . , s`). We want to show that, in
general, if T (s1, . . . , s`) is opened, then the adversary learns T (s1, . . . , s`) and
no more information about s1, . . . , s`. This is captured by Lemma 3. Suppose
that A = {Pi1 , . . . , Pit} is a set of players corrupted by the adversary.

Lemma 3 (privacy). Suppose the dealer in πV SS is honest. Now, in case 1
suppose he executes πV SS with input s1, . . . , s` and then opens T (s1, . . . , s`). In

case 2, he executes πV SS with input s̃1, . . . , s̃` and then opens T (s̃1, . . . , s̃`). If

T (s1, . . . , s`) = T (s̃1, . . . , s̃`), then the views of the adversary in the two cases
are identically distributed.

As the last step, we show an extra randomness property satisfied by the
share vectors obtained by Protocol πV SS . If C is a a × b matrix, define π`(C)
as the a × ` matrix given by the first ` columns of C and π`(C) as the ` × b
matrix given by the first ` rows of C. Note that, if V is a d × ` matrix such
that π`(V ) = (s1, . . . , s`), then the dealer might have chosen V as the first `
columns in his matrix F . We want to show that given the adversary’s view, any
V could have been chosen, as long as it is consistent with the adversary’s shares
of s1, . . . , s`.

Lemma 4 (randomness of the share vectors). Suppose that the dealer in
πV SS is honest and let A = {Pi1 , . . . , Pit} be a set of players corrupted by the
adversary. If we define GA as the matrix whose j-th row is gij , then all the d× `
matrices V such that π`(V ) = (s1, . . . , s`) and MA · V = π`(GA) are equally
likely, even given the adversary’s entire view.

For the applications of πV SS that we will show in Section 5, we will require
some new specialized forms of πV SS , which we describe in the following two
sections.

3.1 Applying a linear map to all the secrets

Let ϕ : F` → F` be a linear function. Suppose that the dealer executes two cor-
related instances of Protocol πV SS in the following way: first the dealer executes



πV SS with input s1, . . . , s` choosing matrix F in step 1, later on, he executes
πV SS with input ϕ(s1), . . . , ϕ(s`) under the condition that the matrix chosen
for the second instance, Fϕ, satisfies π`(f

ϕ,i) = ϕ(π`(f
i)) for i = 1, . . . , d. The

dealer sends to Pi vectors hi and gi and also the vectors hϕ,i = Fϕ · m>i ,
gϕ,i = mi · Fϕ. The protocol is shown in figure 4.

Packed Verifiable Secret-Sharing Protocol for ϕ, πϕV SS

1. Let s1, . . . , s` ∈ F` be the secrets to be shared. The dealer chooses two random
d×d matrices F , Fϕ subject to π`(f

b) = sb for any b = 1, . . . , ` and π`(f
ϕ,i) =

ϕ(π`(f
i)) for any i = 1, . . . , d.

2. The dealer sends hi, gi, h
ϕ,i and gϕ,i to Pi.

3. Each player Pj sends gj ·m>
i and gϕ,j ·m>

i to Pi, for i = 1, . . . , n.
4. Each Pi checks, for j = 1, . . . , n, that mj ·hi and mj ·hϕ,i are equal to the values

received from Pj and also that π`(h̃
i
) = ϕ

(
π`(h

i)
)
. He broadcasts Accept if all

checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , `, gj [b] and gϕ,j [b]

as his share respectively of sb and ϕ(sb), otherwise the protocol aborts.

Fig. 4. The VSS protocol for ϕ

The completeness of the πϕV SS protocol is trivial to prove. Moreover we will
show in the following lemma 5 and 6, that also the properties of soundness and
privacy are still valid for the πϕV SS protocol.

Lemma 5. If the dealer in πϕV SS is corrupt, but no player rejects, then for any
b = 1, . . . , ` there exist column vectors vb, vϕ,b and sb, sϕ,b such that vb shares
sb, vϕ,b shares sϕ,b and ϕ

(
sb
)

= sϕ,b.

Lemma 6. Suppose the dealer in πϕV SS is honest. Now, in case 1 suppose the
dealer executes πϕV SS with input s1, . . . , s` and in case 2, he executes πϕV SS with

input s̃1, . . . , s̃`. Let A = {Pi1 , . . . , Pit} be a set of players corrupted by the
adversary, then the adversary’s view in the two cases are identically distributed.

Finally we show the randomness property satisfied by the pair of share vectors
of si, ϕ(si) obtained by the πϕV SS protocol.

Lemma 7. Suppose that the dealer in πϕV SS is honest and let A = {Pi1 , . . . , Pit}
be a set of players corrupted by the adversary. If we define GA as the matrix
whose j-th row is gij and Gϕ,A as the matrix whose jth column is gϕ,ij , then
all the pairs of d × ` matrices (V, Vϕ) such that π`(V ) = (s1, . . . , s`), π`(Vϕ) =
(ϕ(s1), . . . , ϕ(s`)), MA ·V = π`(GA) and MA ·Vϕ = π`(Gϕ,A) are equally likely,
even given the adversary’s entire view.

3.2 Sharing an all zeros vector

We are interested in modifying Protocol πV SS in order to share several times
just the vector 0`, i.e. the all zeros column vector in F`. Suppose that the d× d



random matrix F chosen by the dealer has the first ` rows equal to zero. Let R
be the e× d matrix formed by the last e rows of F , then

hi = F ·m>i =
(
0, . . . , 0, R ·m>i

)>
gi = mi · F = (mi[`+ 1], . . . ,mi[d]) ·R

Given the special form of the vectors hi, the players can check not only that
the shares are consistent, but also that they are consistent with 0`. Define

h0,i =
(
R ·m>i

)>
, m0,i = (mi[`+ 1], . . . ,mi[d]) and M0,A as the matrix whose

rows are the vectors m0,i with Pi ∈ A. The protocol in this case is shown in
Figure 5.

Packed Verifiable Secret-Sharing Protocol for 0`’s π0
V SS

1. The dealer chooses a random e× d matrix R with entries in F,
2. The dealer sends h0,i and gi to Pi.
3. Each player Pj sends gj ·m>

i to Pi, for i = 1, . . . , n.
4. Each Pi checks that for j = 1, . . . , n, m0,j ·h0,i equals the value received from

Pj . He broadcasts Accept if all checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , `, gj [b] as his b-th

share of 0`, otherwise the protocol aborts.

Fig. 5. The VSS protocol for 0`’s

Again the completeness of Protocol π0
V SS is trivial. We will show the sound-

ness property in Lemma 8, while privacy is not required in this special case.

Lemma 8. If the dealer in π0
V SS is corrupt, but no player rejects, then there

exist column vectors v1, . . . ,v` each of which shares 0`.

Finally we show that the randomness property that is satisfied by the share
vectors obtained in Protocol πV SS is also satisfied by the share vectors of 0`

obtained by Protocol π0
V SS .

Lemma 9. Suppose that the dealer is honest and he executes Protocol π0
V SS.

Let A = {Pi1 , . . . , Pit} be a set of players corrupted by the adversary and define
GA as the matrix whose j-th row is gij , then all the e× ` matrices V such that
M0,A · V = π`(GA) are equally likely, even given the adversary’s entire view.

4 Low Overhead UC Commitments

In this section we introduce our construction of UC commitments with low over-
head. A main ingredient will be the n-player VSS scheme from the previous
section. We will use n as the security parameter. We will assume throughout
that the underlying linear secret sharing scheme S is such that the parameters
t and r are Θ(n), and furthermore that S has t-strong multiplication. We will
call such an S a commitment-friendly linear secret sharing scheme.



The protocol first does a set-up phase where the sender executes the VSS
scheme “in his head”, where the secrets are random strings r1, . . . , r`. The VSS
is secure against t corrupted players. Next, he chooses n seeds x1, . . . ,xn for a
pseudorandom generator G, and F t,nOT is used to transfer a subset of t seeds to
the verifier. Finally, the sender sends the view of each virtual VSS player to the
receiver, encrypted with G(x1), . . . , G(xn) as “one-time pads”. Note that the
receiver can decrypt t of these views and check that they are consistent, and
also he now knows t shares of each ri.

To commit to m ∈ {0, 1}`, the sender picks the next unused secret rη and
sends m + rη.

To open, the sender reveals m and the vector fη (from the VSS) that shares
rη. The receiver can now compute all shares of rη and check that they match
those he already knows.

Intuitively, this is binding because the sender does not know which VSS
players the receiver can watch. This means that the sender must make consis-
tent views for most players, or be rejected immediately. But if most views are
consistent, then the (partially encrypted) set of shares of rη that was sent dur-
ing set-up is almost completely consistent. Since the reconstruction threshold is
smaller than n by a constant factor this means that the prover must change many
shares to move to a different secret, and the receiver will notice this with high
probability, again because the sender does not know which shares are already
known to the receiver.

Hiding follows quite easily from security of the PRG G and privacy of the
VSS scheme, since the receiver only gets t shares of any secret.

The Commit and Reveal phases of protocol πHCOM are described in Fig-
ure 6 while the necessary steps for addition, multiplication and linear function
evaluation are described separately in Section 5 for the sake of clarity.

The proof of the following theorem can be found in the full version of this
paper [DDGN14].

Theorem 4. Let G : {0, 1}`PRG → {0, 1}2(`+e) be a pseudrandom generator and
let πV SS be a packed verifiable secret sharing scheme as described in Section 3
with parameters (M, r, t), based on a commitment-friendly secret sharing scheme.
Then protocol πHCOM UC-realizes FHCOM in the F t,nOT (`PRG)-hybrid model in
the presence of static, active adversaries.

Complexity It is evident that in the set-up phase, or later, Ps could execute
any number of instances of the VSS and send the resulting views of players
encrypted with the seeds {xi}, as long as we have a PRG with sufficient stretch.
This way we can accommodate as many commitments as we want, while only
using the OT-functionality once.6 Therefore, the amortised cost of a commitment

6 It is not hard to see that since a corrupt Ps looses as soon as Pr sees a single inconsis-
tency, Ps cannot get any advantage from executing a VSS after other commitments
have been done.



Protocol πHCOM in the F t,nOT (`PRG)-hybrid model

Let G : {0, 1}`PRG → {0, 1}2(`+e) be a pseudorandom generator and let πV SS be a
packed verifiable secret sharing scheme as described in Section 3 with parameters
(M, r, t) based on a commitment-friendly linear secret sharing scheme. A sender
Ps and a receiver Pr interact between themselves and with F t,nOT (`PRG) as follows:

Setup Phase: At the beginning of the protocol Ps and Pr perform the following
steps and then wait for inputs.

1. For i = 1, . . . , n, Ps uniformly samples a random string xi ∈ {0, 1}`PRG . Ps
sends (sender, sid, ssid, x1, . . . , xn) to F t,nOT (`PRG).

2. Pr uniformly samples a set of t indexes c1, . . . , ct ← [1, n] and sends
(receiver, sid, ssid, c1, . . . , ct) to F t,nOT .

3. Upon receiving (received, sid, ssid) from F t,nOT , Ps uniformly samples n random
strings ri ← {0, 1}`, i = 1, . . . , ` and internally runs πV SS using r1, . . . , rn as
input, constructing n strings ((hi)>, gi), i = 1, . . . , n of length 2(` + e) from

the vectors generated by πV SS . Ps computes ((h̃
i
)>, g̃i) = ((hi)>, gi) +G(xi)

and sends (sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)) to Pr.

4. Upon receiving (received, sid, ssid,xc1 , . . . ,xct) from F t,nOT and

(sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)) from Ps, Pr computes ((hcj )>, gcj ) =

((h̃
cj

)>, g̃cj ) − G(xcj ), 1 ≤ j ≤ t and uses the procedures of πV SS
to check that the shares gc1 , . . . , gct are valid, i.e. it checks that
mj · hi = gj · m>

i for i, j ∈ {c1, . . . , ct}. If all shares are valid Pr stores
(ssid, sid, ((hc1)>, gc1), . . . , ((hct)>, gct)), otherwise it halts.

Commit Phase:

1. Upon input (commit, sid, ssid, Ps, Pr,m), Ps chooses an unuseda random string
rη, computes m̃ = m + rη and sends (sid, ssid, η, m̃) to Pr.

2. Pr stores (sid, ssid, m̃) and outputs (receipt, sid, ssid, Ps, Pr).

Reveal Phase:

1. Upon input (reveal, sid, ssid, Ps, Pr), to reveal a message m, Ps reveals the
random string rη by sending (sid, ssid,m,fη) to Pr.

b

2. Pr receives (sid, ssid, η,m,fη), computes Mfη = (g1[η], . . . , gn[η])>, checks
that gj [η] = gj [η] for j ∈ {c1, . . . , ct} and that m = m̃ − rη. If the shares
pass this check, Pr outputs (reveal, sid, ssid, Ps, Pr,m). Otherwise, it rejects
the commitment and halts.

a We say that a string rη is unused if it has not been selected by Ps for use in any
previous commitment.

b Recall that fη denotes the η-th column of F , π`(f
η) = rη and that Mfη =

(g1[η], . . . , gn[η])>, i.e. fη determines the shares of rη generated in the setup
phase.

Fig. 6. Protocol πHCOM in the F t,nOT (`PRG)-hybrid model



is essentially only what we pay after the OT has been done. We now consider
what the cost will be per committed bit in communication and computation.
Using the linear secret sharing scheme from [CDP12], we can get a commitment
friendly secret sharing scheme over a constant size field, so this means that the
communication overhead is constant.

As for computation, under plausible complexity assumptions, there exists a
PRG where we pay only a constant number of elementary bit operations per
output bit (see, e.g., [VZ12]), so the cost of computing the PRG adds only a
constant factor overhead for both parties. As for the computation of Pr, let us
consider the set-up phase first. Let C be the set of players watched by Pr, and let
GC , HC be matrices where we collect the hi and gj ’s they have been assigned.
Then what Pr wants to check is that MCHC = GCM

>
C . In [DZ13], a probabilistic

method is described for checking such a relation that has complexity O(n2) field
operations and fails with only negligible probability. This therefore also adds only
a constant factor overhead because one VSS instance allows commitment to `2

bits which is Θ(n2). Finally, in the reveal phase Pr computes Mfη and verifies
a few coordinates. If one can check Θ(n) such commitments simultaneously,
the same trick from [DZ13] can be used, and we get an overall constant factor
overhead for Pr. We note that checking many commitments in one go is exactly
what we need for the application to non-interactive proofs we describe later.

For Ps, using the scheme from [CDP12], there is no way around doing stan-
dard matrix products which can be done in O(n2+σ) complexity for σ < 1. This
gives us overhead nσ per committed bit.

Finally, if we use instead standard packed secret sharing based on polynomi-
als, the field size must be linear in n, but on the other hand we can use FFT
algorithms in our computations. This gives a poly-logarithmic overhead for both
players in communication and computation.

5 Homomorphic Properties

In this section, we show how to implement the add, multiply and linear function
commands in FHCOM. As before, we assume a commitment-friendly linear secret
sharing scheme S.

We first need some notation: consider a single commitment as we defined it
in the previous section and note that the data pertaining to that commitment
consists of a vector f and the committed value m held by Ps, whereas Pr holds
m + π`(f) as well as a subset of the coordinates of Mf . We will refer to the
vector m + π`(f) as the message field of the commitment.

We will use comS(m,f) as a shorthand for all this data, where the subscript
S refers to the fact that the matrix M of S defines the relation between the
data of Ps and that of Pr. Whenever we write comS(m,f), this should also be
understood as stating that the players in fact hold the corresponding data.

The expression comS(m,f)+comS(m′,f ′) means that both players add the
corresponding vectors that they hold of the two commitments, and store the



result. It is easy to see that we have

comS(m,f) + comS(m′,f ′) = comS(m + m′,f + f ′)

Furthermore, comS(m,f) ∗ comS(m′,f ′) means that the players compute the
coordinate-wise product of corresponding vectors they hold and store the result.
We have

comS(m,f) ∗ comS(m′,f ′) = comŜ(m ∗m′,f ⊗ f ′)

Note that Ŝ appears in the last term. Recall that the coordinates of f ⊗ f ′

are ordered such that indeed the vector π`(f) ∗ π`(f ′) appears in the first `
coordinates of f ⊗ f ′.

Now, in order to support the additional commands, we will augment the set-
up phase of the protocol: in addition to πV SS , Ps will execute π0

V SS and πϕV SS .

For π0
V SS we use Ŝ as the underlying linear secret sharing scheme, where the

other VSS schemes use S. Furthermore, we need an instance of πϕV SS for each
linear function ϕ we want to support. As before, all the views of the virtual
players are sent to Pr encrypted under the seeds xi. Pr checks consistency of the
views as well as the special conditions that honest players check in π0

V SS and
πϕV SS .

Note that if one instance of πV SS has been executed, this allows us to extract
data for ` commitments. Likewise, an execution of π0

V SS allows us to extract `
commitments of form comŜ(0`,u) for a random u, where by default we set the
message field to 0. Finally, having executed πϕV SS , we can extract ` pairs of
form comS(r,fr), comS(ϕ(r),f ′r) where r is random such that r = π`(fr) and
ϕ(r) = π`(f

′
r). Again, for these commitments we set the message field to 0. The

protocols are shown in Figure 7.

Generalizations In the basic case we are committing to bit strings, and we
note that we can trivially get negation of bits using the operations we already
have: Given comS(m,f), Ps commits to 1` so we have comS(1`,f ′), we output
comS(m,f) + comS(1`,f ′) and Ps opens comS(1`,f ′) to reveal 1`.

If we do the protocol over a larger field than F2, it makes sense to also
consider multiplication of a commitment by a public constant. This is trivial to
implement, both parties simply multiply their respective vectors by the constant.

Proof intution The protocol in Figure 7 can be proven secure by essentially
the same techniques we used for the basic commitment protocol, but we need
in addition the specific properties of πV SS , π0

V SS and πϕV SS . First of all, it is
clear that in the case when the sender is corrupted and the receiver is honest,
a simulator for this protocol can extract the messages (and share vectors) in
the commitments by following the same procedure as the simulator for the basic
commitment protocol. The specific properties of the VSS protocols πV SS , π0

V SS

and πϕV SS come into play when constructing a simulator for the case when the
sender is honest and the receiver is corrupted. More details are presented in the
full version of this paper [DDGN14].



Protocols for addition, multiplication and linear operations

Setup Phase: Is augmented by executions of π0
V SS and πϕV SS as described in the

text. Throughout, opening a commitment comS(m,f) means that Ps sends m,f
and Pr verifies, as in πHCOM .
Addition: Given commitments comS(m,f), comS(m′,f ′), output

comS(m,f) + comS(m′,f ′) = comS(m + m′,f + f ′).

Multiplication: Given commitments comS(a,fa), comS(b,f b), and comS(c,fc)
extract the next unused commitment from π0

V SS , comŜ(0`,u). Form a default com-
mitment comS(1`,f1), where π`(f1) = 1` and the other coordinates are 0. This can
be done by only local computation. Ps opens the following commitment to reveal
0`:

comS(a,fa) ∗ comS(b,f b)− comS(c,fc) ∗ comS(1`,f1) + comŜ(0`,u) =

comŜ(a ∗ b− c,fa ⊗ f b − fc ⊗ f1 + u)

Linear Function Given commitment comS(m,f), extract from πϕV SS the next
unused pair comS(r,fr), comS(ϕ(r),f ′

r). Ps opens comS(m,f) − comS(r,fr) to
reveal m − r. Both parties compute ϕ(m − r) and form a vector v such that
π`(v) = ϕ(m− r) and the rest of the entries are 0. Output

comS(ϕ(r),f ′
r) + comS(ϕ(m− r),v) = comS(ϕ(m),f ′

r + v)

Fig. 7. Protocol for homomorphic operations on commitments.

6 Applications

Two-party One-sided Functionalities In this section we consider applica-
tions of our implementation of FHCOM. We will implement a one-sided function-
ality where only one party Ps has input x and some verifier is to receive output
y, where y = C(x) for a Boolean circuit C.

The basic idea of this is straightforward: Ps commits to each bit in x and to
each output from a gate in C that is produced when x is the input. Now we can
use the commands of FHCOM to verify for each gate that the committed output
is the correct function of the inputs. Finally, Ps opens the commitment to the
final output to reveal y.

However, we would like to exploit the fact that our commitments can contain
`-bit strings and support coordinate-wise operations on `-bit strings in parallel.
To this end, we can exploit the construction found in [DIK10] (mentioned in the
introduction), that allows us to construct from C a new circuit C ′ computing
the same function as C, but where C ′ can be computed using only operations
in parallel on `-bit blocks as well as log ` different permutations of the bits in a
block. The construction always works, but if C is well-formed, C ′ will be of size
O(log(|C|)|C|).

With these observations, we can use FHCOM operations to compute C ′ instead
of C. The difference to the first simplistic idea is that now every position in
a block is used for computation. Hence, the final protocol is non-interactive,



assuming the very first step doing the OT has been done. This is because Ps,
since he knows C, can predict which multiplications and permutation operations
Pr will need to verify, so he can compute the required opening information for
commitments and send them immediately. Moreover, if we use the linear secret
sharing scheme from [CDP12] as the basis for commitments, then the size of the
entire proof as well as of the verifier’s computation will be of size O(|C| log |C|)
for well formed circuits. If C is regular we will get complexity O(|C|)), since we
can implement the rerouting between layers by evaluating the block functions
directly. Thus we get the results claimed in Theorem 1.

Multiparty Computation Due to space constraints the material on MPC
based on our VSS (Theorem 2) is left for the full version of this paper [DDGN14].

String Commitment with Partial Individual Opening Here we wish to
implement a functionality FN,rcom that first allows Ps to commit to N bits and then
to open up to r bits individually, where he can decide adaptively which bits to
open. We do this in the correlated random bits model where a functionality
is assumed that initially gives bit strings to Ps and Pr with some prescribed
joint distribution, the implementation must be statistically secure with error
probability 2−k.

Note that our protocol can be seen as a protocol in this model if we let
players start from the strings that are output by the PRG. In this case we get
statistically secure commitments with error probability 2−Θ(`) (since ` is Θ(n)).
So we can choose ` to be Θ(k) and get the required error probability. Then one
of our commitments can be realised while consuming O(k) = O(`) correlated
random bits.

Note that we can open a single bit in a commitment to a as follows: to
open the j’th bit aj the prover commits to ej , a vector with 1 in position j
and 0 elsewhere and to c which has aj in position j and 0’s elsewhere. Now the
multiplication check is done on commitments to a, ej and c, and Ps opens ej
and c. Pr does the obvious checks and extracts aj . It is trivial to show that this
is a secure way to reveal only aj and we consume O(`) correlated random bits
since only a constant number of commitments are involved.

Now we can implement FN,rcom with N = `u and r = `u−1 for some u, and the
implementation is done by having Ps commit to the N bits in the normal way
using r commitments, and when opening any single bit, we execute the above
procedure. This consumes a total of O(N + r`) = O(N) correlated random
bits. Thus the consumption per bit committed to is O(1). Furthermore, we have
r = N (u−1)/u = N1−1/u, so we get the result of Theorem 3 by choosing a large
enough u.

Acknowledgements

We thank Yuval Ishai for pointing out interesting applications of our results and
Ignacio Cascudo for clarifying key facts about algebraic geometric secret sharing
schemes.



References

[App13] Benny Applebaum. Pseudorandom generators with long stretch and low lo-
cality from random local one-way functions. SIAM Journal on Computing,
42(5):2008–2037, 2013.

[BBDK00] Amos Beimel, Mike Burmester, Yvo Desmedt, and Eyal Kushilevitz. Com-
puting functions of a shared secret. SIAM J. Discrete Math., 13(3):324–345,
2000.

[BCPV13] Olivier Blazy, Celine Chevalier, David Pointcheval, and Damien Vergnaud.
Analysis and improvement of lindells uc-secure commitment schemes. In
Michael Jacobson, Michael Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, Applied Cryptography and Network Security, volume
7954 of Lecture Notes in Computer Science, pages 534–551. Springer Berlin
Heidelberg, 2013.

[BCR86] G. Brassard, Claude Crepeau, and J.-M. Robert. Information theoretic re-
ductions among disclosure problems. In Foundations of Computer Science,
1986., 27th Annual Symposium on, pages 168–173, Oct 1986.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In STOC, pages 1–10, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145. IEEE Computer Society,
2001.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 316–334. Springer, 2000.

[CDP12] Ronald Cramer, Ivan Damg̊ard, and Valerio Pastro. On the amortized
complexity of zero knowledge protocols for multiplicative relations. In
Adam Smith, editor, ICITS, volume 7412 of Lecture Notes in Computer
Science, pages 62–79. Springer, 2012.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 19–40. Springer, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In STOC,
pages 494–503, 2002.

[DDGN14] Ivan Damg̊ard, Bernardo David, Irene Giacomelli, and Jesper Buus Nielsen.
Compact VSS and efficient homomorphic UC commitments. Cryptology
ePrint Archive: Report 2014/370, 2014. https://eprint.iacr.org/2014/370.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable
commitment schemes. In Lawrence L. Larmore and Michel X. Goemans,
editors, STOC, pages 426–437. ACM, 2003.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation.
In Advances in Cryptology-CRYPTO 2006, pages 501–520. Springer, 2006.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam Smith. Scalable multiparty computation with nearly optimal work
and resilience. In Advances in Cryptology–CRYPTO 2008, pages 241–261.
Springer, 2008.



[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
Proceedings of EuroCrypt, pages 445–465, Springer Verlag 2010.

[DNO10] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. On the neces-
sary and sufficient assumptions for uc computation. In Theory of Cryptog-
raphy, pages 109–127. Springer, 2010.

[DZ13] Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In Theory of Cryptography, pages
621–641. Springer, 2013.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen,
Peter Sebastian Nordholt, and Claudio Orlandi. Minilego: Efficient secure
two-party computation from general assumptions. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture
Notes in Computer Science, pages 537–556. Springer, 2013.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). In STOC, pages 699–710. ACM, 1992.

[GIKW14] Juan Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee. On the
complexity of uc commitments. To appear in EuroCrypt 2014, 2014.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In Cynthia Dwork, editor,
STOC, pages 433–442. ACM, 2008.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptogra-
phy on oblivious transfer–efficiently. In Advances in Cryptology–CRYPTO
2008, pages 572–591. Springer, 2008.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments
based on the ddh assumption. In Kenneth G. Paterson, editor, EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 446–
466. Springer, 2011.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology,
4(2):151–158, 1991.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries.
In Michael Wiener, editor, Advances in Cryptology CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 573–590. Springer Berlin
Heidelberg, 1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
Advances in Cryptology CRYPTO 2008, volume 5157 of Lecture Notes in
Computer Science, pages 554–571. Springer Berlin Heidelberg, 2008.

[RTWW11] Samuel Ranellucci, Alain Tapp, Severin Winkler, and Jürg Wullschleger.
On the efficiency of bit commitment reductions. In Advances in Cryptology–
ASIACRYPT 2011, pages 520–537. Springer, 2011.

[VZ12] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and sim-
plifying pseudorandom generator constructions. In Proceedings of the 44th
symposium on Theory of Computing, pages 817–836. ACM, 2012.


