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Abstract. The Schnorr signature scheme is the most efficient signature scheme
based on the discrete logarithm problem and a long line of research investigates
the existence of a tight security reduction for this scheme in the random oracle.
Almost all recent works present lower tightness bounds and most recently Seurin
(Eurocrypt 2012) showed that under certain assumptions the non-tight security
proof for Schnorr signatures in the random oracle by Pointcheval and Stern (Eu-
rocrypt 1996) is essentially optimal. All previous works in this direction rule out
tight reductions from the (one-more) discrete logarithm problem. In this paper
we introduce a new meta-reduction technique, which shows lower bounds for the
large and very natural class of generic reductions. A generic reduction is inde-
pendent of a particular representation of group elements and most reductions in
state-of-the-art security proofs have this desirable property. Our approach shows
unconditionally that there is no tight generic reduction from any natural com-
putational problem Π defined over algebraic groups (including even interactive
problems) to breaking Schnorr signatures, unless solving Π is easy.

Keywords: Schnorr signatures, black-box reductions, generic reductions, alge-
braic reductions, tightness.

1 Introduction

The security of a cryptosystem is nowadays usually confirmed by giving a security
proof. Typically, such a proof describes a reduction from some (assumed-to-be-)hard
computational problem to breaking a defined security property of the cryptosystem. A
reduction is considered as tight, if the reduction solving the hard computational prob-
lem has essentially the same running time and success probability as the attacker on
the cryptosystem. Essentially, a tight reduction means that a successful attacker can be
turned into an efficient algorithm for the hard computational problem without any sig-
nificant increase in the running time and/or significant loss in the success probability.3

The tightness of a reduction thus determines the strength of the security guarantees pro-
vided by the security proof: a non-tight reduction gives weaker security guarantees than
a tight one. Moreover, tightness of the reduction affects the efficiency of the cryptosys-
tem when instantiated in practice: a tighter reduction allows to securely use smaller
parameters (shorter moduli, a smaller group size, etc.). Therefore it is a very desirable
property of a cryptosystem to have a tight security reduction.

3 Usually even a polynomially-bounded increase/loss is considered as significant, if the polyno-
mial may be large. An increase/loss by a small constant factor is not considered as significant.



In the domain of digital signatures tight reductions are known for many funda-
mental schemes, like Rabin/Williams signatures (Bernstein, Eurocrypt 2008 [5]), many
strong-RSA-based signatures (Schäge, Eurocrypt 2011 [25]), and RSA Full-Domain
Hash (Kakvi and Kiltz, Eurocrypt 2012 [18]). The Schnorr signature scheme [26, 27]
is one of the most fundamental public-key cryptosystems. Pointcheval and Stern have
shown that Schnorr signatures are provably secure, assuming the hardness of the dis-
crete logarithm (DL) problem [22], in the Random Oracle Model (ROM) [3]. However,
the reduction of Pointcheval and Stern from DL to breaking Schnorr signatures is not
tight: it loses a factor of q in the time-to-success ratio, where q is the number of random
oracle queries performed by the forger.

A long line of research investigates the existence of tight security proofs for Schnorr
signatures. At Asiacrypt 2005 Paillier and Vergnaud [21] gave a first lower bound show-
ing that any algebraic reduction (even in the ROM) converting a forger for Schnorr sig-
natures into an algorithm solving some computational problem Π must lose a factor
of at least q1/2. Their result is quite strong, as they rule out reductions even for ad-
versaries that do not have access to a signing oracle and receive as input the message
for which they must forge (UF-NM, see Section A for a formal definition). However,
their result also has some limitations: It holds only under the interactive one-more dis-
crete logarithm assumption, they only consider algebraic reductions, and they only rule
out tight reductions from the (one-more) discrete logarithm problem. At Crypto 2008
Garg et al. [15] refined this result, by improving the bound from q1/2 to q2/3 with a new
analysis and show that this bound is optimal if the meta-reduction follows a particular
approach for simulating the forger. At Eurocrypt 2012 Seurin [28] finally closed the
gap between the security proof of [22] and known impossibility results, by describing
an elaborate simulation strategy for the forger and providing a new analysis. All previ-
ous works [21, 15, 28] on the existence of tight security proofs for Schnorr signatures
have the following in common:

1. They only rule out the existence of tight reductions from certain strong computa-
tional problems, namely the (one-more) discrete logarithm problem [1]. Reduction
from weaker problems like, e.g., the computational or decisional Diffie-Hellman
problem (CDH/DDH) are not considered.

2. The impossibility results are themselves only valid under the very strong OMDL
hardness assumption.

3. They hold only with respect to a limited (but natural) class of reductions, so-called
algebraic reductions.

It is not unlikely that first the inexistence of a tight reduction from strong compu-
tational problems is proven, and later a tight reduction from some weaker problem is
found. A concrete recent example in the domain of digital signatures where this has
happened is RSA Full-Domain Hash (RSA-FDH) [4]. First, at Crypto 2000 Coron [8]
described a non-tight reduction from solving the RSA-problem to breaking the security
of RSA-FDH, and at Eurocrypt 2002 [9] showed that under certain conditions no tighter
reduction from RSA can exist. Later, at Eurocrypt 2012, Kakvi and Kiltz [18] gave a
tight reduction from solving a weaker problem, the so-called Phi-Hiding problem. The
leverage used by Kakvi and Kiltz to circumvent the aforementioned impossibility re-
sults was to assume hardness of a weaker computational problem. As all previous works



rule out only tight reductions from strong computational problems like DL and OMDL,
this might happen again with Schnorr signatures and the following question was left
open for 25 years:

Does a tight security proof for Schnorr signatures based on any weaker com-
putational problem exist?

Our contribution In this work we answer this question in the negative ruling out the
existence of tight reductions in the random oracle model for virtually all natural compu-
tational problems defined over abstract algebraic groups. Like previous works, we con-
sider universal unforgeability under no-message attacks (UF-NM-security). Moreover,
our results hold unconditionally. In contrast to previous works, we consider generic re-
ductions instead of algebraic reductions, but we believe that this restriction is marginal:
The motivation of considering only algebraic reductions from [21] applies equally to
generic reductions. In particular, to the best of our knowledge all known examples of
algebraic reductions are generic.

Our main technical contribution is a new approach for the simulation of a forger in
a meta-reduction, i.e., “a reduction against the reduction”, which differs from previous
works [21, 15, 28] and which allows us to show the following main result:

Theorem (informal) For almost any natural computational problem Π , there is no
tight generic reduction from solving Π to breaking the universal unforgeability under
no-message attacks of Schnorr signatures in the random oracle model.

Technical approach. We begin with the hypothesis that there exists a tight generic re-
ductionR from some hard (and possibly interactive) problemΠ to the UF-NM-security
of Schnorr signatures. Then we show that under this hypothesis there exists an efficient
algorithmM, a meta-reduction, which efficiently solves Π . This implies that the hy-
pothesis is false. The meta-reductionM =MR runs R as a subroutine, by efficiently
simulating the forger A forR.

All previous works in this direction [21, 15, 28] followed essentially the same ap-
proach. The difficulty with meta-reductions is thatM =MR must efficiently simulate
the forger A for R. Previous works resolved this by using a discrete logarithm oracle
provided by the OMDL assumption, which allows to efficiently compute valid signa-
tures in the simulation of forger A. This is the reason why all previous results are only
valid under the OMDL assumption, and were only able to rule out reductions from the
discrete log or the OMDL problem. To overcome these limitations, a new simulation
technique is necessary.

We revisit the simulation strategy of A applied in known meta-reductions, and put
forward a new technique for proving impossibility results. It turns out that considering
generic reductions provides a new leverage to simulate a successful forger efficiently,
essentially by suitably re-programming the group representation to compute valid sig-
natures. The technical challenge is to prove that the reduction does not notice that the
meta-reduction changes the group representation during the simulation, except for some
negligible probability. We show how to prove this by adopting the “low polynomial de-
gree” proof technique of Shoup [30], which originally was introduced to analyze the



complexity of certain algorithms for the discrete logarithm problem, to the setting con-
sidered in this paper.

This new approach turns out to be extremely powerful, as it allows to rule out re-
ductions from any (even interactive) representation-invariant computational problem.
Since almost all common hardness assumptions in algebraic groups (e.g., DL, CDH,
DDH, OMDL, DLIN, etc.) are based on representation-invariant computational prob-
lems, we are able to rule out tight generic reductions from virtually any natural compu-
tational problem, without making any additional assumption. Even though we apply it
specifically to Schnorr signatures, the overall approach is general. We expect that it is
applicable to other cryptosystems as well.

Generic reductions vs. algebraic reductions Similar to algebraic reductions, a generic
reduction performs only group operations. The main difference is that the sequence of
group operations performed by an algebraic reduction may (but, to our best knowledge,
in all known examples does not) depend on a particular representation of group ele-
ments. A generic reduction, however, is required to work essentially identical for any
representation of group elements. Generic reductions are by definition more restrictive
than algebraic ones, however, we explain below why we do not consider this restriction
as very significant.

An obvious question arising with our work is the relation between algebraic and
generic reductions. Is a lower bound for generic reductions much less meaningful than
a bound for algebraic reductions? We argue that the difference is not very significant.
The restriction to algebraic reductions was motivated by the fact most reductions in
known security proofs treat the group as a black-box, and thus are algebraic [21, 15,
28]. However, the same motivation applies to generic reductions as well, with exactly
the same arguments. In particular, virtually all examples of algebraic reductions in the
literature are also generic.

The vast majority of reductions in common security proofs for group-based cryp-
tosystems treats the underlying group as a black-box (i.e., works for any representation
of the group), and thus is generic. This is a very desirable feature, because then the
cryptosystem can securely be instantiated with any group in which the underlying com-
putational problem is hard. In contrast, representation-specific security proofs would
require to re-prove security for any particular group representation the scheme is used
with. Therefore considering generic reductions seems very reasonable.

Generic reductions vs. security proofs in the generic group model. One might won-
der whether our result is implied by previous works (in particular by [28]), since we are
considering generic reductions, because for generic algorithms most non-trivial compu-
tational problems in algebraic groups are equivalent to the discrete logarithm problem.
The conclusion that therefore our result is implied by previous works is however not
correct.

Note that a reduction does not solve the computational problem alone. It has access
to an attacker A. The algorithm which solves the computational problem is a composi-
tionR(A) ofR andA. If bothR andA were generic algorithms, then the composition
R(A) would also be a generic algorithm, and thus our results would indeed be trivial.
But note that we do not require A to be generic. Therefore also the composition R(A)



is not a generic algorithm, thus the generic equivalence of DLOG and other problems
does not apply. See Section 2.4 and Figure 2 for further explanation.

Further related work. Dodis et al. [10] showed that it is impossible to reduce any com-
putational problem to breaking the security of RSA-FDH in a model where the RSA-
group Z∗N is modeled as a generic group. This result extends [11]. Coron [9] considered
the existence of tight security reductions for RSA-FDH signatures [4]. This result was
generalized by Dodis and Reyzin [12] and later refined by Kiltz and Kakvi [18].

In the context of Schnorr signatures, Neven et al. [20] described necessary condi-
tions the hash function must meet in order to provide existential unforgeability under
chosen-message attacks (EUF-CM), and showed that these conditions are sufficient if
the forger (not the reduction!) is modeled as a generic group algorithm.

In [13] Fischlin and Fleischhacker presented a result also about the security of
Schnorr signatures which is orthogonal to our result. They show, again under the OMDL
assumption, that a large class of reductions has to rely on re-programming the random
oracle. Essentially they prove that in the non-programmable ROM [14] no reduction
from the discrete logarithm problem can exist that invokes the adversary only ever on
the same input. This class is limited, but encompasses all forking-lemma style reduc-
tions used to prove Schnorr signatures secure in the programmable ROM. As said be-
fore, the result is orthogonal to our main result, as it considers reductions in the non-
programmable ROM.

2 Preliminaries

Notation. If S is a set, we write s ←$ S to denote the action of sampling a uniformly
random element s from S. If A is a probabilistic algorithm, we denote with a←$ A the
action of computing a by running A. We denote with ∅ the empty string, the empty set,
as well as the empty list, the meaning will always be clear from the context. We write
[n] to denote the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.

2.1 Schnorr Signatures

Let G be a group of order p with generator g, and let H : G × {0, 1}k → Zp be a
hash function. The Schnorr signature scheme [26, 27] consists of the following efficient
algorithms (Gen,Sign,Vrfy).
Gen(g): The key generation algorithm takes as input a generator g of G. It chooses

x←$ Zp, computes X := gx, and outputs (X,x).
Sign(x,m): The input of the signing algorithm is a private key x and a message m ∈
{0, 1}k. It chooses a random integer r ←$ Zp, sets R := gr as well as c :=
H(R,m), and computes y := x · c+ r mod p.

Vrfy(X,m, (R, y)): The verification algorithm outputs the truth value of gy ?
= Xc ·R,

where c = H(R,m).

Remark 1. Note that the above description of Schnorr signatures deviates slightly from
the original description in [26, 27], where a signature consists of (c, y) instead of (R, y),



which reduces the length of signatures significantly. However, note that it is possible
to compute R from (c, y) as R := gy · X−c. Similarly, it is possible to compute c
from (R,m) as c := H(R,m). Thus both representations are equivalent. In particular,
changing between these two representation does not affect our results.

2.2 Computational Problems

Let G be a cyclic group of order p and g ∈ G a generator of G. We write desc(G, g)
to denote the list of group elements desc(G, g) = (g, g2, . . . , gp) ∈ Gp. We say that
desc(G, g) is the enumerating description of G with respect to g.

Definition 1. A computational problem Π in G is specified by three (computationally
unbounded) procedures Π = (GΠ ,SΠ ,VΠ), with the following syntax.
GΠ(desc(G, g)) takes as input an enumerating description of G, and outputs a state st

and a problem instance (the challenge) C = (C1, . . . , Cu, C
′) ∈ Gu×{0, 1}∗. We

assume in the sequel that at least C1 is a generator of G.
SΠ(desc(G, g), st,Q) takes as input desc(G, g), a state st, and Q = (Q1, . . . , Qv,

Q′) ∈ Gv × {0, 1}∗, and outputs (st′, A) where st′ is an updated state and A =
(A1, . . . , Aν , A

′) ∈ Gν × {0, 1}∗.
VΠ(desc(G, g), st, S, C) takes as input (desc(G, g), st, C) as defined above, and S =

(S1, . . . , Sw, S
′) ∈ Gw × {0, 1}∗. It outputs 0 or 1.

If SΠ always responds with A = ∅ (i.e., the empty string), then we say that Π is
non-interactive. Otherwise it is interactive. The exact description and distribution of
st, C,Q,A, S depends on the considered computational problem.

Definition 2. An algorithm A (ε, t)-solves the computational problem Π if A has run-
ning time at most t and wins the following interactive game against a (computationally
unbounded) challenger C with probability at most ε, where the game is defined as fol-
lows:
1. The challenger C generates an instance of the problem (st, C)←$ GΠ(desc(G, g))

and sends C to A.
2. A is allowed to issue an arbitrary number of oracle queries to C. To this end, A

provides C with a query Q. C runs (st′, A)←$ SΠ(desc(G, g), st,Q), updates the
state st := st′, and responds with A.

3. Finally, algorithm A outputs a candidate solution S. The algorithm A wins the
game (i.e., solves the computational problem correctly) iff VΠ(desc(G, g), st, C,
S) = 1.

Example 1. The discrete logarithm problem in G is specified by the following proce-
dures. GΠ(desc(G, g)) outputs (st, C) with st = ∅ and C = (g, h), where h ←$ G
is a random group element. SΠ(desc(G, g), st,Q) always outputs (st′, A) = (st, ∅).
VΠ(desc(G, g), st, C, S) interprets S = S′ ∈ {0, 1}∗ canonically as an integer in Zp,
and outputs 1 iff h = gS

′
.

Example 2. We describe the u-one-more discrete logarithm problem (u-OMDL) [2, 1]
in G with the following algorithms. GΠ(desc(G, g)) outputs (st, C) where C = (C1,
. . . , Cu) ←$ Gu consists of u random group elements and st = 0. The algorithm



SΠ(desc(G, g), st,Q) takes as input state st and group element Q ∈ G. It responds
with st′ := st + 1 and A = A′ ∈ {0, 1}∗, where A′ canonically interpreted as an
integer in Zp satisfies gA

′
= Q. The verification algorithm VΠ(desc(G, g), st, C, S)

interprets S = (S′1, . . . , S
′
u) ∈ {0, 1}∗ canonically as a vector of u integers in Zp, and

outputs 1 iff st < u and gi = gS
′
i for all i ∈ [u].

Example 3. The UF-NM-forgery problem for Schnorr signatures in G with hash func-
tion H is specified by the following procedures. GΠ(desc(G, g)) outputs (st, C) with
st = m and C = (g,X,m) ∈ G2 × {0, 1}k, where X = gx for x ←$ Zp and
m ←$ {0, 1}k. SΠ(desc(G, g), st,Q) always outputs (st′, A) = (st, ∅). The verifi-
cation algorithm VΠ(desc(G, g), st, C, S) parses S as S = (R, y) ∈ G × Zp, sets
c := H(R, st), and outputs 1 iff Xc ·R = gy .

2.3 Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight
reduction from as large a class of computational problems as possible. Ideally, we want
to rule out the existence of a tight reduction from any computational problem that meets
Definition 1. However, it is easy to see that this is not achievable in this generality: as
Example 3 shows, the problem of forging Schnorr signatures itself is a problem that
meets Definition 1. However, of course there exists a trivial tight reduction from the
problem of forging Schnorr signatures to the problem of forging Schnorr signatures!
Therefore we need to restrict the class of considered computational problems to exclude
such trivial, artificial problems.

We introduce the notion of representation-invariant computational problems. This
class of problems captures virtually any reasonable computational problem defined over
an abstract algebraic group, even interactive assumptions, except for a few extremely
artificial problems. In particular, the problem of forging Schnorr signatures is not con-
tained in this class (see Example 5 below).

Intuitively, a computational problem is representation-invariant, if a valid solution
to a given problem instance remains valid even if the representation of group elements
in challenges, oracle queries, and solutions is converted to a different representation of
the same group. More formal is the following definition:

Definition 3. Let G, Ĝ be groups such that there exists an isomorphism φ : G →
Ĝ. We say that Π is representation-invariant, if for all isomorphic groups G, Ĝ and
for all generators g ∈ G, all C = (C1, . . . , Cu, C

′) ←$ GΠ(desc(G, g)), all st =
(st1, . . . , stt, st

′) ∈ Gt × {0, 1}∗, and all S = (S1, . . . , Sw, S
′) ∈ Gw × {0, 1}∗

holds that VΠ(desc(G, g), st, C, S) = 1 ⇐⇒ VΠ(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1, where
ĝ = φ(g) ∈ G′, Ĉ = (φ(C1), . . . , φ(Cu), C

′), ŝt = (φ(st1), . . . , φ(stt), st
′), and

Ŝ = (φ(S1), . . . , φ(Sw), S
′).

Observe that this definition only demands the existence of an isomorphism φ : G→ Ĝ
and not that it is efficiently computable.

Example 4. The discrete logarithm problem is representation-invariant. Let C = (g,
h) ∈ G2 be a discrete log challenge, with corresponding solution S′ ∈ {0, 1}∗ such



that S′ canonically interpreted as an integer S′ ∈ Zp satisfies gS
′
= h ∈ G. Let

φ : G → Ĝ be an isomorphism, and let (ĝ, ĥ) := (φ(g), φ(h)). Then it clearly holds
that ĝŜ

′
= ĥ, where Ŝ′ = S′.

Virtually all common hardness assumptions in algebraic groups are based on re-
presentation-invariant computational problems. Popular examples are, for instance, the
discrete log problem (DL), computational Diffie-Hellman (CDH), decisional Diffie-
Hellman (DDH), one-more discrete log (OMDL), decision linear (DLIN), and so on.

Example 5. The UF-NM-forgery problem for Schnorr signatures with hash function
H is not representation-invariant for any hash function H . Let C = (g,X,m) ←$

GΠ(desc(G, g)) be a challenge with solution S = (R, y) ∈ G×Zp satisfying Xc ·R =
gy , where c := H(R,m).

Let Ĝ be a group isomorphic to G, such that G ∩ Ĝ = ∅ (that is, there exists no
element of Ĝ having the same representation as some element of G).4 Let G → Ĝ
denote the isomorphism. If there exists any R such that H(R,m) 6= H(φ(R),m) in Zp
(which holds in particular if H is collision resistant), then we have

gy = XH(R,m) ·R but φ(g)y 6= φ(X)H(φ(R),m) · φ(R).

Thus, a solution to this problem is valid only with respect to a particular given repre-
sentation of group elements.

The UF-NM-forgery problem of Schnorr signatures is not representation-invariant,
because a solution to this problem involves the hash value H(R,m) that depends on
a concrete representation of group element R. We consider such complexity assump-
tions as rather unnatural, as they are usually very specific to certain constructions of
cryptosystems.

2.4 Generic Reductions

In this section we recall the notion of generic groups, loosely following [30] (cf. also [19,
24], for instance), and define generic (i.e., representation independent) reductions.

Generic groups. Let (G, ·) be a group of order p and E ⊆ {0, 1}dlog pe be a set of
size |E| = |G|. If g, h ∈ G are two group elements, then we write g ÷ h for g · h−1.
Following [30] we define an encoding function as a random injective map φ : G→ E.
We say that an element e ∈ E is the encoding assigned to group element h ∈ G, if
φ(h) = e.

A generic group algorithm is an algorithm R which takes as input Ĉ = (φ(C1),
. . . , φ(Cu), C

′), where φ(Ci) ∈ E is an encoding of group element Ci for all i ∈ [u],
and C ′ ∈ {0, 1}∗ is a bit string. The algorithm outputs Ŝ = (φ(S1), . . . , φ(Sw), S

′),
where φ(Si) ∈ E is an encoding of group element Si for all i ∈ [w], and S′ ∈ {0, 1}∗

4 Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the
encoding by prepending a suitable fixed string to each group element, and changing the group
law accordingly.



PROC O(e, e′, ◦)

(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GETIDX(e, e′)

return ENCODE(LG
i ◦ LG

j )

PROC GETIDX(~e)

parse ~e = (e1, . . . , ew)

for j = 1, . . . , w do

pick first i ∈ [|LE |]

such that LEi = ej

ij := i

return (i1, . . . , iw)

PROC ENCODE(G)

parse G = (G1, . . . , Gu)

for j = 1, . . . , u do

if ∃i s.t. LG
i = Gj

ej := LEi
else

ej ←$ E \ LE

append ej to LE

append Gj to LG

return (e1, . . . , eu)

Fig. 1. Procedures implementing the generic group oracle.

is a bit string. In order to perform computations on encoded group elements, algorithm
R = RO may query a generic group oracle (or “group oracle” for short). This oracle
O takes as input two encodings e = φ(G), e′ = φ(G′) and a symbol ◦ ∈ {·,÷},
and returns φ(G ◦ G′). Note that (E, ·O), where ·O denotes the group operation on E
induced by oracle O, forms a group which is isomorphic to (G, ·).

It will later be helpful to have a specific implementation of O. We will therefore
assume in the sequel thatO internally maintains two lists LG ⊆ G and LE ⊆ E. These
lists define the encoding function φ as LEi = φ(LG

i ), where LG
i and LEi denote the i-th

element of LG and LE , respectively, for all i ∈ [|LG|]. Note that from the perspective
of a generic group algorithm it makes no difference whether the encoding function is
fixed at the beginning or lazily evaluated whenever a new group element occurs. We
will assume that the oracle uses lazy evaluation to simplify our discussion and avoid
unnecessary steps for achieving polynomial runtime of our meta-reductions.
Procedure ENCODE takes a list G = (G1, . . . , Gu) of group elements as input. It

checks for each Gj ∈ L if an encoding has already been assigned to Gj , that is, if
there exists an index i such that LG

i = Gj . If this holds, ENCODE sets ej := LEi .
Otherwise (if no encoding has been assigned to Gj so far), it chooses a fresh and
random encoding ej ←$ E \ LE . In either case Gj and ej are appended to LG and
LE , respectively, which gradually defines the map φ such that φ(Gj) = ej . Note
also that the same group element and encoding may occur multiple times in the list.
Finally, the procedure returns the list (e1, . . . , eu) of encodings.

Procedure GETIDX takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w]
it defines ij as the smallest5 index such that ej = LEij , and returns (i1, . . . , iw).6

5 Recall that the same encoding may occur multiple times in LE .
6 Note that GETIDX may receive only encodings e1, . . . , ew which are already contained in LE ,

as otherwise the behavior of GETIDX is undefined. We will make sure that this is always the
case.



The lists LG, LE are initially empty. Then O calls (e1, . . . , eu) ←$ ENCODE(G1,
. . . , Gu) to determine encodings for all group elements G1, . . . , Gu and starts the
generic group algorithm on inputR(e1, . . . , eu, C ′).
RO may now submit queries of the form (e, e′, ◦) ∈ E ×E × {·,÷} to the generic

group oracle O. In the sequel we will restrict R to issue only queries (e, e′, ◦) to O
such that e, e′ ∈ LE . It determines the smallest indices i and j with e = ei and e′ = ej
by calling (i, j) = GETIDX(e, e′). Then it computes LG

i ◦ LG
j and returns the encoding

ENCODE(LG
i ◦ LG

j ). Furthemore, we require thatR only outputs encodings φ(Si) such
that φ(Si) ∈ LE .

Remark 2. We note that the above restrictions are without loss of generality. To explain
this, recall that the assignment between group elements and encodings is random. An
alternative implementation O′ of O could, given an encoding e 6∈ LE , assign a random
group element G ←$ G \ LG to e by appending G to LG and e to LE , in which case
R would obtain an encoding of an independent, new group element. Of course R can
simulate this behavior easily when interacting with O, too.

Generic reductions. Recall that a (fully black-box [23]) reduction from problem Π to
problem Σ is an efficient algorithm R that solves Π , having black-box access to an
algorithm A solving Σ.

In the sequel we consider reductions RA,O having black-box access to an algo-
rithm A as well as to a generic group oracle O. A generic reduction receives as input a
challenge C = (φ(C1), . . . , φ(C`), C

′) ∈ Gu × {0, 1}∗ consisting of u encoded group
elements and a bit-string C ′.Rmay perform computations on encoded group elements,
by invoking a generic group oracle O as described above, and interacts with algorithm
A to compute a solution S = (φ(S1), . . . , φ(Sw), S

′) ∈ Gw × {0, 1}∗, which again
may consist of encoded group elements φ(S1), . . . , φ(Sw) and a bit-string S′ ∈ {0, 1}∗.
Reductions from an interactive computational problemΠ may additionally have access
to an oracle SΠ corresponding to Π , we writeRA,O,SΠ .

We stress that the adversary A does not necessarily have to be a generic algorithm.
It may not be immediately obvious that a generic reduction can make use of a non-
generic adversary, considering that A might expect a particular encoding of the group
elements. However, this is indeed possible. In particular, most reductions in security
proofs for cryptosystems that are based on algebraic groups (like [22, 6, 31], to name
a few well-known examples) are independent of a particular group representation, and
thus generic.

Recall that R is fully blackbox, i.e., A is external to R. Thus, the environment in
which the reduction is run can easily translate between the two encodings. Consider as
an example the reduction shown in Figure 2 that interacts with a non-generic adver-
sary A. Our notion of generic reductions merely formalizes that the reduction works
identically for any group representation. This is illustrated in Figure 2 with an “envi-
ronment” converting group elements received and output by the reduction from one
group representation to another. Note also that essentially all security reductions (from
a computational problem in an algebraic group) in the literature are generic. We stress
that we model only the reductionR as a generic algorithm. We do not restrict the forger
A in this way, as commonly done in security proofs in the generic group model. It



R

A

O

Environment

C1, . . . , Cl, C
′

φ(C1), . . . , φ(Cl), C
′

(φ(i), φ(j), ◦)

φ(i ◦ j)

φ(X),m, ω X,m, ω

A,mφ(A),m

B = H(φ(A),m) B

(R, y)(φ(R), y)S1, . . . , Sw, S
′

φ(S1), . . . , φ(Sw), S
′

Fig. 2. An example of the interaction between a generic reductionR and a non-generic adversay
A against the unforgeability of Schnorr signatures. All group elements – such as the challenge
input, random oracle queries, and the signature output by A – are encoded by the environment
before being passed toR. In the other direction, encodings of group elements output byR – such
as the public key that is the input of A, random oracle responses, and the solution output byR –
are decoded before being passed to the outside world.

may not be obvious that this is possible, because A expects as input group elements
in some specific encoding, while R can only specify them in the form of random en-
codings. However, the reduction only gets access to the adversary as a blackbox, which
means that the adversary is external to the reduction, and the environment in which the
reduction is run can easily translate between the encodings used by reduction and ad-
versary. Further note, that while some reduction from a problem Π may be generic, the
actual algorithm solving said problem is not R itself, but the composition of R and A
which may be non-generic. In particular, this means that any results about equivalence
of interesting problems in the generic group model do not apply to the reduction.

3 Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reductionR that
reduces a representation-invariant computational problem Π to breaking the UF-NM-
security of the Schnorr signature scheme. Our results in this direction are negative,
showing that it is impossible to find a generic reduction from any representation-invari-
ant computational problem. This includes even interactive problems.

3.1 Single-Instance Reductions

We begin with considering a very simple class of reduction that we call vanilla reduc-
tions. A vanilla reduction is a reduction that runs the UF-NM forger A exactly once
(without restarting or rewinding) in order to solve the problem Π . This allows us to
explain and analyze the new simulation technique. Later we turn to reductions that may
executeA repeatedly, like for instance the known security proof from [22] based on the
Forking Lemma.

An Inefficient Adversary A In this section we describe an inefficient adversary A that
breaks the UF-NM-security of the Schnorr signature scheme. Recall that a black-box



reductionRmust work for any attackerA. Thus, algorithmRA will solve the challenge
problem Π , given black-box access to A. The meta-reduction will be able to simulate
this attacker efficiently for any generic reduction R. We describe this attacker for com-
prehensibility, in order to make our meta-reduction more accessible to the reader.
1. The input of A is a Schnorr public-key X , a message m, and random coins ω ∈
{0, 1}κ.

2. The forgerA chooses q uniformly random group elements R1, . . . , Rq ←$ G. (We
make the assumption that q ≤ |G|.) Subsequently, the forger A queries the random
oracleH on (Ri,m) for all i ∈ [q]. Let ci := H(Ri,m) ∈ Zp be the corresponding
answers.

3. Finally, the forger A chooses an index uniformly at random α ←$ [q], computes
y ∈ Zp which satisfies the equation gy = Xcα · Rα, and outputs (Rα, y). For
concreteness, we assume this computation is performed by exhaustive search over
all y ∈ Zp (recall that we consider an unbounded attacker here, we show later how
to instantiate it efficiently).

Note that (Rα, y) is a valid signature for message m with respect to the public key X .
Thus, the forgerA breaks the UF-NM-security of the Schnorr signatures with probabil-
ity 1.

Main Result for Vanilla Reductions Now we are ready to prove our main result for
vanilla reductions.

Theorem 1. Let Π = (GΠ ,SΠ ,VΠ) be a representation-invariant (possibly interac-
tive) computational problem with a challenge consisting of u group elements and let p
be the group order. Suppose there exists a generic vanilla reduction R that (εR, tR)-
solves Π , having one-time black-box access to an attacker A that (εA, tA)-breaks the
UF-NM-security of Schnorr signatures with success probability εA = 1 by asking q
random oracle queries. Then there exists an algorithm M that (ε, t)-solves Π with
ε ≥ εR − 2(u+q+tR)2

p and t ≈ tR.

Remark 3. Observe that Theorem 1 rules out reductions from nearly arbitrary compu-
tational problems (even interactive). At a first glance this might look contradictory, for
instance there always exists a trivial reduction from the problem of forging Schnorr
signatures to solving the same problem. However, as explained in Example 5, forging
Schnorr-signatures is not a representation-invariant computational problem, therefore
this is not a contradiction.

Proof. Assume that there exists a generic vanilla reduction R := RO,S′
Π ,A that (εR,

tR)-solves Π , when given access to a generic group oracle O, an oracle S ′Π , and a
forger A(φ(X),m, ω), where the inputs to the forger are chosen by R. Furthermore,
the reductionR simulates the random oracleR.H forA. We show how to build a meta-
reduction M that has black-box access to R and to an oracle SΠ and that solves the
representation-invariant problem Π directly.

We describeM in a sequence of games, beginning with an inefficient implementa-
tionM0 ofM and we modify it gradually until we obtain an efficient implementation
M2 ofM. We bound the probability with which any reductionR can distinguish each



implementationMi fromMi−1 for all i ∈ {1, 2}, which yields thatM2 is an efficient
algorithm that can useR to solve Π ifR in tight.

In what follows let Xi denote the event that R outputs a valid solution to the given
problem instance Ĉ of Π in Game i.

Game 0. Our meta-reductionM0 :=MSΠ0 is an algorithm for solving a representation-
invariant computational problem Π , as defined in Section 2.3. That is,M0 takes as in-
put an instance C = (C1, . . . , Cu, C

′) ∈ Gu × {0, 1}∗, of the representation-invariant
computational problem Π , has access to oracle SΠ provided by Π , and outputs a can-
didate solution S.R is a generic reduction, i.e., a representation-independent algorithm
for Π having black-box access to an attacker A. AlgorithmM0 runs reduction R as a
subroutine, by simulating the generic group oracleO, the SΠ oracle, and attackerA for
R. In order to provide the generic group oracle for R,M0 implements the following
procedures (cf. Figure 3).

PROCM0(C)

# INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅
~R = (R1, . . . , Rq)←$ Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)

Ĉ := (LE1 , . . . ,LEu , C′)

Ŝ ←$ RO,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

PROC A(φ(X),m, ω)

for all i ∈ [q]

ci = R.H(φ(Ri),m)

α←$ [q]

y := loggX
cαRα

return (Rα, y).

PROC SΠ ′(Q)

parse Q = (e1, . . . , ev, Q
′)

(i1, . . . , iv) = GETIDX(e1, . . . , ev)

(A1, . . . , Aν , A
′) = SΠ(Li1 , . . . ,Liν , Q

′)

(f1, . . . , fν) = ENCODE(A1, . . . , Aν)

return (f1, . . . , fν , A
′).

Fig. 3. Implementation ofM0.

INITIALIZATION OFM0: At the beginning of the game,M0 initializes two listsLG :=
∅ and LE := ∅, which are used to simulate the generic group oracle O. Furthermore,
M0 chooses ~R = (R1, . . . , Rq) ←$ Gq at random (these values will later be used by
the simulated attacker A), sets I := (C1, . . . , Cu, R1, . . . , Rq), and runs ENCODE(I)
to assign encodings to these group elements. ThenM0 starts the reduction R on input
Ĉ := (LE1 , . . . ,LEu , C ′). Note that Ĉ is an encoded version of the challenge instance
of Π received byM0. That is, we have Ĉ = (φ(C1), . . . , φ(Cu), C

′). Oracle queries
ofR are answered byM0 as follows:
GENERIC GROUP ORACLE O(e, e′, ◦): To simulate the generic group oracle,M0 im-
plements procedures ENCODE and GETIDX as described in Section 2.4. Whenever R



submits a query (e, e′, ◦) ∈ E × E × {·,÷} to the generic group oracle O, the meta-
reduction determines the smallest indices i and j such that e = ei and e′ = ej by calling
(i, j) = GETIDX(e, e′). Then it computes LG

i ◦ LG
j and returns ENCODE(LG

i ◦ LG
j ).

ORACLE S ′Π(Q): This procedure handles queries issued by R to S ′Π by forward-
ing them to oracle SΠ provided by the challenger and returning the response. That
is, whenever R submits a query Q = (e1, . . . , ev, Q

′) ∈ Ev × {0, 1}∗ to S ′Π , the
meta-reduction runs (i1, . . . , iv) := GETIDX(e1, . . . , ev) and queries SΠ to compute
(A1, . . . , Aν , A

′) := SΠ(Li1 , . . . ,Liν , Q′). Then M0 determines the corresponding
encodings as (f1, . . . , fν) := ENCODE(A1, . . . , Aν) and returns (f1, . . . , fν , A′) toR.
THE FORGER A(φ(X),m, ω): This procedure implements a simulation of the inef-
ficient attacker A described in Section 3.1. It proceeds as follows. When R outputs
(φ(X),m, ω) to invoke an instance of A, A queries the random oracle R.H provided
by R on (φ(Ri),m) for all i ∈ [q], to determine ci = H(φ(Ri),m). Afterwards,M0

chooses an index α ←$ [q] uniformly at random, computes the the discrete logarithm
y := loggX

cαRα by exhaustive search, and outputs (Rα, y). (This step is not efficient.
We show in subsequent games how to implement this attacker efficiently.)
FINALIZATION OFM0: Eventually, the algorithmR outputs a solution Ŝ := (Ŝ1, . . . ,

Ŝw, S
′) ∈ Ew×{0, 1}∗. The algorithmM0 runs (i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

to determine the indices of group elements (LG
i1
, . . . ,LG

iw
) corresponding to encodings

(Ŝ1, . . . , Ŝw), and outputs (LG
i1
, . . . ,LG

iw
, S′).

Analysis ofM0. Note thatM0 provides a perfect simulation of the oracles O and SΠ
and it also mimics the attacker from Section 3.1 perfectly. In particular, (Rα, y) is a
valid forgery for message m and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to
Ĉ with probability Pr[X0] = εR. Since Π is assumed to be representation-invariant,
S := (S1, . . . , Sw, S

′) with Ŝi = φ(Si) for i ∈ [w] is therefore a valid solution to C.
Thus,M0 outputs a valid solution S to C with probability εR.

Game 1. In this game we introduce a meta-reduction M1, which essentially extends
M0 with additional bookkeeping to record the sequence of group operations performed
by R. The purpose of this intermediate game is to simplify our analysis of the final
implementationM2. Meta-reductionM1 proceeds identical toM0, except for a few
differences (cf. Figure 4).
INITIALIZATION OFM1: The initialization is exactly like before, except that M1

maintains an additional list LV of elements of Zu+qp . Let LVi denote the i-th entry
of LV .

ListLV is initialized with the u+q canonical unit vectors in Zu+qp . That is, let ηi de-
note the i-th canonical unit vector in Zu+qp , i.e., η1 = (1, 0, . . . , 0), η2 = (0, 1, 0, . . . , 0),

. . . , ηu+q = (0, . . . , 0, 1). Then LV is initialized such that LVi := ηi for all i ∈ [u+ q].
GENERIC GROUP ORACLE O(e, e′, ◦): In parallel to computing the group operation,
the generic group oracle implemented byM1 also performs computations on vectors
of LV .

Given a query (e, e′, ◦) ∈ E × E × {·,÷}, the oracle O determines the smallest
indices i and j such that e = ei and e′ = ej by calling GETIDX. It computes a :=
LVi � LVj ∈ Zu+qp , where � := + if ◦ = · and � := − if ◦ = ÷, and appends a to LV .
Finally it returns ENCODE(LG

i ◦ LG
j ).



Analysis ofM1. Recall that the initial content I of LG is I = (C1, . . . , Cu, R1, . . . ,
Rq), and thatR performs only group operations on I. Thus, any group element h ∈ LG

can be written as h =
∏u
i=1 C

ai
i ·

∏q
i=1R

au+i
i where the vector a = (a1, . . . , au+q) ∈

Zu+qp is (essentially) determined by the sequence of queries issued by R to O. For a
vector a ∈ Zu+qp and a vector of group elements V = (v1, . . . , vu+q) ∈ Gu+q let us
write Eval(V, a) shorthand for Eval(V, a) :=

∏u+q
i=1 v

ai
i in the sequel. In particular, it

holds that Eval(I, a) =
∏u
i=1 C

ai
i ·
∏q
i=1R

au+i
i . The key motivation for the changes in-

troduced in Game 1 is that now (by construction ofM1) it holds thatLG
i = Eval(I,LVi )

for all i ∈ [|LG|]. Thus, at any point in time during the execution ofR, the entire list LG

of group elements can be recomputed from LV and I by setting LG
i := Eval(I,LVi )

for i ∈ [|LV |]. The reduction R is completely oblivious to this additional bookkeeping
performed byM1, thus we have Pr[X1] = Pr[X0].

PROCM1(C)

# INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅ ; LV := ∅
~R = (R1, . . . , Rq)←$ Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)

LVi := ηi, ∀i ∈ [u+ q].

Ĉ := (LE1 , . . . ,LEu , C′)

Ŝ ←$ RO,A(Ĉ)

# FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

PROC O(e, e′, ◦)

(e, e′, ◦) ∈ E × E × {·,÷}
i := GETIDX(e)

j := GETIDX(e′)

a := LVi � LVj ∈ Zu+qp

append a to LV

return ENCODE(LG
i ◦ LG

j )

Fig. 4. Meta-ReductionM1. Boxed elements show the differences toM0. All other procedures
are identical toM0 and thus omitted.

Game 2. Note that the meta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedure A needed to compute a discrete
logarithm by exhaustive search. In this final game, we construct a meta-reductionM2

that simulates A efficiently. M2 proceeds exactly like M1, except for the following
(cf. Figure 5).

THE FORGER A(φ(X),m, ω): WhenR outputs (φ(X),m, ω) to invoke an instance of
A, A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to



determine ci = H(φ(Ri),m). Then it chooses an index α←$ [q] uniformly at random,
samples an element y uniformly at random from Zp, computes R∗α := gyX−cα , and
re-computes the entire list LG using R∗α instead of Rα.

More precisely, let I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq). Ob-

serve that the vector I∗ is identical to the initial contents I of LG, with the difference
that Rα is replaced by R∗α. The list LG is now recomputed from LV and I∗ by setting
LG
i := Eval(I∗,LVi ) for all i ∈ [|LV |]. Finally, M2 returns (φ(R∗α), y) to R as the

forgery.

Analysis of M2. First note that (φ(R∗α), y) is a valid signature, since φ(R∗α) is the
encoding of group element R∗α satisfying the verification equation gy = Xcα · R∗α,
where cα = H(φ(R∗α),m). Next we claim that R is not able to distinguishM2 from
M1, except for a negligibly small probability. To show this, observe that Game 2 and
Game 1 are perfectly indistinguishable, if for all pairs of vectors LVi ,LVj ∈ LV it holds
that Eval(I,LVi ) = Eval(I,LVj ) ⇐⇒ Eval(I∗,LVi ) = Eval(I∗,LVj ), because in this
caseM2 chooses identical encodings for two group elements LG

i ,LG
j ∈ LG if and only

if M1 chooses identical encodings.

PROC A(φ(X),m, ω) :

α←$ [q]

for all i ∈ [q]

ci = R.H(φ(Ri),m)

y ←$ Zp ; R∗α := gyX−cα

I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq)

for j = 1, . . . , |LG| do

LG
i := Eval(I∗,LVi )

return (y, φ(R∗α))

Fig. 5. Efficient simulation of attacker A byM2.

Lemma 1. Let F denote the event thatR computes vectors LVi ,LVj ∈ LV such that

Eval(I,LVi ) = Eval(I,LVj ) ∧ Eval(I∗,LVi ) 6= Eval(I∗,LVj ) (1)

or

Eval(I,LVi ) 6= Eval(I,LVj ) ∧ Eval(I∗,LVi ) = Eval(I∗,LVj ). (2)

Then
Pr[F ] ≤ 2(u+ q + tR)

2/p.



The proof of Lemma 1 is deferred to the full version.We apply it to finish the proof of
Theorem 1. By Lemma 1, the algorithmM2 fails to simulateM1 with probability at
most 2(u+ q + tR)

2/p. Thus, we have Pr[X2] ≥ Pr[X1]− 2(u+ q + tR)
2/p.

Note also thatM2 provides an efficient simulation of adversary A. The total run-
ning time of M2 is essentially of the running time of R plus some minor additional
computations and bookkeeping. Furthermore, if R is able to (εR, tR) solve Π , then
M2 is able to (ε, t)-solve Π with probability at least

ε ≥ Pr[X2] ≥ εR −
2(u+ q + tR)

2

p
.

Remark 4. Note that the simulated forger re-computes the entire list LG after replacing
Rα with R∗α. This ensures consistency of the attacker’s view before and after replacing
Rα with R∗α, if (and only if) it holds that

Eval(I,LVi ) = Eval(I,LVj ) ⇐⇒ Eval(I∗,LVi ) = Eval(I∗,LVj ) (3)

Lemma 1 bounds the probability that 3 does not hold, thus it bounds the probability that
an attacker is able to notice the re-programming by receiving different results before and
after the re-programming.

4 Multi-Instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequen-
tial executions of the signature forger A. This is the interesting case, in particular be-
cause the Forking-Lemma based security proof for Schnorr signatures by Pointcheval
and Stern [22] is of this type.

The meta-reduction described in detail in the full version is heavily based on Seurin’s
meta-reduction [28]. Essentially, we show that our new simulation of forged signa-
tures is compatible with Seurin’s approach for simulating a sequence of Random Or-
acle queries. In combination this allows to prove that a generic reduction from any
representation-invariant computational problemΠ to breaking Schnorr signatures loses
a factor of at least q, which essentially matches the upper bound of [22].

The description of the corresponding family of adversaries and the proof of the
following theorem can be found in the full version.

Theorem 2. LetΠ be a representation-invariant computational problem. Suppose there
exists a generic reductionRO,S′

Π ,AF,f that (εR, tR)-solvesΠ , having n-time black-box
access to an attacker AF,f that (εA, tA, q)-breaks the UF-NM-security of Schnorr sig-
natures with success probability εA < 1 in time tA ≈ q. Then there exists an algorithm
M that (ε, t)-solves Π with t ≈ tR and

ε ≥ εR − 2n(u+ nq + tR)/p− n ln
(
(1− εA)−1

)
/q(1− p−1/4)

This bound allows essentially the same analysis as in [28] and thus we arrive (for
εA ≈ 1 − (1 − 1/q)q) at a lower bound for ε of approximately εR − n

q . Therefore, R
must necessarily lose a factor of almost 1/q if the discrete logarithm problem is indeed
hard.



5 A Note on Tightly-Secure Schnorr-Type Signatures

There exist several variants of Schnorr signatures with tight security reductions from
representation-invariant computational problems. This includes, for instance, the schemes
of Goh and Jarecki [16] and Chevallier-Mames [7], which are based on the computa-
tional Diffie-Hellman problem, and the scheme of Shao [29].

It is natural to ask why our tightness bound, in particular our technique of re-
programming the group representation, can not be applied to these schemes. Due to
space limitations, we have to defer this discussion to the full version of this paper.
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A Universal Unforgeability under No-Message Attacks

Consider the following security experiment involving a signature scheme (Gen,Sign,
Vrfy), an attacker A, and a challenger C.
1. The challenger C computes a key-pair (X,x) ←$ Gen(g) and chooses a message
m←$ {0, 1}k uniformly at random. It sends (X,m) to the adversary A.

2. Eventually, A stops, outputting a signature σ.

Definition 4. We say that A (ε, t)-breaks the UF-NM-security of (Gen,Sign,Vrfy), if
A runs in time at most t and Pr [A(X,m) = σ : Vrfy(X,m, σ) = 1] ≥ ε.

Note that UF-NM-security is a very weak security goal for digital signatures. Since we
are going to prove a negative result, this is not a limitation, but makes our result only
stronger. In fact, if we rule out reductions from some problem Π to forging signatures
in the sense of UF-NM, then the impossibility clearly holds for stronger security goals,
like existential unforgeability under adaptive chosen-message attacks [17], too.
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