
Memory-Demanding Password Scrambling

Christian Forler, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{Christian.Forler, Stefan.Lucks, Jakob.Wenzel}@uni-weimar.de

Abstract. Most of the common password scramblers hinder password-
guessing attacks by “key stretching”, e.g., by iterating a cryptographic
hash function many times. With the increasing availability of cheap and
massively parallel off-the-shelf hardware, iterating a hash function be-
comes less and less useful. To defend against attacks based on such hard-
ware, one can exploit their limitations regarding to the amount of fast
memory for each single core. The first password scrambler taking this
into account was scrypt. In this paper we mount a cache-timing attack
on scrypt by exploiting its password-dependent memory-access pattern.
Furthermore, we show that it is possible to apply an efficient password
filter for scrypt based on a malicious garbage collector. As a remedy, we
present a novel password scrambler called Catena which provides both
a password-independent memory-access pattern and resistance against
garbage-collector attacks. Furthermore, Catena instantiated with the
here introduced (G, λ)-DBH operation satisfies a certain time-memory
tradeoff called λ-memory-hardness, i.e., using only 1/b the amount of
memory, the time necessary to compute the password hash is increased
by a factor of bλ. Finally, we introduce a more efficient instantiation of
Catena based on a bit-reversal graph.

Keywords: password hashing, memory-hard, cache-timing attack

1 Introduction

Passwords1 are user-memorizable secrets for user authentication and cryp-
tographic key derivation. Typical (user-chosen) passwords suffer from low
entropy and can be attacked by trying out all possible candidates in or-
der of likelihood. In some cases, the security of interactive password-based
authentication and key derivation can be enhanced by dedicated crypto-
graphic protocols defeating “offline” password guessing where an adver-
sary is in possession of the password hashes (see [3] for an early example).
Otherwise, the best protection are cryptographic password scramblers,
performing key stretching. This means to hash the password with an in-
tentionally slow one-way hash function to delay the adversary, without
inconveniencing the user.

1 We do not distinguish “passwords” from“passphrases” or “PINs”.

Traditional password scramblers, e.g., md5crypt [10] or sha512crypt [7],
iterate a cryptographic primitive (a block cipher or a hash function) many
times. An adversary who has b computing units (cores) can easily try
out b different passwords in parallel. With recent technological trends,
such as the availability of graphical processing units (GPUs) with hun-
dreds of cores [13], the question of how to slow down such adversaries be-
comes pressing. Fast memory is expensive. Thus, each core of a GPU (or
any other cheap and massively parallel machine) possesses a very limited
amount of fast memory (“cache”). Therefore, a defense against massively-
parallel attacks on cheap hardware is to consume plenty of memory to
cause a large amount of cache misses, up to the limit available to the
user. Modern password scramblers allow to adjust the required memory
by a logarithmic security parameter g, called garlic (memory-cost factor).
A required property for such memory-consuming algorithms is memory-

hardness, i.e., assume that a password scrambler uses S = 2g units of
memory and an adversary has less than S units of memory for each core.
Then, the attack must slow down greatly. The first password scrambler
that took this into account was scrypt [16], which inherited these features
from its underlying function called ROMix. However, a memory-consuming
password scrambler might suffer from a new problem. If the memory-
access pattern depends on the password, this pattern may leak during a
cache-timing attack.

Contribution. In this paper we present two side-channel attacks against
ROMix (1) a cache-timing attack exploiting its password-dependent mem-
ory-access pattern. This attack requires a spy process that runs on the
defender’s machine, without access to the internal memory of ROMix and
(2) we show that ROMix is vulnerable to garbage-collector attacks. Both
attacks should be considered severe since they might put the usage of
memory-consuming password scramblers at high risk.

As a remedy, we introduce Catena, a memory-consuming password-
scrambling framework which is resistant against the mentioned side-chan-
nel attacks. Furthermore, we present two instantiations whose workflow
can be represented as directed acyclic graphs with bounded indegree. One
is based on an adapted variant of the bit-reversal graph and the other one
is based on an adapted variant of the double-butterfly graph (which is on
the other hand constructed by putting two fast Fourier transformations
(FFT) back-to-back).

Outline. Section 2 introduces two notions of memory-hardness. Section 3
describes our side-channel attacks against scrypt. In Section 4, we in-

2

troduce our novel password-scrambling framework Catena. Section 5
describes two instantiations, namely Catena-BRG and Catena-DBG,
and Section 6 discusses their security. Section 7 concludes our work. Fi-
nally, in Appendix A we state the main difference between this version
and our original submission.

2 Memory-Hardness

To describe memory requirements, we adopt and slightly change the no-
tion from [16].

Definition 1 (Memory-Hard Function [16]).
Let g denote the memory-cost factor. For all α > 0, a memory-hard

function f can be computed on a Random Access Machine using S(g)
space and T (g) operations, where S(g) ∈ Ω(T (g)1−α).

Thus, for S ·T = G2 with G = 2g, using b cores, we have (1/b ·S) ·(b ·T) =
G2. A formal generalization of this notion is given in the following.

Definition 2 (λ-Memory-Hard Function).
Let g denote the memory-cost factor. For a λ-memory-hard function f ,
which is computed on a Random Access Machine using S(g) space and

T (g) operations with G = 2g, it holds that T (g) = Ω(Gλ+1/S(g)λ).

Thus, we have (1/b · Sλ) · (b · T) = Gλ+1.

Remark 1. Note that for a λ-memory-hard function f , the relation S(g) ·
T (g) is always in Ω(Gλ+1), i.e., it holds that if S decreases, T has to
increase, and vice versa.

λ-Memory-Hard vs. Sequential Memory-Hard. In [16], Percival
introduced the notion of sequential memory-hardness (SMH), which is
satisfied by his introduced password scrambler scrypt. An algorithm is
sequential memory-hard if an adversary has no computational advantage
from the use of multiple CPUs. This means that one does not gain any
advantage from parallelism, i.e., running such an algorithm on b cores,
one needs b times the memory required for one core. On the other hand,
a λ-memory-hard function satisfies a certain time-memory tradeoff. Thus,
if only O(1/b) times the memory is available, one needs O(bλ) times the
computational effort, independent of the number of cores.

3

3 Side-Channel Attacks on scrypt

Algorithm 1 describes the scrypt password scrambler and its core oper-
ation ROMix. For pre- and post-processing, scrypt invokes the one-way
function PBKDF2 [9] to support inputs and outputs of arbitrary length.
ROMix uses a hash function H with n output bits, where n is the size
of a cache line (at current machines usually 64 bytes). To support hash
functions with smaller output sizes, [16] proposes to instantiate H by a
function called BlockMix, which we will not elaborate on. For our security
analysis of ROMix, we model H as a random oracle.

Algorithm 1 The scrypt algorithm and its core operation ROMix [16].
scrypt

Input: pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input: x {Initial State}
G {Cost Parameter}

Output: x {Hash Value}
20: for i = 0, . . . , G− 1 do

21: vi ← x
22: x← H(x)
23: end for

24: for i = 0, . . . , G− 1 do

25: j ← x mod G
26: x← H(x⊕ vj)
27: end for

28: return x

ROMix takes two inputs: an initial state x that depends on both pass-
word and salt, and the array size G that defines the required storage.
One can interpret log2(G) as the garlic of scrypt. In the expand phase

(Lines 20–23), ROMix initializes an array v. More detailed, the array cells
v0, . . . , vG−1 are set to x,H(x), . . . , H(. . . (H(x))), respectively. In themix

phase (Lines 24–27), ROMix updates x depending on vj . The sequential
memory-hardness comes from the way how the index j is computed, de-
pending on the current value of x, i.e., j ← x mod G. After G updates,
the final value of x is returned and undergoes the post-processing.

A minor issue of scrypt is its use of the password pwd as one of the
inputs for post-processing. Thus, it has to stay in storage during the entire
password-scrambling process. This is risky if there is any chance that the
memory can be compromised while scrypt is running. Compromising the
memory should not happen, anyway, but this issue could easily be fixed
without any known bad effect on the security of scrypt, e.g., one could
replace Line 12 of Algorithm 1 by x← PBKDF2(x, s, 1, 1).

4

Algorithm 2 ROMixMC, performing ROMix with G/K storage.

Input: x {Initial State},
G {1st Cost Parameter},
K {2nd Cost Parameter}

Output: x {Hash Value}
1: for i = 0, . . . , G− 1 do

2: if i mod K = 0 then

3: vi ← x
4: end if

5: x← H(x)
6: end for

7: for i = 0, . . . , G− 1 do

8: j ← x mod G
9: ℓ← K · ⌊j/K⌋
10: y ← vℓ
11: for m = ℓ+ 1, . . . , j do

12: y ← H(y) { Invariant: y ← vm }
13: end for

14: x← H(x⊕ y)
15: end for

16: return x

Below, we will attack scrypt from the hardware side. The general
idea of side-channel attacks against cryptographic algorithms is not new
[11], neither is the usage of a spy process for cache-timing attacks [15].
But, to the best of our knowledge, we are the first to apply this approach
to scrypt, or to password-hashing in general.

3.1 Brief Analysis of ROMix

In the following we introduce a way to run ROMix with less than G units
of storage. Suppose we only have S < G units of storage for the values in
v. For convenience, we assume G is a multiple of S and set K ← G/S.
The memory-constrained algorithm ROMixMC (see Algorithm 2) generates
the same result as ROMix with less than G storage places and is Θ(K)
times slower than ROMix. From the array v, we will only store the values
v0, vK , v2K , . . . , v(S−1)K – using all the S available memory units. At
Line 9, the variable ℓ is assigned to the highest multiple of K less or
equal to j. By verifying the invariant at Line 12, one can easily see that
ROMixMC computes the same hash value as the original ROMix, except that
vj is computed on-the-fly, beginning with vℓ. These computations call H
(K − 1)/2 times on average. Thus, the mix phase of ROMixMC is about
Θ(K) times slower than the mix phase of ROMix, which dominates the
workload for ROMixMC.

Next, we briefly discuss why ROMixMC is sequentially memory-hard
(for the full proof see [16]). The intuition is as follows: the indices j are
determined by the output of the random oracle H and thus, uniformly
distributed random values over {0, . . . , G−1}. With no way to anticipate
the next j, the best approach is to minimize the size of the “gaps”, i.e.,
the number of consecutively unknown vj . This is indeed what ROMixMC

does, by storing one vi every K-th step.

5

3.2 Cache-Timing Attacks

The Spy Process. The idea to compute a “random” index j and then
ask for the value vj , which is so useful for sequential memory-hardness,
may be exploited to mount a cache-timing attack against scrypt. Con-
sider a spy process that runs on the same machine as scrypt. This spy
process cannot read the internal memory of scrypt, but shares its cache
memory with ROMix:

1. The spy process interrupts ROMix, just before entering the mix phase
(Line 24 of Algorithm 1) and overwrites the (entire) cache with arbi-
trary values wi to flush out all ROMix’ values vj .

2. The spy process allows ROMix to perform a few more iterations of the
mix loop (Line 24–27).

3. The spy process interrupts ROMix again. Now it reads the wi, measur-
ing precisely how long each read operation takes. If the corresponding
vj has been used by ROMix in the second step, a “cache-miss” occurs,
wich makes reading wi slow. Else, wi is likely to be still cached, and
reading it is likely to be fast.

So, the spy process can tell an adversary the indices j for which vj has
been read during the first few iterations of the mix loop (Lines 24–27 of
Algorithm 1). Given this information, we can attack scrypt.

First Cache-Timing Attack. Let x be the output of the operation
PBKDF2(pwd, s, 1, 1), where pwd denotes the current password candidate
and s the salt. Then, we can sieve the password candidates as follows:

1. Run the expand phase of ROMix, without storing the values vi, i.e.,
skip Line 21 of Algorithm 1.

2. Compute the index j ← x mod G.

3. If j is one of the indices were read by ROMix, then store pwd in a list.
Otherwise, conclude that pwd is a wrong password.

This sieve can run in parallel on any number of cores, where each core
tests another password candidate pwd. Note that each core needs only a
small and constant amount of memory, i.e., the data structure to decide
if j is one of the indices being read with vj , which can be shared among
all cores. Thus, we can use exactly the kind of hardware, that scrypt was
designed to hinder.

Let r denote the number of iterations the loop in Lines 24–27 of ROMix
performed, before the second interrupt from the spy process. Thus, we

6

have a list of r indices j used by ROMix. The probability for a false pass-
word to survive is r/G.

We can further improve the attack. Assuming r ≪ G, we may have
space to store the r values vj that were actually used by ROMix on each
core. This allows us to simulate the first r iterations of the loop in Lines
24–27. We can discard a password candidate immediately if the simulation
tries to read any vj which is not on our short list. The probability for a
false password candidate to survive is now down to (r/G)r.

Second Cache-Timing Attack. It may be more realistic to assume
the second interrupt to be late, perhaps after the mix phase of ROMix. So,
the loop in Lines 24–27 of ROMix was run r = G times and, on average,
each vi has been read once. Actually, some values have been read several
times, and we expect about (1/e)G ≈ 0.37G array elements vi not to
have been read at all. At a first look, we can eliminate about 37% of the
false password candidates – a small gain for such hard work.

In the following we introduce a way to push the attack further, in-
spired by Algorithm 2, the memory-constrained ROMixMC. Our second
cache-timing attack on scrypt only needs the smallest possible amount
of memory: S = 1,K = G/S = G, and thus, we only have to store v0. Like
ROMixMC, we will compute the values vj on-the-fly when needed. Unlike
ROMixMC, we will stop execution whenever one of our values j is such that
vj has not been read by ROMix (according to the information from our spy
process). Thus, if only the first j has not been read, we immediately stop
the execution without any on-the-fly computation; if the first j has been
read, but not the second, we need one on-the-fly computation of vj , and
so forth. Since a fraction (i.e., 1/e) of all values vi was not read, we will
need about 1/(1 − 1/e) ≈ 1.58 on-the-fly computations of some vj , each
at the average price of (G− 1)/2 calls of H. Additionally, each iteration
needs one call to H for computing x ← H(x ⊕ vj). Including the work
for the expand phase, with G calls to H, the expected number of calls to
reject a wrong password is about

G+ 1.58 ·

(

1 +
G− 1

2

)

≈ 1.79G.

As it turns out, rejecting a wrong password with constant memory
is faster than computing ordinary ROMix with all the required storage,
which actually makes 2G calls to H, without computing any vi on-the-
fly. We stress that the ability to abort the computation, thanks to the
information gathered by the spy process, is crucial.

7

3.3 The Garbage-Collector Attack

Memory-demanding password scramblers such as ROMix defend against a
massively-parallel password-cracking approach, since the required mem-
ory is proportional to the number of passwords scrambled in parallel.

But, memory-demanding password scrambling may also open the gates
for new attack opportunities for the adversary. If we allocate a huge block
of memory for password scrambling, holding v0, v1, . . . , vG−1, this mem-
ory becomes “garbage” after the password scrambler has terminated, and
will be collected for reuse, eventually. One usually assumes that the ad-
versary learns the hash of the secret. The garbage-collector attack assumes
that the adversary additionally learns the memory content, i.e., the values
vi, after termination of the password scrambler.

For ROMix, the value v0 = H(x) is a plain hash of the original se-
cret x. Hence, a malicious garbage collector can completely bypass ROMix
and search directly for x with H(x) = v0, implying that each password
candidate can be checked in time and memory complexity of O(1). Fur-
thermore, if the adversary fails to learn v0, but any of the other values
vi = H(vi−1), the computational effort grows to O(i), but the memory
complexity is still O(1).

Thus, ROMix does not provide much defense against garbage-collector
attacks. A possible countermeasure would be to overwrite v0, . . . , vG−1

after running ROMix. But, this step might be removed by a compiler due
to optimization, since it is algorithmically ineffective.

3.4 Discussion

Currently, the attacks above are of theoretical nature. The garbage-col-
lector attack requires the adversary to be able to read the memory occu-
pied by ROMix, after its usage. Whereas the cache-timing attack requires
to (1) run a spy process on the machine ROMix is running, (2) interrupt
ROMix twice at the right points of time, and (3) precisely measure the
timings of memory reads. Moreover, other processes running on the same
machine can add a huge amount of noise to the cache timings. It is not
clear if a “real” server can ever be attacked that way.

However, in an idealized “laboratory” setting, the applicability of
cache-timing attacks against ROMix has been demonstrated [2]. The ide-
alized conditions included execution rights on the system.

Remark 2. Even without knowing the password hash at all,

1. the adversary can find out when the password has been changed,

8

2. and the adversary can mount a password-guessing attack,

just from knowing the memory-access pattern.

Note that severe security issues can be caused by the second point. Con-
sider any offline attack on the password. When passwords are hashed
using an old-style password hash function, e.g., md5crypt [10], the adver-
sary needs to first read the file containing the password hash. Without
the password hash, mounting an offline attack is not possible. Even plain-
text passwords are safe from offline adversaries which are not capable of
reading the file containing the plaintext passwords. But, using the seem-
ingly strong password hash function scrypt may enable offline password
cracking, even when the adversary fails to ever learn the password hash.

4 Catena – A Memory-Hard Password Scrambler

In this section we introduce our password scrambler Catena. First, we
specify Catena and explain its properties regarding to password hashing,
i.e., client-independent update and server relief. Thereupon, we present
two instantiations of Catena, called Catena-BRG and Catena-DBG.
Both instances are designed to provide a high resilience against cache-
timing attacks, and the latter naturally defends against garbage-collector
attacks, whereas the former provides this kind of resistance only for λ ≥ 2.

4.1 Specification

A formal definition is shown in Algorithm 3, where the function Fλ

(see Line 3) is a placeholder for a certain instantiation. The password-
dependent input of H is appended to a prefix c, which denotes the itera-
tion counter (garlic factor). Note that a secure password scrambler must
satisfy preimage security. Catena inherits the preimage security from the
underlying hash function H. Next, we discuss the tweak and two further
novel features of Catena.

Tweak. The parameter t is an additional multi-byte value which is given
by:

t← λ || |s| || H(AD),

The first byte λ defines together with the value g (see above) the security
parameters for Catena. The 32-bit value |s| denotes the total length of

9

Algorithm 3 Catena
Input: λ {Depth}, pwd {Password}, t {Tweak} s {Salt}, g {Garlic}, Fλ {Instance}
Output: x {Hash of the Password}
1: x← H(t || pwd || s)
2: for c = 1, . . . , g do

3: x← Fλ(c, x)
4: x← H(c || x)
5: end for

6: return x

the salt in bits. Finally, the n-bit value H(AD) is the hash of the associ-
ated data AD, which can contain additional information like hostname,
user-ID, name of the company, or the IP of the host, with the goal to
customize the password hashes. Note that the order of the values does
not matter as long as tey are fixed for a certain application.

The tweak is processed together with the secret password and the
salt (see Line 1 of Algorithm 3). Thus, t can be seen as a weaker version
of a salt increasing the additional computational effort for an adversary
when using different values. Furthermore, it allows to differentiate be-
tween different applications of Catena, and can depend on all possible
input data. Note that one can easily provide unique tweak values (per
user) when including the user-ID in the associated data.

4.2 Properties

Client-Independent Update. Its sequential structure enables Catena

to provide client-independent updates. Let h← Catenaλ(pwd, t, s, g, Fλ)
be the hash of a specific password pwd , where t, s, g, and Fλ denote tweak,
the salt, the garlic, and the instantiation, respectively. After increasing
the security parameter from g to g′ = g+1, we can update the hash value
h without user interaction by computing:

h′ = H(g′ || Fλ(g
′, h)).

It is easy to see that the equation h′ = Catenaλ(pwd , t, s, g
′, Fλ) holds.

Server Relief. In the last iteration of the for-loop in Algorithm 3, the
client has to omit the last invocation of the hash function H (see Line 4).
The current output of Catena is then transmitted to the server. Next,
the server computes the password hash by applying the hash function H.
Thus, the vast majority of the effort (memory usage and computational
time) for computing the password hash is handed over to the client, freeing

10

the server. This enables someone to deploy Catena even under restricted
environments or when using constrained devices – or when a single server
has to handle a huge amount of authentication requests.

5 Instantiations

In this section we introduce two concrete instantiations of Catena:Catena-

BRG and Catena-DBG.

5.1 Catena-BRG

ForCatena-BRG, Fλ is implemented by the (G, λ)-Bit-Reversal Hashing
((G, λ)-BRH) algorithm, which is based on the bit-reversal permutation.

Definition 3 (Bit-Reversal Permutation τ). Fix a number k ∈ G

and represent i ∈ Z2k as a binary k-bit number, (i0, i1, . . . , ik−1). The

bit-reversal permutation τ : Z2k → Z2k is defined by

τ(i0, i1, . . . , ik−1) = (ik−1, . . . , i1, i0).

The bit-reversal permutation τ defines the (G, λ)-Bit-Reversal Graph.

Definition 4 ((G, λ)-Bit-Reversal Graph). Fix a natural number g,
let V denote the set of vertices, and E the set of edges within this graph.

Then, a (G, λ)-bit-reversal graph Πλ
g (V , E) consists of (λ+1) · 2g vertices

{v00, . . . , v
0
2g−1}∪{v

1
0, . . . , v

1
2g−1}∪· · ·∪{v

λ−1
0 , . . . , vλ−1

2g−1}∪{v
λ
0 , . . . , v

λ
2g−1},

and (2λ+ 1) · 2g − 1 edges as follows:

– (λ + 1) · (2g − 1) edges vji−1 → vji for i ∈ {1, . . . , 2g − 1} and j ∈
{0, 1, . . . , λ}.

– λ · 2g edges vji → vj+1
τ(i) for i ∈ {0, . . . , 2g− 1} and j ∈ {0, 1, . . . , λ− 1}.

– λ additional edges vj2g−1 → vj+1
0 where j ∈ {0, . . . , λ− 1}.

For example, Figure 1 illustrates an (8,1)-BRG. Note that this graph is
almost identical – except for one additional edge e = (v07, v

1
0) – to the

bit-reversal graph presented by Lengauer and Tarjan in [12].

11

Output

Input

v00 v01 v02 v03 v04 v05 v06 v07

v10 v11 v12 v13 v14 v15 v16 v17

Fig. 1. An (8, 1)-BRG.

Algorithm 4 (G, λ)-Bit-Reversal Hashing ((G, λ)-BRH)

Input: g {Garlic}, x {Value to Hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do

3: vi ← H(vi−1)
4: end for

5: for k = 1, . . . , λ do

6: r0 ← H(v0 || v2g−1)
7: for i = 1, . . . , 2g − 1 do

8: ri ← H(ri−1 || vτ(i))
9: end for

10: v ← r
11: end for

12: return r2g−1

Bit-Reversal Hashing. The (G, λ)-Bit-Reversal Hashing function is
defined in Algorithm 4. It requires O(2g) invocations of a given hash
function H for a fixed value of x. The three inputs (g, x, λ) of (G, λ)-
BRH represent the garlic g = log2(G), the value to process, and the depth,
respectively. Thus, g specifies the required units of memory. Moreover,
incrementing g by one doubles the time and memory effort for computing
the password hash.

5.2 Catena-DBG

Note that a (G, λ)-Double-Butterfly Graph is based on a stack of λ G-
superconcentrators. The following definition of a G-superconcentrator is
a slightly adapted version of that introduced in [12].

Definition 5 (G-Superconcentrator). A directed acyclic graph Π(V , E)
with a set of vertices V and a set of edges E, a bounded indegree, G in-

puts, and G outputs is called a G-superconcentrator if for every k such

that 1 ≤ k ≤ G and for every pair of subsets V1 ⊂ V of k inputs and

12

Fig. 2. A Cooley-Tukey FFT graph with eight input and output vertices.

front

vertical sequential + connecting layer

back

diagonal

Fig. 3. Types of edges as we use them in our definitions.

V2 ⊂ V of k outputs, there are k vertex-disjoint paths connecting the

vertices in V1 to the vertices in V2.

A double-butterfly graph (DBG) is a special form of a G-superconcen-
trator which is defined by the graph representation of two back-to-back
placed Fast Fourier Transformations [5]. More detailed, it is a represen-
tation of twice the Cooley-Tukey FFT algorithm [6] omitting one row in
the middle (see Figure 2 for an example where G = 8). Therefore, a DBG
consists of 2g rows.
Based on the double-butterfly graph, we define the sequential and stacked
(G, λ)-double-butterfly graph. In the following, we denote vki,j as the j-th
vertex in the i-th row of the k-th double-butterfly graph.

Definition 6 ((G, λ)-Double-Butterfly Graph). Fix a natural num-

ber g ≥ 1 and let G = 2g. Then, the (G, λ)-Double-Butterfly Graph

Π(V , E) consists of 2g · (λ · (2g − 1) + 1) vertices

13

H

H

o�����

i�����

Fig. 4. An (8, 1)-double-butterfly graph.

– {vk0,0, . . . , v
k
0,2g−1} ∪ . . . ∪ {vk2g−2,0, . . . , v

k
2g−2,2g−1} for 1 ≤ k ≤ λ and

– {vλ2g−1,0, . . . , v
λ
2g−1,2g−1},

and λ · (2g − 1) · (3 · 2g) + 2g − 1 edges

– vertical: 2g · (λ · (2g − 1)) edges

(vki,j , v
k
i+1,j) for 0 ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ,

– diagonal: 2g · λ · g + 2g · λ · (g − 1) edges

(vki,j , v
k
i+1,j⊕2g−1−i) for 0 ≤ i ≤ g − 1, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

(vki,j , v
k
i+1,j⊕2i−(g−1)) for g ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

– sequential: (2g − 1) · (λ · (2g − 1) + 1) edges

(vki,j , v
k
i,j+1) for 1 ≤ i ≤ 2g − 1, 0 ≤ j ≤ 2g − 2, 1 ≤ k ≤ λ, and

(vλ2g−1,j , v
λ
2g−1,j+1) for 0 ≤ j ≤ 2g − 2

– connecting layer: λ · (2g − 1) edges

(vki,2g−1, v
k
i+1,0) for 1 ≤ k ≤ λ, 0 ≤ i ≤ 2g − 2.

Figure 3 illustrates the individual types of edges we used in our Definition
above. Moreover, an example for G = 8 and λ = 1 can be seen in Figure 4.

14

Algorithm 5 (G, λ)-Double-Butterfly Hashing

Input: g {Garlic}, x {Value to hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do

3: vi ← H(vi−1)
4: end for

5: for k = 1, . . . , λ do

6: for i = 1, . . . , 2g − 1 do

7: r0 ← H(v2g−1 ⊕ v0 || vσ(g,i−1,0))
8: for j = 1, . . . , 2g − 1 do

9: ri ← H(ri−1 ⊕ vi || vσ(g,i−1,j))
10: end for

11: v ← r
12: end for

13: end for

14: return v2g−1

Double-Butterfly Hashing. The (G, λ)-double-butterfly hashing op-
eration is defined in Algorithm 5. The structure is based on a (G, λ)-
double-butterfly graph. Note that the function σ (see Lines 7 and 9) is
given by

σ(g, i, j) =

{

j ⊕ 2g−1−i if 0 ≤ i ≤ g − 1,

j ⊕ 2i−(g−1) otherwise.

Thus, σ determines the indices of the vertices of the diagonal edges.

Since the security of Catena in terms of password hashing is based on
a time-memory tradeoff, it is desired to implement it in an efficient way,
making it possible to increase the required memory. We recommend to
use BLAKE2b [1] as the underlying hash function, implying a block size
of 1024 bits with 512 bits of output. Thus, it can process two input blocks
within one compression function call. This is suitable for Catena-BRG

since a bit-reversal graph satisfies a fixed indegree of at most 2. When
considering Catena-DBG, we cannot simply concatenate the inputs to
H while keeping the same performance per hash function call, i.e., three
inputs toH require two compression function calls, which is a strong slow-
down in comparison to (G, λ)-BRG. Therefore, we compute H(X,Y, Z) =
H(X ⊕ Y || Z) instead of H(X,Y, Z) = H(X || Y || Z) obtaining the
same performance as Catena-BRG per hash function call. Obviously,
this doubles the probability of input collision. Nevertheless, for a 512-bit
hash function the advantage for an adversary is still negligible.

15

Based on the approach above, the number of hash function calls
to compute Row ri from Row ri−1 is the same for Catena-BRG and
Catena-DBG. Moreover, for both instantiations it holds that the num-
ber of hash function calls is equal to the number of compression function
calls. More detailed, the (G, λ)-BRG requires 2g−1+λ ·2g calls to H and
the (G, λ)-DBG requires 2g−1+λ ·(2g−1) ·2g calls to H. It is easy to see,
that the performance of Catena-DBG in comparison to Catena-BRG

is decreased by a logarithmic factor.

6 Security

In this section we discuss the security of Catena-BRG and Catena-

DBG against side-channel attacks. Furthermore, we discuss the memory-
hardness of both instantiations.

6.1 Resistance Against Side-Channel Attacks

Straightforward implementations of either Catena-BRG or Catena-

DBG provide neither a password-dependent memory-access pattern nor
password-dependent branches. Therefore, both instantiations are resis-
tant against cache-timing attacks.

Considering a malicious garbage collector, each of Algorithms 4 and
5 exposes the arrays v and r. Both arrays are overwitten multiple times.
Therefore, Catena-DBG is resistant against garbage-collector attacks.
Thus, any variant of Catena with some fixed λ ≥ 2 is at least as resistant

to garbage-collector attacks as the same variant with λ− 1 in the absence

of a malicious garbage collector.

6.2 Memory-Hardness

In 1970, Hewitt and Paterson introduced a method for analyzing time-
memory tradeoffs (TMTOs) on directed acyclic graphs [14], called peb-

ble game. While their method has been known for decades, it was re-
cently used in a cryptographic context, e.g., [8]. In general, a pebble
game is a common model to derive and analyze TMTOs as shown in
[17,18,19,20,21].

The pebble-game model is restricted to DAGs with bounded in-degree
and can be seen as a single-player game. Let Π(V , E) be a DAG and let
G = |V| be the number of vertices within Π(V , E). In the setup phase of
the game, the player gets S pebbles (tokens) with S ≤ G. A pebble can

16

be placed (pebble) or be removed (unpebble) from a vertex v ∈ V under
certain requirements:

1. A pebble may be removed from a vertex v at any time.

2. A pebble can be placed on a vertex v if all predecessors of the vertex
v are marked.

3. If all immediate predecessors of an unpebbled vertex v are marked, a
pebble may be moved from a predecessor of v to v.

A move is the application of either the second or the third action stated
above. The goal of the game is to pebble Π, i.e., to mark all vertices
of the graph Π at least once. The total amount of moves represent the
computational costs.

Catena-BRG. In [12], Lengauer and Tarjan have already proven the
lower bound of pebble movements for a (G, 1)-bit-reversal graph.

Theorem 1 (Lower Bound for a (G, 1)-BRG [12]). If S ≥ 2, then,
pebbling the bit-reversal graph Πg(V , E) consisting of G = 2g input nodes

with S pebbles takes time

T >
G2

16S
.

Biryukov and Khovratovich have shown in [4] that stacking more than
one bit-reversal graph only adds some linear factor to the quadratic time-
memory tradeoff. Hence, a (G, λ)-BRG with λ > 1 does not achieve the
properties of a λ-memory-hard function.

Catena-DBG. Likewise, the authors of [12] analyzed the time-memory
tradeoff for a stack of λ G-superconcentrators. Since the double-butterfly
is a special form of a G-superconcentrators their bound also holds for
(G, λ)-DBG.

Theorem 2 (Lower Bound for a (G, λ)-Superconcentrator [12]).
Pebbling a (G, λ)-superconcentrator using S ≤ G/20 black and white peb-

bles requires T placements such that

T ≥ G

(

λG

64S

)λ

.

17

Discussion. For scenarios where a quadratic time-memory tradeoff is
sufficient, we recommend the efficient Catena-BRG with either λ = 1
or – if garbage-collector attacks pose a relevant threat – with λ = 2.
Note that the benefit of greater values for λ is very limited since the
costs for pebbling the bit-reversal graph remain quadratic. For scenarios
that require a higher time-memory tradeoff, we highly recommend the
λ-memory-hard Catena-DBG with λ = 2 or λ = 3, which is sufficient
for most practical applications.

We have to point out that the computational effort for (G, λ)-DBH
with reasonable values for G, e.g., G ∈ [217, 221], may stress the patience
of many users since the number of vertices and edges grows logarithmic
with G. Thus, it remains an open research problem to find a (G, λ)-su-
perconcentrator – or any other λ-memory-hard function – that can be
computed more efficiently than a (G, λ)-DBH.

7 Conclusion

In this paper we introduced a new class of side-channel attacks, called
garbage-collector attack, which bases on a malicious garbage collector.
We showed that the common password scrambler scrypt is vulnerable
to this kind of attacks. Furthermore, we presented a (theoretical) cache-
timing attack on scrypt that exploits its password-dependent memory-
access pattern. Both attacks enable an adversary to construct a memo-

ryless password filter that enables massively-parallel password-guessing
attacks. Moreover, we show that our attacks work even without knowledge
of the password hash. All regular implementations, i.e., implementations
that are not hardened against side-channel attacks, of password scram-
blers with a password-dependent memory access pattern appear to be
vulnerable to these attacks.

As a remedy, we introduced a novel password-scrambling framework
Catena. We presented two instantiations with a password-independent
memory-access pattern: Catena-BRG and Catena-DBG. The former
is more efficient and 1-memory-hard, whereas the latter is less efficient
but offers a higher level of security, i.e., λ-memory-hardness. Finally, we
want to emphasize that Catena-BRG and Catena-DBG inherit their
security from well-analyzed structures, namely bit-reversal and double-
butterfly graphs.

18

Acknowledgement

Thanks to B. Cox, E. List, C. Percival, A. Peslyak, S. Thomas, S. Touset,
and the reviewers of the ASIACRYPT’14 for their helpful hints, com-
ments, and fruitful discussions. Finally, we thank A. Biryukov and D.
Khovratovich for pointing out a flaw in our proof of the time-memory
tradeoff for the (G, λ)-BRH operation by providing a tradeoff cryptanal-
ysis [4].

References

1. Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2: Simpler, Smaller, Fast as MD5. In Michael J. Jacobson Jr.,
Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS,
volume 7954 of Lecture Notes in Computer Science, pages 119–135. Springer, 2013.

2. Anne Barsuhn. Cache-Timing Attack on scrypt. Bauhaus-Universität Weimar,
Bachelor Dissertation, December 2013.

3. S.M. Bellovin and M. Merrit. Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. Proceedings of the I.E.E.E. Symposium on
Research in Security and Privacy (Oakland), 1992.

4. Alex Biryukov and Dmitry Khovratovich. Tradeoff cryptanalysis of Catena. PHC
mailing list: discussions@password-hashing.net.

5. William F. Bradley. Superconcentration on a Pair of Butterflies. CoRR,
abs/1401.7263, 2014.

6. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comput., 19:297–301, 1965.

7. Ulrich Drepper. Unix crypt using SHA-256 and SHA-512. http://www.akkadia.

org/drepper/SHA-crypt.txt. Accessed May 16, 2013.
8. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-Evolution Schemes

Resilient to Space-Bounded Leakage. In CRYPTO, pages 335–353, 2011.
9. B. Kaliski. RFC 2898 - PKCS #5: Password-Based Cryptography Specification

Version 2.0. Technical report, IETF, 2000.
10. Poul-Henning Kamp. The history of md5crypt. http://phk.freebsd.dk/sagas/

md5crypt.html. Accessed May 16, 2013.
11. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In CRYPTO, pages 104–113, 1996.
12. Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on

time-space trade-offs in a pebble game. J. ACM, 29(4):1087–1130, 1982.
13. Nvidia. Nvidia GeForce GTX 680 - Technology Overview, 2012.
14. Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Jack B.

Dennis, editor, Record of the Project MAC conference on concurrent systems and

parallel computation, chapter Computation schemata, pages 119–127. ACM, New
York, NY, USA, 1970.

15. Colin Percival. Cache Missing for Fun and Profit. BDSCan 2004.
16. Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.

presented at BSDCan’09, May 2009, 2009.
17. J. Savage and S. Swamy. Space-time trade-offs on the FFT algorithm. Information

Theory, IEEE Transactions on, 24(5):563 – 568, sep 1978.

19

http://www.akkadia.org/drepper/SHA-crypt.txt
http://www.akkadia.org/drepper/SHA-crypt.txt
http://phk.freebsd.dk/sagas/md5crypt.html
http://phk.freebsd.dk/sagas/md5crypt.html

18. John E. Savage and Sowmitri Swamy. Space-Time Tradeoffs for Oblivious Interger
Multiplications. In ICALP, pages 498–504, 1979.

19. Ravi Sethi. Complete Register Allocation Problems. SIAM J. Comput., 4(3):226–
248, 1975.

20. Sowmitri Swamy and John E. Savage. Space-Time Tradeoffs for Linear Recursion.
In POPL, pages 135–142, 1979.

21. Martin Tompa. Time-Space Tradeoffs for Computing Functions, Using Connectiv-
ity Properties of their Circuits. In STOC, pages 196–204, 1978.

A Changelog

Based on the cryptanalysis provided by Biryukov and Khovratovich in [4],
we decided to provide a slightly changed version in comparison to our
submitted version. The major changes are (1) removing the flawed proof
for λ-memory-hardness of a (G, λ)-BRG and (2) providing a new instance
called Catena-DBG based on a (G, λ)-double-butterfly graph (variant
of a stack of λ Double-Butterfly Graphs (DBG)).

20

	Memory-Demanding Password Scrambling
	Introduction
	Memory-Hardness
	Side-Channel Attacks on scrypt
	Brief Analysis of ROMix
	Cache-Timing Attacks
	The Garbage-Collector Attack
	Discussion

	Catena – A Memory-Hard Password Scrambler
	Specification
	Properties

	Instantiations
	Catena-BRG
	Catena-DBG

	Security
	Resistance Against Side-Channel Attacks
	Memory-Hardness

	Conclusion
	Changelog

