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Abstract. This paper sets new speed records for high-security constant-
time variable-base-point Diffie–Hellman software: 305395 Cortex-A8-slow
cycles; 273349 Cortex-A8-fast cycles; 91320 Sandy Bridge cycles; 91116
Ivy Bridge cycles; 54389 Haswell cycles. The only higher speed in the
literature for any of these platforms is a July 2014 claim of 89000 Ivy
Bridge cycles using proprietary GLV+GLS software. This paper’s soft-
ware avoids the GLV patents and has publicly verifiable performance.

The new speeds rely on a synergy between (1) state-of-the-art formulas
for genus-2 hyperelliptic curves and (2) a modern trend towards vector-
ization in CPUs. The paper introduces several new techniques for efficient
vectorization of Kummer-surface computations.

Keywords: performance, Diffie–Hellman, hyperelliptic curves, Kummer
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1 Introduction

The Eurocrypt 2013 paper “Fast cryptography in genus 2” by Bos, Costello,
Hisil, and Lauter [17] reported 117000 cycles on Intel’s Ivy Bridge microarchi-
tecture for high-security constant-time scalar multiplication on a genus-2 Kum-
mer surface. The eBACS site for publicly verifiable benchmarks [13] confirms
119032 “cycles to compute a shared secret” (quartiles: 118904 and 119232) for
the kumfp127g software from [17] measured on a single core of h9ivy, a 2012
Intel Core i5-3210M running at 2.5GHz. The software is not much slower on
Intel’s previous microarchitecture, Sandy Bridge: eBACS reports 122716 cycles
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(quartiles: 122576 and 122836) for kumfp127g on h6sandy, a 2011 Intel Core
i3-2310M running at 2.1GHz. (The quartiles demonstrate that rounding to a
multiple of 1000 cycles, as in [17], loses statistically significant information; we
follow eBACS in reporting medians of exact cycle counts.)

The paper reported that this was a “new software speed record” (“breaking
the 120k cycle barrier”) compared to “all previous genus 1 and genus 2 imple-
mentations” of high-security constant-time scalar multiplication. Obviously the
genus-2 cycle counts shown above are better than the (unverified) claim of 137000
Sandy Bridge cycles by Longa and Sica in [40] (Asiacrypt 2012) for constant-
time elliptic-curve scalar multiplication; the (unverified) claim of 153000 Sandy
Bridge cycles by Hamburg in [34] for constant-time elliptic-curve scalar mul-
tiplication; the 182708 cycles reported by eBACS on h9ivy for curve25519, a
constant-time implementation by Bernstein, Duif, Lange, Schwabe, and Yang
[11] (CHES 2011) of Bernstein’s Curve25519 elliptic curve [9]; and the 194036
cycles reported by eBACS on h6sandy for curve25519.

One might conclude from these figures that genus-2 hyperelliptic-curve cryp-
tography (HECC) solidly outperforms elliptic-curve cryptography (ECC). How-
ever, two newer papers claim better speeds for ECC, and a closer look reveals a
strong argument that HECC should have trouble competing with ECC.

The first paper, [44] by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez
(CHES 2013 best-paper award), is the new speed leader in eBACS for non-
constant-time scalar multiplication; the paper reports a new Sandy Bridge speed
record of 69500 cycles. Much more interesting for us is that the paper claims
114800 Sandy Bridge cycles for constant-time scalar multiplication, beating [17].
eBACS reports 119904 cycles, but this is still faster than [17].

The second paper, [24] by Faz-Hernández, Longa, and Sánchez, claims 92000
Ivy Bridge cycles or 96000 Sandy Bridge cycles for constant-time scalar mul-
tiplication; a July 2014 update of the paper claims 89000 Ivy Bridge cycles or
92000 Sandy Bridge cycles. These claims are not publicly verifiable, but if they
are even close to correct then they are faster than [17].

Both of these new papers, like [40], rely heavily on curve endomorphisms
to eliminate many doublings, as proposed by Gallant, Lambert, and Vanstone
[27] (Crypto 2001), patented by the same authors, and expanded by Galbraith,
Lin, and Scott [26] (Eurocrypt 2009). Specifically, [44] uses a GLS curve over
a binary field to eliminate 50% of the doublings, while also taking advantage of
Intel’s new pclmulqdq instruction to multiply binary polynomials; [24] uses a
GLV+GLS curve over a prime field to eliminate 75% of the doublings.

One can also use the GLV and GLS ideas in genus 2, as explored by Bos,
Costello, Hisil, and Lauter starting in [17] and continuing in [18] (CHES 2013).
However, the best GLV/GLS speed reported in [18], 92000 Ivy Bridge cycles,
provides only 2105 security and is not constant time. This is less impressive than
the 119032 cycles from [17] for constant-time DH at a 2125 security level, and
less impressive than the reports in [44] and [24].

The underlying problem for HECC is easy to explain. All known HECC ad-
dition formulas are considerably slower than the state-of-the-art ECC addition
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formulas at the same security level. Almost all of the HECC options explored in
[17] are bottlenecked by additions, so they were doomed from the outset, clearly
incapable of beating ECC.

The one exception is that HECC provides an extremely fast ladder (see Sec-
tion 2), built from extremely fast differential additions and doublings, consider-
ably faster than the Montgomery ladder frequently used for ECC. This is why
[17] was able to set DH speed records.

Unfortunately, differential additions do not allow arbitrary addition chains.
Differential additions are incompatible with standard techniques for removing
most or all doublings from fixed-base-point single-scalar multiplication, and
with standard techniques for removing many doublings from multi-scalar mul-
tiplication. As a consequence, differential additions are incompatible with the
GLV+GLS approach mentioned above for removing many doublings from single-
scalar multiplication. This is why the DH speeds from [17] were quickly super-
seded by DH speeds using GLV+GLS. A recent paper [22] (Eurocrypt 2014) by
Costello, Hisil, and Smith shows feasibility of combining differential additions
and use of endomorphisms but reports 145000 Ivy Bridge cycles for constant-
time software, much slower than the papers mentioned above.

1.1. Contributions of this paper. We show that HECC has an important
compensating advantage, and we exploit this advantage to achieve new DH speed
records. The advantage is that we are able to heavily vectorize the HECC ladder.

CPUs are evolving towards larger and larger vector units. A low-cost low-
power ARM Cortex-A8 CPU core contains a 128-bit vector unit that every two
cycles can compute two vector additions, each producing four sums of 32-bit
integers, or one vector multiply-add, producing two results of the form ab + c
where a, b are 32-bit integers and c is a 64-bit integer. Every cycle a Sandy
Bridge CPU core can compute a 256-bit vector floating-point addition, producing
four double-precision sums, and at the same time a 256-bit vector floating-point
multiplication, producing four double-precision products. A new Intel Haswell
CPU core can carry out two 256-bit vector multiply-add instructions every cycle.
Intel has announced future support for 512-bit vectors (“AVX-512”).

Vectorization has an obvious attraction for a chip manufacturer: the costs
of decoding an instruction are amortized across many arithmetic operations.
The challenge for the algorithm designer is to efficiently vectorize higher-level
computations so that the available circuitry is performing useful work during
these computations rather than sitting idle. What we show here is how to fit
HECC with surprisingly small overhead into commonly available vector units.
This poses several algorithmic challenges, notably to minimize the permutations
required for the Hadamard transform (see Section 4). We claim broad applica-
bility of our techniques to modern CPUs, and to illustrate this we analyze all
three of the microarchitectures mentioned in the previous paragraph.

Beware that different microarchitectures often have quite different perfor-
mance. A paper that advertises a “better” algorithmic idea by reporting new
record cycle counts on a new microarchitecture, not considered in the previ-
ous literature, might actually be reporting an idea that loses performance on
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all microarchitectures. We instead emphasize HECC performance on the widely
deployed Sandy Bridge microarchitecture, since Sandy Bridge was shared as a
target by the recent ECC speed-record papers listed above. We have now set
a new Sandy Bridge DH speed record, demonstrating the value of vectorized
HECC. We also have set DH speed records for Cortex-A8 and Haswell.

1.2. Constant time: importance and difficulty. See full version of this paper
online at https://eprint.iacr.org/2014/134.

1.3. Performance results. eBACS shows that on a single core of h6sandy our
DH software (“kummer”) uses just 91320 Sandy Bridge cycles (quartiles: 91284
and 91372). On a single core of h9ivy our software uses 91116 cycles (quar-
tiles: 90776 and 91224). On a single core of titan0, an Intel Xeon E3-1275
V3 (Haswell), our software uses 54389 cycles (quartiles: 54341 and 54454). On
h7beagle, a TI Sitara AM3359 (Cortex-A8-slow), our software uses 305395 cy-
cles (quartiles: 305380 and 305413). On h4mx515e, a Freescale i.MX515 (Cortex-
A8-fast), our software uses 273349 cycles (quartiles: 273337 and 273387).

1.4. Cycle-count comparison. Table 1.5 summarizes reported high-security
DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge, and Haswell.

This table is limited to software that claims to be constant time, and that
claims a security level close to 2128. This is the reason that the table does not
include, e.g., the 767000 Cortex-A8 cycles and 108000 Ivy Bridge cycles claimed
in [18] for constant-time scalar multiplication on a Kummer surface; the authors
claim only 103 bits of security for that surface. This is also the reason that the
table does not include, e.g., the 69500 Sandy Bridge cycles claimed in [44] for
non-constant-time scalar multiplication.

The table does not attempt to report whether the listed cycle counts are
from software that actually meets the above security requirements. In some cases
inspection of the software has shown that the security requirements are violated;
see Section 1.2. “Open” means that the software is reported to be open source,
allowing third-party inspection.

Our speeds, on the same platform targeted in [17], solidly beat the HECC
speeds from [17]. Our speeds also solidly beat the Cortex-A8, Sandy Bridge,
and Ivy Bridge speeds from all available ECC software, including [11], [15],
[22], and [44]; solidly beat the speeds claimed in [34] and [40]; and are even
faster than the previous Sandy Bridge/Ivy Bridge DH record claimed in [24],
namely 96000/92000 cycles using unpublished software for GLV+GLS ECC. For
Haswell, despite Haswell’s exceptionally fast binary-field multiplier, our speeds
beat the 55595 cycles from [44] for a GLS curve over a binary field. The only
better speed in the literature for any of these platforms is a claim of 89000 Ivy
Bridge cycles from a July 2014 update of [24], again using unpublished software
for GLV+GLS ECC. We set our new speed records using an HECC ladder that
is conceptually much simpler than GLV and GLS, avoiding all the complications
of scalar-dependent precomputations, lattice size issues, multi-scalar addition
chains, endomorphism-rho security analysis, Weil-descent security analysis, and
patents.

https://eprint.iacr.org/2014/134
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arch cycles ladder open g field source of software

A8-slow 497389 yes yes 1 2255 − 19 [15] CHES 2012
A8-slow 305395 yes yes 2 2127 − 1 new (this paper)

A8-fast 460200 yes yes 1 2255 − 19 [15] CHES 2012
A8-fast 273349 yes yes 2 2127 − 1 new (this paper)

Sandy 194036 yes yes 1 2255 − 19 [11] CHES 2011
Sandy 153000? yes no 1 2252 − 2232 − 1 [34]
Sandy 137000? no no 1 (2127 − 5997)2 [40] Asiacrypt 2012
Sandy 122716 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Sandy 119904 no yes 1 2254 [44] CHES 2013
Sandy 96000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Sandy 92000? no no 1 (2127 − 5997)2 [24] July 2014
Sandy 91320 yes yes 2 2127 − 1 new (this paper)

Ivy 182708 yes yes 1 2255 − 19 [11] CHES 2011
Ivy 145000? yes yes 1 (2127 − 1)2 [22] Eurocrypt 2014
Ivy 119032 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Ivy 114036 no yes 1 2254 [44] CHES 2013
Ivy 92000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Ivy 91116 yes yes 2 2127 − 1 new (this paper)
Ivy 89000? no no 1 (2127 − 5997)2 [24] July 2014

Haswell 145907 yes yes 1 2255 − 19 [11] CHES 2011
Haswell 100895 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Haswell 55595 no yes 1 2254 [44] CHES 2013
Haswell 54389 yes yes 2 2127 − 1 new (this paper)

Table 1.5. Reported high-security DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge,
and Haswell. Cycle counts from eBACS are for curve25519, kumfp127g, gls254prot,
and our kummer on h7beagle (Cortex-A8-slow), h4mx515e (Cortex-A8-fast), h6sandy
(Sandy Bridge), h9ivy (Ivy Bridge), and titan0 (Haswell). Cycle counts not from
SUPERCOP are marked “?”. ECC has g = 1; genus-2 HECC has g = 2. See text for
security requirements.

2 Fast scalar multiplication on the Kummer surface

This section reviews the smallest number of field operations known for genus-2
scalar multiplication. Sections 3 and 4 optimize the performance of those field
operations using 4-way vector instructions.

Vectorization changes the interface between this section and subsequent sec-
tions. What we actually optimize is not individual field operations, but rather
pairs of operations, pairs of pairs, etc., depending on the amount of vectorization
available from the CPU. Our optimization also takes advantage of sequences of
operations such as the output of a squaring being multiplied by a small con-
stant. What matters in this section is therefore not merely the number of field
multiplications, squarings, etc., but also the pattern of those operations.

2.1. Only 25 multiplications. Almost thirty years ago Chudnovsky and Chud-
novsky wrote a classic paper [21] optimizing scalar multiplication inside the
elliptic-curve method of integer factorization. At the end of the paper they
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also considered the performance of scalar multiplication on Jacobian varieties
of genus-2 hyperelliptic curves. After mentioning various options they gave some
details of one option, namely scalar multiplication on a Kummer surface.

A Kummer surface is related to the Jacobian of a genus-2 hyperelliptic curve in
the same way that x-coordinates are related to a Weierstrass elliptic curve. There
is a standard rational map X from the Jacobian to the Kummer surface; this map
satisfies X(P ) = X(−P ) for points P on the Jacobian and is almost everywhere
exactly 2-to-1. Addition on the Jacobian does not induce an operation on the
Kummer surface (unless the number of points on the surface is extremely small),
but scalar multiplication P 7→ nP on the Jacobian induces scalar multiplication
X(P ) 7→ X(nP ) on the Kummer surface. Not every genus-2 hyperelliptic curve
can have its Jacobian mapped to the standard type of Kummer surface over the
base field, but a noticeable fraction of curves can; see [31].

Chudnovsky and Chudnovsky reported 14M for doubling a Kummer-surface
point, where M is the cost of field multiplication; and 23M for “general addi-
tion”, presumably differential addition, computing X(Q+P ) given X(P ), X(Q),
X(Q−P ). They presented their formulas for doubling, commenting on a “pretty
symmetry” in the formulas and on the number of multiplications that were ac-
tually squarings. They did not present their formulas for differential addition.

Two decades later, in [30], Gaudry reduced the total cost of differential addi-
tion and doubling, computing X(2P ), X(Q+ P ) given X(P ), X(Q), X(Q− P ),
to 25M, more precisely 16M + 9S, more precisely 10M + 9S + 6m, where S is
the cost of field squaring and m is the cost of multiplication by a curve constant.
An `-bit scalar-multiplication ladder therefore costs just 10`M + 9`S + 6`m.

Gaudry’s formulas are shown in Figure 2.2(a). Each point on the Kummer
surface is expressed projectively as four field elements (x : y : z : t); one is free
to replace (x : y : z : t) with (rx : ry : rz : rt) for any nonzero r. The “H”
boxes are Hadamard transforms, each using 4 additions and 4 subtractions; see
Section 4. The Kummer surface is parametrized by various constants (a : b : c : d)
and related constants (A2 : B2 : C2 : D2) = H(a2 : b2 : c2 : d2). The doubling
part of the diagram, from (x2 : y2 : z2 : t2) down to (x4 : y4 : z4 : t4), uses
3M + 5S + 6m, matching the 14M reported by Chudnovsky and Chudnovsky;
but the rest of the picture uses just 7M + 4S extra, making remarkable reuse
of the intermediate results of doubling. Figure 2.2(b) replaces 10M + 9S + 6m
with 7M + 12S + 9m, as suggested by Bernstein in [10]; this saves time if m is
smaller than the difference M− S.

2.3. The original Kummer surface vs. the squared Kummer surface.
Chudnovsky and Chudnovsky had actually used slightly different formulas for
a slightly different surface, which we call the “squared Kummer surface”. Each
point (x : y : z : t) on the original Kummer surface corresponds to a point
(x2 : y2 : z2 : t2) on the squared Kummer surface. Figure 2.4 presents the
equivalent of Gaudry’s formulas for the squared Kummer surface, relabeling
(x2 : y2 : z2 : t2) as (x : y : z : t); the squarings at the top of Figure 2.2 have
moved close to the bottom of Figure 2.4.
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(a) 10M + 9S + 6m ladder formulas.
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(b) 7M + 12S + 9m ladder formulas.

Fig. 2.2. Ladder formulas for the Kummer surface. Inputs are X(Q − P ) = (x1 :
y1 : z1 : t1), X(P ) = (x2 : y2 : z2 : t2), and X(Q) = (x3 : y3 : z3 : t3); outputs are
X(2P ) = (x4 : y4 : z4 : t4) and X(P +Q) = (x5 : y5 : z5 : t5). Formulas in (a) are from
Gaudry [30]; diagrams are copied from Bernstein [10].

The number of field operations is the same either way, as stated in [10] with
credit to André Augustyniak. However, the squared Kummer surface has a com-
putational advantage over the original Kummer surface, as pointed out by Bern-
stein in [10]: constructing surfaces in which all of a2, b2, c2, d2, A2, B2, C2, D2 are
small, producing fast multiplications by constants in Figure 2.4, is easier than
constructing surfaces in which all of a, b, c, d, A2, B2, C2, D2 are small, producing
fast multiplications by constants in Figure 2.2.

2.5. Preliminary comparison to ECC. A Montgomery ladder step for ECC
costs 5M+4S+1m, while a ladder step on the Kummer surface costs 10M+9S+
6m or 7M+12S+9m. Evidently ECC uses only about half as many operations.
However, for security ECC needs primes around 256 bits (such as the convenient
prime 2255 − 19), while the Kummer surface can use primes around 128 bits
(such as the even more convenient prime 2127 − 1), and presumably this saves
more than a factor of 2.

Several years ago, in [10], Bernstein introduced 32-bit Intel Pentium M soft-
ware for generic Kummer surfaces (i.e., m = M) taking about 10% fewer cycles
than his Curve25519 software, which at the time was the speed leader for ECC.
Gaudry, Houtmann, and Thomé, as reported in [32, comparison table], intro-
duced 64-bit software for Curve25519 and for a Kummer surface; the second
option was slightly faster on AMD Opteron K8 but the first option was slightly
faster on Intel Core 2. It is not at all clear that one can reasonably extrapolate
to today’s CPUs.
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Fig. 2.4. Ladder formulas for the squared Kummer surface. Compare to Figure 2.2.

Bernstein’s cost analysis concluded that HECC could be as much as 1.5×
faster than ECC on a Pentium M (cost 1355 vs. cost 1998 in [10, page 31]),
depending on the exact size of the constants a2, b2, c2, d2, A2, B2, C2, D2. This
motivated a systematic search through small constants to find a Kummer surface
providing high security and high twist security. But this was more easily said
than done: genus-2 point counting was much more expensive than elliptic-curve
point counting.

2.6. The Gaudry–Schost Kummer surface. Years later, after a 1000000-
CPU-hour computation relying on various algorithmic improvements to genus-2
point counting, Gaudry and Schost announced in [33] that they had found a
secure Kummer surface (a2 : b2 : c2 : d2) = (11 : −22 : −19 : −3) over Fp with
p = 2127 − 1. This is exactly the surface that was used for the HECC speed
records in [17]. We obtain even better speeds for the same surface.

Note that, as mentioned by Bos, Costello, Hisil, and Lauter in [17], the con-
stants (1 : a2/b2 : a2/c2 : a2/d2) = (1 : −1/2 : −11/19 : −11/3) in Figure 2.4
are projectively the same as (−114 : 57 : 66 : 418). The common factor 11
between a2 = 11 and b2 = −22 helps keep these integers small. The constants
(1 : A2/B2 : A2/C2 : A2/D2) = (1 : −3 : −33/17 : −33/49) are projectively the
same as (−833 : 2499 : 1617 : 561).

3 Decomposing field multiplication

The only operations in Figures 2.2 and 2.4 are the H boxes, which we analyze
in Section 4, and field multiplications, which we analyze in this section. Our
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goal here is to obtain the smallest possible number of CPU cycles for M, S,
etc. modulo p = 2127 − 1.

This prime has been considered before, for example in [8] and [10]. What is
new here is fitting arithmetic modulo this prime, for the pattern of operations
shown in Figure 2.4, into the vector abilities of modern CPUs. There are four
obvious dimensions of vectorizability:

• Vectorizing across the “limbs” that represent a field element such as x2. The
most obvious problem with this approach is that, when f is multiplied by
g, each limb of f needs to communicate with each limb of g and each limb
of output. A less obvious problem is that the optimal number of limbs is
CPU-dependent and is usually nonzero modulo the vector length. Each of
these problems poses a challenge in organizing and reshuffling data inside
multiplications.

• Vectorizing across the four field elements that represent a point. All of the
multiplications in Figure 2.4 are visually organized into 4-way vectors, except
that in some cases the vectors have been scaled to create a multiplication
by 1. Even without vectorization, most of this scaling is undesirable for
any surface with small a2, b2, c2, d2: e.g., for the Gaudry–Schost surface we
replace (1 : a2/b2 : a2/c2 : a2/d2) with (−114 : 57 : 66 : 418). The only
remaining exception is the multiplication by 1 in (1 : x1/y1 : x1/z1 : x1/t1)
where X(Q − P ) = (x1 : y1 : z1 : t1). Vectorizing across the four field
elements means that this multiplication costs 1M, increasing the cost of a
ladder step from 7M + 12S + 12m to 8M + 12S + 12m.

• Vectorizing between doubling and differential addition. For example, in Fig-
ure 2.4(b), squarings are imperfectly paired with multiplications on the third
line; multiplications by constants are perfectly paired with multiplications
by the same constants on the fourth line; squarings are perfectly paired with
squarings on the sixth line; and multiplications by constants are imperfectly
paired with multiplications by inputs on the seventh line. There is some loss
of efficiency in, e.g., pairing the squaring with the multiplication, since this
prohibits using faster squaring methods.

• Vectorizing across a batch of independent scalar-multiplication inputs, in ap-
plications where a suitably sized batch is available. This is relatively straight-
forward but increases cache traffic, often to problematic levels. In this paper
we focus on the traditional case of a single input.

The second dimension of vectorizability is, as far as we know, a unique feature
of HECC, and one that we heavily exploit for high performance.

For comparison, one can try to vectorize the well-known Montgomery ladder
for ECC [42] across the field elements that represent a point, but (1) this provides
only two-way vectorization (x and z), not four-way vectorization; and (2) many of
the resulting pairings are imperfect. The Montgomery ladder for Curve25519 was
vectorized by Costigan and Schwabe in [23] for the Cell, and then by Bernstein
and Schwabe in [15] for the Cortex-A8, but both of those vectorizations had
substantially higher overhead than our new vectorization of the HECC ladder.
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3.1. Sandy Bridge floating-point units. The only fast multiplier available
on Intel’s 32-bit platforms for many years, from the original Pentium twenty
years ago through the Pentium M, was the floating-point multiplier. This was
exploited by Bernstein for cryptographic computations in [8], [9], etc.

The conventional wisdom is that this use of floating-point arithmetic was
rendered obsolete by the advent of 64-bit platforms: in particular, Intel now
provides a reasonably fast 64-bit integer multiplier. However, floating-point units
have also become more powerful; evidently Intel sees many applications that rely
critically upon fast floating-point arithmetic. We therefore revisit Bernstein’s
approach, with the added challenge of vectorization.

We next describe the relevant features of the Sandy Bridge; see [25] for more
information. Our optimization of HECC for the Sandy Bridge occupies the rest
of Sections 3 and 4. The Ivy Bridge has the same features and should be expected
to produce essentially identical performance for this type of code. The Haswell
has important differences and is analyzed in Appendix B online; the Cortex-A8
is analyzed in Section 5.

Each Sandy Bridge core has several 256-bit vector units operating in parallel
on vectors of 4 double-precision floating-point numbers:

• “Port 0” handles one vector multiplication each cycle, with latency 5.
• Port 1 handles one vector addition each cycle, with latency 3.
• Port 5 handles one permutation instruction each cycle. The selection of per-

mutation instructions is limited and is analyzed in detail in Section 4.
• Ports 2, 3, and 4 handle vector loads and stores, with latency 4 from L1

cache and latency 3 to L1 cache. Load/store throughput is limited in various
ways, never exceeding one 256-bit load per cycle.

Recall that a double-precision floating-point number occupies 64 bits, including
a sign bit, a power of 2, and a “mantissa”. Every integer between −253 and 253

can be represented exactly as a double-precision floating-point number. More
generally, every real number of the form 2ei, where e is a small integer and i is an
integer between −253 and 253, can be represented exactly as a double-precision
floating-point number. The computations discussed here do not approach the
lower or upper limits on e, so we do not review the details of the limits.

Our final software uses fewer multiplications than additions, and fewer per-
mutations than multiplications. This does not mean that we were free to use
extra multiplications and permutations: if multiplications and permutations are
not finished quickly enough then the addition unit will sit idle waiting for input.
In many cases, noted below, we have the flexibility to convert multiplications to
additions, reducing latency; we found that in some cases this saved time despite
the obvious addition bottleneck.

3.2. Optimizing M (field multiplication). We decompose an integer f mod-
ulo 2127−1 into six floating-point limbs in (non-integer) radix 2127/6. This means
that we write f as f0 + f1 + f2 + f3 + f4 + f5 where f0 is a small multiple of 20,
f1 is a small multiple of 222, f2 is a small multiple of 243, f3 is a small multiple
of 264, f4 is a small multiple of 285, and f5 is a small multiple of 2106. (The exact
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meaning of “small” is defined by a rather tedious, but verifiable, collection of
bounds on the floating-point numbers appearing in each step of the program. It
should be obvious that a simpler definition of “small” would compromise effi-
ciency; for example, H cannot be efficient unless the bounds on H intermediate
results and outputs are allowed to be larger than the bounds on H inputs.)

If g is another integer similarly decomposed as g0 + g1 + g2 + g3 + g4 + g5
then f0g0 is a multiple of 20, f0g1 + f1g0 is a multiple of 222, f0g2 + f1g1 + f2g0
is a multiple of 243, etc. Each of these sums is small enough to fit exactly in a
double-precision floating-point number, and the total of these sums is exactly
fg. What we actually compute are the sums

h0 = f0g0 + 2−127f1g5 + 2−127f2g4 + 2−127f3g3 + 2−127f4g2 + 2−127f5g1,

h1 = f0g1 + f1g0 + 2−127f2g5 + 2−127f3g4 + 2−127f4g3 + 2−127f5g2,

h2 = f0g2 + f1g1 + f2g0 + 2−127f3g5 + 2−127f4g4 + 2−127f5g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 2−127f4g5 + 2−127f5g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + 2−127f5g5,

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0,

whose total h is congruent to fg modulo 2127 − 1.
There are 36 multiplications figj here, and 30 additions. (This operation

count does not include carries; we analyze carries below.) One can collect the
multiplications by 2−127 into 5 multiplications such as 2−127(f4g5 + f5g4). We
use another approach, precomputing 2−127f1, 2

−127f2, 2
−127f3, 2

−127f4, 2
−127f5,

for two reasons: first, this reduces the latency of each hi computation, giving
us more flexibility in scheduling; second, this gives us an opportunity to share
precomputations when the input f is reused for another multiplication.

3.3. Optimizing S (field squaring) and m (constant field multiplica-
tion). For S, i.e., for f = g, we have

h0 = f0f0 + ε2f1f5 + ε2f2f4 + εf3f3, h1 = 2f0f1 + ε2f2f5 + ε2f3f4,

h2 = 2f0f2 + f1f1 + ε2f3f5 + εf4f4, h3 = 2f0f3 + 2f1f2 + ε2f4f5,

h4 = 2f0f4 + 2f1f3 + f2f2 + εf5f5, h5 = 2f0f5 + 2f1f4 + 2f2f3

where ε = 2−127. We precompute 2f1, 2f2, 2f3, 2f4, 2f5 and εf3, εf4, εf5; this
costs 8 multiplications, where 5 of the multiplications can be freely replaced by
additions. The rest of S, after this precomputation, takes 21 multiplications and
15 additions, plus the cost of carries.

For m we have simply h0 = cf0, h1 = cf1, etc., costing 6 multiplications plus
the cost of carries. This does not work for arbitrary field constants, but it does
work for the small constants stated in Section 2.6.

3.4. Carries. The output limbs hi from M are too large to be used in a
subsequent multiplication. We carry h0 → h1 by rounding 2−22h0 to an integer
c0, adding 222c0 to h1, and subtracting 222c0 from h0. This takes 3 additions
(the CPU has a rounding instruction, vroundpd, that costs just 1 addition) and
2 multiplications. The resulting h0 is guaranteed to be between −221 and 221.



12 Bernstein, Chuengsatiansup, Lange, Schwabe

We could similarly carry h1 → h2 → h3 → h4 → h5, and carry h5 → h0
as follows: round 2−127h5 to an integer c5, add c5 to h0, and subtract 2127c5
from h5. One final carry h0 → h1, for a total of 7 carries (21 additions and 14
multiplications), would then guarantee that all of h0, h1, h2, h3, h4, h5 are small
enough to be input to a subsequent multiplication.

The problem with this carry chain is that it has extremely high latency: 5
cycles for 2−22h0, 3 more cycles for c0, 5 more cycles for 222c0, and 3 more
cycles to add to h1, all repeated 7 times, for a total of 112 cycles, plus the
latency of obtaining h0 in the first place. The ladder step in Figure 2.4 has a
serial chain of H → M → m → H → S → M, for a total latency above 500
cycles, i.e., above 125500 cycles for a 251-bit ladder.

We do better in six ways. First, we use only 6 carries in M rather than 7, if the
output will be used only for m. Even if the output h0 is several bits larger than
222, it will not overflow the small-constant multiplication, since our constants
are all bounded by 212.

Second, pushing the same idea further, we do these 6 carries in parallel. First
we round in parallel to obtain c0, c1, c2, c3, c4, c5, then we subtract in parallel,
then we add in parallel, allowing all of h0, h1, h2, h3, h4, h5 to end up several bits
larger than they would have been with full carries.

Third, we also use 6 parallel carries for a multiplication that is an m. There
is no need for a chain, since the initial h0, h1, h2, h3, h4, h5 cannot be very large.

Fourth, we also use 6 parallel carries for each S. This allows the S output
to be somewhat larger than the input, but this still does not create overflows
in the subsequent M. At this point the only remaining block of 7 carries is in
the M4 by (1 : x1/y1 : x1/z1 : x1/t1), where M4 means a vector of four field
multiplications.

Fifth, for that M4, we run two carry chains in parallel, carrying h0 → h1 and
h3 → h4, then h1 → h2 and h4 → h5, then h2 → h3 and h5 → h0, then h3 → h4
and h0 → h1. This costs 8 carries rather than 7 but chops latency in half.

Finally, for that M4, we use the carry approach from [8]: add the constant
α22 = 222(252+251) to h0, and subtract α22 from the result, obtaining the closest
multiple of 222 to h0; add this multiple to h1 and subtract it from h0. This costs
4 additions rather than 3, but reduces carry latency from 16 to 9, and also saves
two multiplications.

4 Permutations: vectorizing the Hadamard transform

The Hadamard transform H in Section 2 is defined as follows: H(x, y, z, t) =
(x+ y+ z+ t, x+ y− z− t, x− y+ z− t, x− y− z+ t). Evaluating this as written
would use 12 field additions (counting subtraction as addition), but a standard
“fast Hadamard transform” reduces the 12 to 8.

Our representation of field elements for the Sandy Bridge (see Section 3)
requires 6 limb additions for each field addition. There is no need to carry before
the subsequent multiplications; this is the main reason that we use 6 limbs rather
than 5.
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In a ladder step there are 4 copies of H, each requiring 8 field additions,
each requiring 6 limb additions, for a total of 192 limb additions. This operation
count suggests that 48 vector instructions suffice. Sandy Bridge has a helpful
vaddsubpd instruction that computes (a− e, b+ f, c− g, d+ h) given (a, b, c, d)
and (e, f, g, h), obviously useful inside H.

However, we cannot simply vectorize across x, y, z, t. In Section 3 we were
multiplying one x by another, at the same time multiplying one y by another,
etc., with no permutations required; in this section we need to add x to y, and
this requires permutations.

The Sandy Bridge has a vector permutation unit acting in parallel with the
adder and the multiplier, as noted in Section 3. But this does not mean that the
cost of permutations can be ignored. A long sequence of permutations inside H
will force the adder and the multiplier to remain idle, since only a small fraction
of the work inside M can begin before H is complete.

Our original software used 48 vector additions and 144 vector permutations
for the 4 copies of H. We then tackled the challenge of minimizing the number
of permutations. We ended up reducing this number from 144 to just 36. This
section presents the details; analyzes conditional swaps, which end up consum-
ing further time in the permutation unit; and concludes by analyzing the total
number of operations used in our Sandy Bridge software.

4.1. Limitations of the Sandy Bridge permutations. There is a latency-1
permutation instruction vpermilpd that computes (y, x, t, z) given (x, y, z, t).
vaddsubpd then produces (x − y, y + x, z − t, t + z), which for the moment we
abbreviate as (e, f, g, h). At this point we seem to be halfway done: the desired
output is simply (f + h, f − h, e+ g, e− g).

If we had (f, h, e, g) at this point, rather than (e, f, g, h), then we could apply
vpermilpd and vaddsubpd again, obtaining (f − h, h + f, e − g, g + e). One
final vpermilpd would then produce the desired (f + h, f − h, e+ g, e− g). The
remaining problem is the middle permutation of (e, f, g, h) into (f, h, e, g).

Unfortunately, Sandy Bridge has very few options for moving data between
the left half of a vector, in this case (e, f), and the right half of a vector, in this
case (g, h). There is a vperm2f128 instruction (1-cycle throughput but latency
2) that produces (g, h, e, f), but it cannot even produce (h, g, f, e), never mind a
combination such as (f, h, e, g). (Haswell has more permutation instructions, but
Ivy Bridge does not. This is not a surprising restriction: n-bit vector units are
often designed as n/2-bit vector units operating on the left half of a vector in one
cycle and the right half in the next cycle, but this means that any communication
between left and right requires careful attention in the circuitry. A similar left-
right separation is even more obvious for the Cortex-A8.) We could shift some
permutation work to the load/store unit, but this would have very little benefit,
since simulating a typical permutation requires quite a few loads and stores.

The vpermilpd instruction (x, y, z, t) 7→ (y, x, t, z) mentioned above is one of
a family of 16 vpermilpd instructions that produce (x or y, x or y, z or t, z or t).
There is an even more general family of 16 vshufpd instructions that pro-
duce (a or b, x or y, c or d, z or t) given (a, b, c, d) and (x, y, z, t). In the first ver-
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sions of our software we applied vshufpd to (e, f, g, h) and (g, h, e, f), obtaining
(f, h, g, e), and then applied vpermilpd to obtain (f, h, e, g).

Overall a single H handled in this way uses, for each limb, 2 vaddsubpd

instructions and 6 permutation instructions, half of which are handling the per-
mutation of (e, f, g, h) into (f, h, e, g). The total for all limbs is 12 additions and
36 permutations, and the large “bubble” of permutations ends up forcing many
idle cycles for the addition unit. This occurs four times in each ladder step.

4.2. Changing the input/output format. There are two obvious sources of
inefficiency in the computation described above. First, we need a final permuta-
tion to convert (f −h, f +h, e− g, e+ g) into (f +h, f −h, e+ g, e− g). Second,
the middle permutation of (e, f, g, h) into (f, h, e, g) costs three permutation
instructions, whereas (g, h, e, f) would cost only one.

The first problem arises from a tension between Intel’s vaddsubpd, which al-
ways subtracts in the first position, and the definition of H, which always adds in
the first position. A simple way to resolve this tension is to store (t, z, y, x) instead
of (x, y, z, t) for the input, and (t′, z′, y′, x′) instead of (x′, y′, z′, t′) for the output;
the final permutation then naturally disappears. It is easy to adjust the other
permutations accordingly, along with constants such as (1, a2/b2, a2/c2, a2/d2).

However, this does nothing to address the second problem. Different per-
mutations of (x, y, z, t) as input and output end up requiring different middle
permutations, but these middle permutations are never exactly the left-right
swap provided by vperm2f128.

We do better by generalizing the input/output format to allow negations.
For example, if we start with (x,−y, z, t), permute into (−y, x, t, z), and apply
vaddsubpd, we obtain (x+y, x−y, z− t, t+z). Observe that this is not the same
as the (x − y, x + y, z − t, t + z) that we obtained earlier: the first two entries
have been exchanged.

It turns out to be best to negate z, i.e., to start from (x, y,−z, t). Then
vpermilpd gives (y, x, t,−z), and vaddsubpd gives (x − y, x + y,−z − t, t − z),
which we now abbreviate as (e, f, g, h). Next vperm2f128 gives (g, h, e, f), and
independently vpermilpd gives (f, e, h, g). Finally, vaddsubpd gives (f − g, h+
e, h− e, f + g). This is exactly (x′, t′,−z′, y′) where (x′, y′, z′, t′) = H(x, y, z, t).

The output format here is not the same as the input format: the positions of
t and y have been exchanged. Fortunately, Figure 2.4 is partitioned by the H
rows into two separate universes, and there is no need for the universes to use
the same format. We use the (x, y,−z, t) format at the top and bottom, and the
(x, t,−z, y) format between the two H rows. It is easy to see that exactly the
same sequence of instructions works for all the copies of H, either producing
(x, y,−z, t) format from (x, t,−z, y) format or vice versa.

S4 and M4 do not preserve negations: in effect, they switch from (x, t,−z, y)
format to (x, t, z, y) format. This is not a big problem, since we can reinsert
the negation at any moment using a single multiplication or low-latency logic
instruction (floating-point numbers use a sign bit rather than twos-complement,
so negation is simply xor with a 1 in the sign bit). Even better, in Figure 2.4(b),
the problem disappears entirely: each S4 and M4 is followed immediately by a
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Fig. 4.3. Output format that we use for each operation in the right side of Figure 2.4
on Sandy Bridge, including permutations and negations to accelerate H.

constant multiplication, and so we simply negate the appropriate constants. The
resulting sequence of formats is summarized in Figure 4.3.

Each H now costs 12 additions and just 18 permutations. The number of
non-addition cycles that need to be overlapped with operations before and after
H has dropped from the original 24 to just 6.

4.4. Exploiting double precision. We gain a further factor of 2 by temporarily
converting from radix 2127/6 to radix 2127/3 during the computation of H. This
means that, just before starting H, we replace the six limbs (h0, h1, h2, h3, h4, h5)
representing h0 +h1 +h2 +h3 +h4 +h5 by three limbs (h0 +h1, h2 +h3, h4 +h5).
These three sums, and the intermediate H results, still fit into double-precision
floating-point numbers.

It is essential to switch each output integer back to radix 2127/6 so that each
output limb is small enough for the subsequent multiplication. Converting three
limbs into six is slightly less expensive than three carries; in fact, converting from
six to three and back to six uses exactly the same operations as three carries,
although in a different order.

We further reduce the conversion cost by the following observation. Except
for the M4 by (1 : x1/y1 : x1/z1 : x1/t1), each of our multiplication results uses
six carries, as explained in Section 3.4. However, if we are about to add h0 to h1
for input to H, then there is no reason to carry h0 → h1, so we simply skip that
carry; we similarly skip h2 → h3 and h4 → h5. These skipped carries exactly
cancel the conversion cost.



16 Bernstein, Chuengsatiansup, Lange, Schwabe

For the M4 by (1 : x1/y1 : x1/z1 : x1/t1) the analysis is different: h0 is large
enough to affect h2, and if we skipped carrying h0 → h1 → h2 then the output
of H would no longer be safe as input to a subsequent multiplication. We thus
carry h0 → h1, h2 → h3, and h4 → h5 in parallel; and then h1 → h2, h3 → h4,
and h5 → h0 in parallel. In effect this M4 uses 9 carries, counting the cost of
conversion, whereas in Section 3.4 it used only 8.

To summarize, all of these conversions for all four H cost just one extra
carry, while reducing 48 additions and 72 permutations to 24 additions and 36
permutations.

4.5. Conditional swaps. A ladder step starts from an input (X(nP ), X((n+
1)P )), which we abbreviate as L(n), and produces L(2n) as output. Swapping
the two halves of the input, applying the same ladder step, and swapping the
two halves of the output produces L(2n + 1) instead; one way to see this is to
observe that L(−n− 1) is exactly the swap of L(n).

Consequently one can reach L(2n + ε) for ε ∈ {0, 1} by starting from L(n),
conditionally swapping, applying the ladder step, and conditionally swapping
again, where the condition bit is exactly ε. A standard ladder reaches L(n) by
applying this idea recursively. A standard constant-time ladder reaches L(n) by
applying this idea for exactly ` steps, starting from L(0), where n is known
in advance to be between 0 and 2` − 1. An alternate approach is to first add
to n an appropriate multiple of the order of P , producing an integer known
to be between (e.g.) 2`+1 and 2`+2 − 1, and then start from L(1). We use a
standard optimization, merging the conditional swap after a ladder step into
the conditional swap before the next ladder step, so that there are just ` + 1
conditional swaps rather than 2`.

One way to conditionally swap field elements x and x′ using floating-point
arithmetic is to replace (x, x′) with (x+ b(x′ − x), x′ − b(x′ − x)) where b is the
condition bit, either 0 or 1. This takes three additions and one multiplication
(times 6 limbs, times 4 field elements to swap). It is better to use logic instruc-
tions: replace each addition with xor, replace each multiplication with and, and
replace b with an all-1 or all-0 mask computed from b. On the Sandy Bridge,
logic instructions have low latency and are handled by the permutation unit,
which is much less of a bottleneck for us than the addition unit.

We further improve the performance of the conditional swap as follows. The
M4 on the right side of Figure 4.3 is multiplying H of the left input by H of
the right input. This is commutative: it does not depend on whether the inputs
are swapped. We therefore put the conditional swap after the first row of H
computations, and multiply the H outputs directly, rather than multiplying the
swap outputs. This trick has several minor effects and one important effect.

A minor advantage is that this trick removes all use of the right half of the
swap output; i.e., it replaces the conditional swap with a conditional move. This
reduces the original 24 logic instructions to just 18.

Another minor advantage is as follows. The Sandy Bridge has a vectorized
conditional-select instruction vblendvpd. This instruction occupies the permu-
tation unit for 2 cycles, so it is no better than the 4 traditional logic instructions
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for a conditional swap: a conditional swap requires two conditional selects. How-
ever, this instruction is better than the 3 traditional logic instructions for a
conditional move: a conditional move requires only one conditional select. This
replaces the original logic instructions with 6 conditional-select instructions, con-
suming just 12 cycles.

A minor disadvantage is that the first M4 and S4 are no longer able to
share precomputations of multiplications by 2−127. This costs us 3 multiplication
instructions.

The important effect is that this trick reduces latency, allowing the M4 to
start much sooner. Adding this trick immediately produced a 5% reduction in
our cycle counts.

4.6. Total operations. We treat Figure 2.4(b) as 2M4 + 3S4 + 3m4 + 4H.
The main computations of hi, not counting precomputations and carries, cost

30 additions and 36 multiplications for each M4, 15 additions and 21 multiplica-
tions for each S4, and 0 additions and 6 multiplications for each m4. The total
here is 105 additions and 153 multiplications.

The M4 by (1 : x1/y1 : x1/z1 : x1/t1) allows precomputations outside the
loop. The other M4 consumes 5 multiplications for precomputations, and each S4

consumes 8 multiplications for precomputations; the total here is 29 multiplica-
tions. We had originally saved a few multiplications by sharing precomputations
between the first S4 and the first M4, but this is incompatible with the more
important trick described in Section 4.5.

There are a total of 24 additions in the four H, as explained in Section 4.4.
There are also 51 carries (counting the conversions described in Section 4.4 as
carries), each consuming 3 additions and 2 multiplications, for a total of 153
additions and 102 multiplications.

The grand total is 282 additions and 284 multiplications, evidently requiring
at least 284 cycles for each iteration of the main loop. Recall that there are var-
ious options to trade multiplications for additions: each S4 has 5 precomputed
doublings that can each be converted from 1 multiplication to 1 addition, and
each carry (except h5 → h0) can be converted from 3 additions and 2 multi-
plications to 4 additions. We could use either of these options to eliminate one
multiplication, reducing the 284-cycle lower bound to 283 cycles, but to reduce
latency we ended up instead using the first option to eliminate 11 multiplications
and the second option to eliminate 30 multiplications, obtaining a final total of
308 additions and 243 multiplications. These totals have been computer-verified.

We wrote functions in assembly for M4, S4, etc., but were still over 500
cycles. Given the Sandy Bridge floating-point latencies, and the requirement to
keep two floating-point units constantly busy, we were already expecting instruc-
tion scheduling to be much more of an issue for this software than for typical
integer-arithmetic software. We used various standard optimization techniques
that were already used in several previous DH speed records: we merged the
functions into a single loop, reorganized many computations to save registers,
and eliminated many loads and stores. After building a new Sandy Bridge sim-
ulator and experimenting with different instruction schedules we ended up with
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our current loop, just 347 cycles, and a total of 91320 Sandy Bridge cycles for
scalar multiplication. The main loop explains 87097 of these cycles; the remain-
ing cycles are spent outside the ladder, mostly on converting (x : y : z : t) to
(x/y : x/z : x/t) for output.

5 Cortex-A8

The low-power ARM Cortex-A8 core is the CPU core in the iPad 1, iPhone 4,
Samsung Galaxy S, Motorola Droid X, Amazon Kindle 4, etc. Today a Cortex-
A8 CPU, the Allwinner A10, costs just $5 in bulk and is widely used in low-cost
tablets, set-top boxes, etc. Like Sandy Bridge, Cortex-A8 is not the most recent
microarchitecture, but its very wide deployment and use make it a sensible choice
of platform for optimization and performance comparisons.

Bernstein and Schwabe in [15] (CHES 2012) analyzed the vector capabilities
of the Cortex-A8 for various cryptographic primitives, and in particular set a
new speed record for high-security DH, namely 460200 Cortex-A8 cycles. We do
much better, just 274593 Cortex-A8 cycles, measured on a Freescale i.MX515.
Our basic vectorization approach is the same for Cortex-A8 as for Sandy Bridge,
and many techniques are reused, but there are also many differences. The rest
of this section explains the details.

5.1. Cortex-A8 vector units. Each Cortex-A8 core has two 128-bit vector
units operating in parallel on vectors of four 32-bit integers or two 64-bit integers:

• The arithmetic port takes one cycle for vector addition, with latency 2; or
two cycles for vector multiplication (two 64-bit products ac, bd given 32-bit
inputs a, b and c, d), with latency 7. Logic operations also use the arithmetic
port.

• The load/store port handles loads, stores, and permutations. ARM’s Cortex-
A8 documentation [5] indicates that the load/store port can carry out one
128-bit load every cycle. Beware, however, that there are throughput lim-
its on the L1 cache. We have found experimentally that the common TI
Sitara Cortex-A8 CPU (used, e.g., in the Beaglebone Black development
board) needs three cycles from one load until the next (this is what we
call “Cortex-A8-slow”), while other Cortex-A8 CPUs (“Cortex-A8-fast”) can
handle seven consecutive cycles of loads without penalty.

There are three obvious reasons for Cortex-A8 cycle counts to be much larger
than Sandy Bridge cycle counts: registers are only 128 bits, not 256 bits; there are
only 2 ports, not 6; and multiplication throughput is 1 every 2 cycles, not 1 every
cycle. However, there are also speedups on Cortex-A8. There is (as in Haswell’s
floating-point units—see Appendix B online) a vector multiply-accumulate in-
struction with the same throughput as vector multiplication. A sequence of m
consecutive multiply-accumulate instructions that all accumulate into the same
register executes in 2m cycles (unlike Haswell), effectively reducing multiplica-
tion latency from 7 to 1. Furthermore, Cortex-A8 multiplication produces 64-bit
integer products, while Sandy Bridge gives only 53-bit-mantissa products.
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5.2. Representation. We decompose an integer f modulo 2127 − 1 into five
integer pieces in radix 2127/5: i.e., we write f as f0+226f1+251f2+277f3+2102f4.
Compared to Sandy Bridge, having 20% more room in 64-bit integers than in
53-bit floating-point mantissas allows us to reduce the number of limbs from 6
to 5. We require the small integers f0, f1, f2, f3, f4 to be unsigned because this
reduces carry cost from 4 integer instructions to 3.

We arrange four integers x, y, z, t modulo 2127 − 1 in five 128-bit vectors:
(x0, y0, x1, y1); (x2, y2, x3, y3); (x4, y4, z4, t4); (z0, t0, z1, t1); (z2, t2, z3, t3). This
representation is designed to minimize permutations in M, S, and H. For exam-
ple, computing (x0 + z0, y0 + t0, x1 + z1, y1 + t1) takes just one addition without
any permutations. The Cortex-A8 multiplications take two pairs of inputs at a
time, rather than four as on Sandy Bridge, so there is little motivation to put
(x0, y0, z0, t0) into a vector.

5.3. Optimizing M. Given an integer f as above and an integer g = g0 +
226g1 + 251g2 + 277g3 + 2102g4, the product fg modulo 2127 − 1 is h = h0 +
226h1 + 251h2 + 277h3 + 2102h4, with

h0 = f0g0 + 2f1g4 + 2f2g3 + 2f3g2 + 2f4g1,

h1 = f0g1 + f1g0 + f2g4 + 2f3g3 + f4g2,

h2 = f0g2 + 2f1g1 + f2g0 + 2f3g4 + 2f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g4,

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0.

There are 25 multiplications figj ; additions are free as part of multiply-
accumulate instructions. We precompute 2f1, 2f2, 2f3, 2f4 so that these values
can be reused for another multiplication. These precomputations can be done
by using either 4 shift or 4 addition instructions. Both shift and addition use 1
cycle per instruction, but addition has a lower latency. See Section 5.6 for the
cost of carries.

5.4. Optimizing S. The idea of optimizing S in Cortex-A8 is quite similar to
Sandy Bridge; for details see Section 3.3. We state here only the operation count.
Besides precomputation and carry, we use 15 multiplication instructions; some
of those are actually multiply-accumulate instructions.

5.5. Optimizing m. For m we compute only h0 = cf0, h1 = cf1, h2 = cf2,
h3 = cf3, and h4 = cf4, again exploiting the small constants stated in Section 2.6.

Recall that we use unsigned representation. We always multiply absolute
values, then negate results as necessary by subtracting from 2129 − 4: n0 =
228−4−h0, n1 = 227−4−h1, n2 = 228−4−h2, n3 = 227−4−h3, n4 = 227−4−h4.

Negating any subsequence of x, y, z, t costs at most 5 vector subtractions.
Negating only x or y, or both x and y, costs only 3 subtractions, because our
representation keeps x, y within 3 vectors. The same comment applies to z and
t. The specific m in Section 2.6 end up requiring a total of 13 subtractions with
the same cost as 13 additions.
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5.6. Carries. Each multiplication uses at worst 6 serial carries h1 → h2 → h3 →
h4 → h0 → h1, each costing 3 additions. Various carries are eliminated by the
ideas of Section 3.4.

5.7. Hadamard transform. See Appendix A online.

5.8. Total arithmetic. We view Figure 2.4(b) as 4M2 +6S2 +6m2 +4H. Here
we combine x multiplications and y multiplications into a vectorized M2, and
similarly combine z multiplications and t multiplications; this fits well with the
Cortex-A8 vector multiplication instruction, which outputs two products.

The main computations of hi, not counting precomputations and carries, cost
0 additions and 25 multiplications for each M, 0 additions and 15 multiplications
for each S, 0 additions and 5 multiplications for each m, and 15 additions for
each H block. The total here is 60 additions and 220 multiplications.

Each M costs 4 additions for precomputations, and each S also costs 4 ad-
ditions for precomputations. Some precomputations can be reused. The cost of
precomputations is 20 additions.

There are 10 carry blocks using 6 carries each, and 6 carry blocks using 5
carries each. Each carry consists of 1 shift, 1 addition, and 1 logical and. This
cost is equivalent to 3 additions. There are another 13 additions needed to handle
negation. Overall the carries cost 283 additions. Two conditional swaps, each
costing 9 additions, sum up to 18 additions.

In total we have 381 additions and 220 multiplications in our inner loop. This
means that the inner loop takes at least 821 cycles.

We scheduled instructions carefully but ended up with some overhead beyond
arithmetic: even though the arithmetic and the load/store unit can operate in
parallel, latencies and the limited number of registers leave the arithmetic unit
idle for some cycles. Sobole’s simulator at [48], which we found very helpful,
reports 966 cycles. Actual measurements report 986 cycles; the 251 ladder steps
thus account for 247486 of our 273349 cycles.
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