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1 Nanyang Technological University, Singapore

2 NTT Secure Platform Laboratories, Tokyo, Japan

ntu.guo@gmail.com, {JJean,INikolic}@ntu.edu.sg, sasaki.yu@lab.ntt.co.jp

Abstract. We show key recovery attacks on generic balanced Feistel
ciphers. The analysis is based on the meet-in-the-middle technique and
exploits truncated differentials that are present in the ciphers due to
the Feistel construction. Depending on the type of round function, we
differentiate and show attacks on two types of Feistels. For the first
type, which is the most general Feistel, we show a 5-round distinguisher
(based on a truncated differential), which allows to launch 6-round and
10-round attacks, for single-key and double-key sizes, respectively. For
the second type, we assume the round function follows the SPN structure
with a linear layer P that has a maximal branch number, and based on a
7-round distinguisher, we show attacks that reach up to 14 rounds. Our
attacks outperform all the known attacks for any key sizes, have been
experimentally verified (implemented on a regular PC), and provide new
lower bounds on the number of rounds required to achieve a practical
and a secure Feistel.
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1 Introduction

A Feistel network [13] is a scheme that builds n-bit permutations from smaller,
usually n/2-bit permutations or functions. In ciphers based on the Feistel network,
both the encryption and the decryption algorithms can be achieved with the
use of a single scheme, thus such ciphers exhibit an obvious implementation
advantage. The Feistel-based design approach is widely trusted and has a long
history of usage in block ciphers. In particular, a number of current and former
international or national block cipher standards such as DES [6], Triple-DES [19],
Camellia [2], and CAST [5] are Feistels. In addition to the standard block ciphers,
the Feistel construction is an attractive choice for many lightweight ciphers, for
instance the recent NSA proposal SIMON [3], LBlock [26], Piccolo [24], etc. The
application of the Feistel construction is not limited only to ciphers, and has
been used to design other crypto primitives: the hash function SHAvite-3 [4], the
CAESAR proposal for authentication scheme LAC [27] and others.

The analysis of Feistel primitives and their provable security bounds depend
on the type of the round function implemented. Luby and Rackoff [21] have
shown that an n-bit pseudorandom permutation can be constructed from an



n/2-bit pseudorandom function with 3-round Feistel network. In this construction,

the round functions are chosen uniformly at random from a family of 2n/2·2
n/2

functions – a set that can be enumerated with n/2 ·2n/2-bit keys. Later, Knudsen
[20] considered a practical model, in which the round functions are chosen from a
family of 2k functions and showed a generic attack on up to 6 rounds. Knudsen’s
construction was coined as Feistel-1 by Isobe and Shibutani in [18] to reflect
the fact that it is the most general type of Feistels. They further introduced the
term Feistel-2 to denote ciphers in which the round functions are composed of an
XOR of a subkey followed by an application of a public function or permutation.
Generic attacks on Feistel-2 such as impossible differentials [20], all-subkey
recovery [17,18], and integral-like attacks [25] penetrate up to 6 rounds when the
key size equals the state size, and up to 9 rounds when the key is twice as large as
the block. Better attacks have been published, but they are on so-called Feistel-3
that has round functions based on substitution-permutation network (SPN), i.e.
the rounds start with an XOR of a subkey, followed by a layer of S-Boxes and
a linear diffusion layer. The attacks on Feistel-3 presented in [18] reach up to 7
rounds for equal key and state sizes, and 11 rounds for twice larger keys.

We present attacks on Feistel-2 and Feistel-3 ciphers based on the meet-
in-the-middle cryptanalytic technique. Its most basic form corresponds to the
textbook case of Double-DES [22] and in the past few years, a few improvements
have been proposed to more specific cases, for instance, Dinur et al. [11] have
generalized the attack on Double-DES when multiple encryption (more than
two n-bit keys) is used. Besides the applications to preimage attacks on hash
functions [1,16,23], a notable application of the meet-in-the-middle technique and
a line of research that has been started by Demirci and Selçuk [8] are the attacks
on the Advanced Encryption Standard (AES). They presented cryptanalysis of
AES-192 and AES-256 reduced to 8 rounds by improving the collision attack due
to Gilbert and Minier [14] and with the use of the meet-in-the-middle technique.
Later, their strategy has been revisited by Dunkelman, Keller and Shamir [12],
and most recently further improved by Derbez, Fouque and Jean [9,10]. In this
advanced form, the attack combines both the classical differential attack and
the meet-in-the-middle strategy. In the differential attack, a high-probability
differential is used to detect statistical biases to deduce information on the last
subkey used in a block cipher. The attacker detects correct subkey guesses by
checking meet-in-the-middle equations during the encryption process. Namely,
the attack starts with a precomputation phase which is used to fully tabulate
the distinguishing behavior particular to the targeted cipher, e.g. AES, and later
in the online phase, the attacker searches for messages verifying the distinguisher
by checking the precomputed table.

Our contributions. We show the best known generic attacks on Feistel-2 and
Feistel-3 cipher constructions. Our analysis, and a preliminary step of the attacks,
relies on a special differential behavior of several consecutive rounds that is
inherited by the generic Feistel construction. This property can be seen as a
distinguisher, and for Feistel-2 it extends to 5 rounds, while for Feistel-3 to 7
rounds. The attacks exploit the distinguishers, and by adding rounds before, in



the middle, and after the distinguisher, they can penetrate higher number of
rounds. The distinguisher allows the differential behavior of the Feistel rounds
to be enumerated offline and without the knowledge of the actual subkeys. This
in fact is the first step of our attacks: a precomputation phase used to create
a large look-up table. The next step is the collection of a sufficient number of
plaintext/ciphertext pairs, some of which will comply with the conditions of the
distinguisher. Each such pair suggests candidates for the round subkeys, and
the look-up table is used to filter the correct subkeys. This step is indeed the
meet-in-the-middle part of the attack.

In the case of the Feistel-2 construction, the number of rounds that our
attacks can reach depends on the ratio of key to state sizes k/n: the larger the
ratio, the more rounds we can attack. Namely, 4s+ 2 rounds can be attacked for
k/n = (s+ 1)/2, which translates to 6 rounds when k = n, 8 rounds for k = 3n/2,
10 for k = 2n, etc. As long as the ratio is increasing, the number of attacked
rounds will grow. This property comes from the meet-in-the-middle nature of
the attacks, i.e. when we increase the key by bit size equivalent to one Feistel
branch (and thus allow the complexity of the attack to increase by this amount),
then we can add one round to the distinguisher in the offline phase, and prepend
one round in the online phase. Since the attack relies on the meet-in-the-middle
strategy, the complexities of these two phases are not multiplied but simply
added, hence the accumulative complexity remains below the trivial exhaustive
key search. In the analysis of Feistel-2, regardless of the number of attacked
rounds, we make no assumptions on the type of the round functions: they can
be any invertible or one-way functions or permutations, unique for each round.
What we assume, however, is that the round functions have standard differential
behavior. That is, given a large set of input-output differences of these functions
(which can be seen as a set of differentials), on average for each differential there
is one solution that conforms to it.

For the Feistel-3 construction and a linear diffusion layer P with maximal
branch number, we can attack up to 14 rounds of the ciphers when the key is
twice as large as the state (k = 2n), while for smaller keys we have attacks on
12 and 10 rounds, for key sizes k = 3n/2 and k = n, respectively. The above
generalization (the number of attacked rounds always increases when the key
size increase) is no longer possible as the data complexity grows beyond the full
codebook when key size is more than 2n bits. To reach more rounds compared
to Feistel-2, we use the SPN structure of the round function in both the offline
and online stages of the attack. The best such example given in the paper is
the redefinition of the Feistel-3 by moving the linear layer from one round to
the surrounding rounds: this allows to extend the attack by an additional round.
Other improvements based on the SPN structure are better (in terms of number
of rounds) distinguisher and key recovery. For the main Feistel-3 attacks, we
assume that the P-layers of all rounds are the same, but in case they are different,
we show that the attacks can be adapted on only one round less.

Our analysis results in a recovery of the whole values (not only partial values
or bytes) of certain subkeys. This is the main advantage of the attack, and by



Table 1: Comparison of previous results and ours for n-bit block-length, k-bit key-length
and c-bit S-Box length.

Target
Round #rounds and complexity

Reference
functions k = n k = 3n/2 k = 2n

bijective 5 23n/4 6 2n 7 23n/2 [20]

— 3 2n/2 5 2n 7 23n/2 [17]

Feistel-2 — 5 2n/2 7 25n/4 9 23n/2 [18]

bij., ident. 6 2n/2 — — — — [25]

— 6 23n/4 8 24n/3 10 211n/6 Section 3

— 7 23n/4+c 9 2n+c 11 27n/4+c [18]

Feistel-3 — 9 2n/2+4c 11 2n+4c 13 23n/2+4c Section 4

identical 10 2n/2+4c 12 2n+4c 14 23n/2+4c Section 4

repeating it a few times, we can recover one by one all the subkeys and thus
be able to encrypt and decrypt without the knowledge of the initial master key.
Hence, the key schedule plays no role in the analysis and the attacks are in fact
an all-subkey recovery. We have also experimentally confirmed the validity of our
analysis on the case of small state Feistel-23. The experiments ran on a regular
PC supported the complexity evaluation and the correctness of the attacks. All
of the results described in this paper are summarized in Table 1 and compared
to the already-published generic analysis on Feistel-2 and Feistel-3.

Due to space constraints, in the sequel, we present only our main ideas that
result in 6-round attack on Feistel-2 and 10-round attack on Feistel-3. The full
version of the paper, including additional attacks, the technique to recover all
the subkeys and the experimental results can be found in [15].

2 Preliminaries

Throughout the paper, we assume that the block size is n bits and the Feistel
is balanced, thus the branch size is n/2 bits. The internal state value (the
branch) is denoted by vi and the n-bit plaintext is assigned to v0‖v−1. We
count the rounds starting from 0, and at round i, vi+1 is computed as vi+1 ←
RoundFunction(vi, vi−1,Ki). The round function depends on the class defined
further, i.e. it is either Feistel-2 or Feistel-3. In the description of the attacks, we
omit the network twist in the last round as it has not cryptographic significance.

Generic Feistel-2 construction. A Feistel-2 round function consists of a
subkey XOR and a subsequent public function as illustrated in Figure 1. Several
classes of public functions can be considered. Typical classifications are bijective

3 The interested reader can find the implementations of our attacks at http:

//www1.spms.ntu.edu.sg/~syllab/attacks/F2-6rounds.tar.gz and http://www1.

spms.ntu.edu.sg/~syllab/attacks/F2-8rounds.tar.gz.

http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-6rounds.tar.gz
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-6rounds.tar.gz
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-8rounds.tar.gz
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-8rounds.tar.gz
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Figure 1: Feistel-2.
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Figure 2: Feistel-3.
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Figure 3: Simplified
Feistel-3.

or non-bijective, invertible or non-invertible, and different functions for different
rounds or an identical function for all rounds.

Generic Feistel-3 construction. A Feistel-3 round function consists of a
subkey XOR, an S-layer, and a P-layer. The S-layer performs word-wise S-Boxes
applications, while the P-layer performs a linear operation for mixing all words.
Several classes of S-layers and P-layers can be considered. An example of the
classification of the S-layer is different S-Boxes for different words or an identical
S-Box for all words. The P-layers can be classified according to the branch
number4 of the linear transformation used in the layer. In our analysis, if c is the
bit size of a word, then the internal state value has n/2c words, and we assume
that the branch number of the linear operation in the P-layer is n/2c+ 1, i.e. it is
maximal. For example, a multiplication by an MDS matrix produces the maximal
branch number of n/2c+ 1. The Feistel-3 construction is shown in Figure 2. We
often use the simplified description given in Figure 3.

Solutions of differential equations. In our analysis, we make the follow-
ing assumption on the non-linear round functions Fi of the Feistel cipher. We
assume that given a large set of fixed input and output differences of Fi, i.e.
(∆Ij , ∆Oj

), j = 1, 2, . . ., then on average there is one solution of each of the
differential equations Fi(X ⊕∆Ij )⊕ Fi(X) = ∆Oj

, j = 1, 2, . . .. That is, some of
the equations may have many solutions and some none, however, we assume that
on average (over a large set) the number of solution is one per equation. This
requirement is sufficient for our analysis, as we solve the differential equations
for a large number of (∆I , ∆O), thus we can take the average case which is one
solution per equation. Our computer simulations of the attacks confirmed this
expectation and the complexity of the attacks was as predicted by our analysis,
in part because the aforementioned assumption is true in the case of randomly
chosen (Feistel-2 and Feistel-3) non-linear round functions. There are examples
of round functions5 where the assumption does not hold, for instance, linear

4 The branch number of a linear transformation is the minimum number of active/non-
zero input and output words over all inputs with at least one active/non-zero word.

5 We do not claim attacks on Feistel-2 that have this type of round functions.



functions6. However, to the best of our knowledge, such round functions are
either not used as building blocks of ciphers, or they can be attacked using other,
more trivial attacks.

It is important to notice that although one solution is expected, it does not
mean that it can be found trivially. To solve most of the equations, we use
precomputation tables, i.e. we tabulate the functions, store their values, and later
perform table lookups to solve the differential equations.

Definition 1 (δ-set, [7]). A δ-set for byte-oriented cipher is a set of 28 state
values that are all different in 1 byte and are all equal in the remaining bytes.

We introduce slightly modified definition (without byte-oriented sets).

Definition 2 (b-δ-set). A b-δ-set is a set of 2b state values that are all different
in b state bits (the active bits) and are all equal in the remaining state bits (the
inactive bits).

By this definition, the original Knudsen’s δ-set from [7] can be seen as an 8-δ-set,
since it takes all the values of a particular byte, which is an 8-bit value. To define
b-δ-set, we have to specify not only the value of b, but also the position of the
active bits. In some cases, however, the position is irrelevant and the analysis is
applicable for any b active bits.

Given a state value v, we can construct a b-δ-set from v, by applying 2b − 1
differences to some b bits of the state v. Furthermore, we can take a function F ,
order all the possible 2b − 1 input differences, and obtain a sequence of output
differences of F . An example of such sequence, when the active bits are the least
significant bits, is F (v)⊕ F (v ⊕ 1), F (v)⊕ F (v ⊕ 2), . . . , F (v)⊕ F (v ⊕ 2b − 1).

The attack model. The key-recovery attacks presented in the paper follow
the standard attack model. That is, the key of the block cipher is secret and
chosen uniformly at random. The attacker can query both the encryption and
the decryption functions of the block cipher. His task is to recover the secret
key (or the subkeys produced from the key schedule) based on the queries. We
explicitly state that the attacker has no information about the internal state
values of the block cipher.

3 Key-recovery attacks against Feistel-2 construction

In this section, we present a key-recovery attack on 6-round Feistel-2 ciphers for
the case when the key and the state sizes are equal, i.e. k = n. The extensions
of the attack to 8 rounds for k = 3n/2, 10 rounds for k = 2n, and in general to
(4+2s) rounds for k = n(s+1)/2, can be found in the full version of the paper [15].
In our attack, the round functions can be either bijective or non-bijective, i.e.
permutations or functions, and they can even be one-way. To make the attack

6 For linear function, the probability that a solution exist depends on the size of the
large set.
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applicable to the most general type of constructions, in the sequel, we assume
that the round functions are one-way and pairwise distinct.

We use Fi to denote the round function at round i of the construction. To
refer to the input (resp. output) of Fi, we write F Ii (resp. FOi ). Similarly, the
input difference (resp. output difference) of Fi is denoted by ∆F Ii (resp. ∆FOi ).
Recall that the two branches, as well as the subkeys Ki, have n/2 bits each.

The 6-round key-recovery attack is based on a non-ideal behavior of 5 rounds
of Feistel-2, which is described by the lemma and the proposition that follow. In
the 6-round attack (refer to Figure 6), the last five rounds are the rounds where
this distinguisher is used.

Lemma 1. Let X and X ′, where X 6= X ′, be two non-zero branch differences. If
a 5-round Feistel-2 encrypts a pair of plaintexts (m,m′) with difference 0‖X to a
pair of ciphertexts with difference 0‖X ′, then the number of possible internal state
values of the three middle rounds that correspond to the plaintext m is limited to
2n/2 on average.

Proof. Note that n/2-bit round keys are added in each round, and hence the
number of possible internal state values for the three middle rounds is limited by
its size, 23n/2. We show, however, that the bound can be tightened to 2n/2.

A 5-round differential characteristic, with input difference 0‖X and output
difference 0‖X ′ is depicted in Figure 4 (the rounds are denoted from i + 1 to
i+ 5 to make this part of the analysis generic). From the figure, we can see that
after the first round, the input difference (0, X) must become a state difference
(X, 0). Similarly, after the inversion of the last round the output difference (0, X ′)
becomes (0, X ′). This makes ∆FOi+3 to be X ′′ ← X⊕X ′. Since X 6= X ′, it follows
that X ′′ 6= 0 and thus ∆F Ii+3 6= 0 – let us denote this difference with ∆. It means
that both ∆FOi+2 and ∆FOi+4 also have the difference ∆. To summarize, we get
that for each fixed ∆, the input and output differences of the round functions at
rounds i+ 2, i+ 3, and i+ 4 are fixed. Therefore, there exists one state value (one
solution) that satisfies such input-output difference in each of the three rounds.



As ∆ can take at most 2n/2 different values (one branch has n/2 bits), the states
in rounds i+ 2, i+ 3, i+ 4 can assume only 2n/2 different values. In Figure 4,
the fixed value for each ∆ is drawn by bold line. ut

We use Lemma 1 to prove the below proposition that will help us later to
launch the attack on 6 rounds. To present the proposition, we need additional
notations. Let F : m → F (m) be a 5-round Feistel-2 (we omit writing the

key k as input) and let the function F∆ : {0, 1} 3n
2 → {0, 1}n

2 be defined as

F∆(m, δ) = Truncn/2

(
F (m) ⊕ F (m ⊕ (0‖δ))

)
, where Truncn/2 denotes the

truncation to the first n/2 bits. In other words, F∆(m, δ) gives the output
difference (of the left branch) in the pair of ciphertexts, produced by encryption
of a pair of plaintexts (m,m ⊕ 0‖δ) with the 5-round Feistel. Furthermore,
instead of taking a single pair of plaintexts, let us create several pairs such that
in each pair, the first element is always m, while the second is m⊕ 0‖δj where
δj = 1, . . . , 2b−1 (the precise value of b is defined later in the section). In fact, we
can see that the second elements of the pairs form a b-δ-sequence. The proposition
given further claims that the sequence of differences in the ciphertexts pairs (that
correspond to such plaintexts pairs) can take only 2n/2 values.

Proposition 1. Let (m,m′) be a pair of plaintexts that conforms to the 5-round
differential characteristic given in Figure 4 and let δj = 1, . . . , 2b− 1, b ≥ 1 forms
b-δ-sequence. Then, the sequence F∆(m, δj), δj = 1, . . . , 2b − 1 can assume only
2n/2 possible values.

Remark 1. We note that the sequence can be constructed from any of the two
plaintexts m or m′ given in Proposition 1, as long as the pair (m,m′) conforms
to the differential characteristic.

Remark 2. From a theoretical point of view, Proposition 1 yields a distinguisher
since the number of functions reached by the 5-round Feistel-2 construction is
much less than the theoretical number of functions from a set of 2b elements
to a set of 2n/2 elements when b ≥ 1. Indeed, for a fixed m, the latter equals

(2n/2)2
b

= 22bn/2, whereas it is only 2n/2 in the case of the 5-round Feistel-2
construction.

Proof. The initial pair of plaintexts (m,m′) is only used to compute the state
values of the three middle rounds that correspond to the plaintext m. We have
seen from Lemma 1 that these three states can take only 2n/2 possible values
(each of them corresponds to one of the values of ∆). We will show that if the
values of these three states are fixed, then we can change the right half of the
plaintext (instead of m, we take m⊕0‖δj) and still be able to compute the output
difference in the left half of the ciphertexts. In fact, we can change the value of the
plaintext many times (i.e. we can produce many pairs of the form (m,m⊕ 0‖δj)),
and for each of them, we can easily compute the output difference in the right
halves of the ciphertext. The number of plaintexts pairs adds no complexity
in predicting the ciphertext difference – once the three middle states are fixed
(and they can have only 2n/2 different values), the sequence of differences in the
ciphertext pairs is uniquely determined.



Assume the difference ∆ is fixed7, and thus are fixed the three internal state
values. Let ti+2, ti+3, ti+4 be the input values to Fi+2, Fi+3, Fi+4 that correspond
to the plaintext m, in which ti+2, ti+3, ti+4 are determined depending on ∆. Let
vi be the values of the states that correspond to the plaintext m as shown in
Fig. 5. Let us consider a new pair of plaintexts, (m,m⊕ (0‖δj)), i.e. we introduce
a difference δj to the right branch, i.e. ∆vi = δj . Since the difference ∆FOi+1 is
always zero, we obtain that ∆vi+2 = ∆vi = δj . In round i+2, the attacker knows
the value of F Ii+2 = ti+2 and the difference ∆F Ii+2 = δj . Hence, the new paired
values of F Ii+2 are ti+2 and ti+2 ⊕ δj . Therefore, the new ∆FOi+2 can be obtained
as ∆FOi+2 ← Fi+2(ti+2) ⊕ Fi+2(ti+2 ⊕ δj). In Figure 5, we represent this type
of computable difference with ‘∗’. The new difference for ∆FOi+2 is propagated
forward to vi+3 and the same reasoning as in round i + 2 is applied to round
i + 3. As we know the value of F Ii+3 = ti+3 and ∆F Ii+3 = ∆FOi+2, it follows
that (ti+3, ti+3 ⊕∆FOi+2) are the paired values. The new ∆FOi+3 can therefore be
computed as ∆FOi+3 ← Fi+3(ti+3)⊕Fi+3(ti+3⊕∆FOi+2). The knowledge of ∆FOi+3

gives the difference for vi+4 for the next round, namely: ∆vi+4 ← ∆FOi+3⊕δj . The
analysis continues the same way for round i+ 4. From the knowledge of the value
of FOi+4 = ti+4 and the new difference ∆FOi+4 = ∆vi+4, the output difference
of the round function ∆FOi+4 is computed, and finally ∆vi+5 is computed as
∆FOi+4 ⊕∆vi+3 = ∆FOi+4 ⊕∆FOi+2.

In summary, for an arbitrary δj , we can compute the output difference ∆vi+5,
i.e., the mapping from δj to ∆vi+5 becomes deterministic (as long as ∆ is fixed).
Therefore, for the ordered sequence of δj that takes the values 1, 2, . . . , 2n/2 − 1,
we can determine the sequence of corresponding differences ∆vi+5 (which indeed
is the difference in the left half of the ciphertext). We emphasize that the mapping
depends only on values of ti+2, ti+3, ti+4, which in turn are determined from the
value of ∆,X and X ′, and acts independently of the value of m. Since ∆ takes
at most 2n/2 values, the number of sequences of ∆vi+5 is limited to 2n/2. ut

6-round key-recovery attack. We prepend one round to the 5-round dis-
tinguisher shown in Figure 4 and the resulting construction is illustrated in
Figure 6. The attack consists of precomputation and online phases. The online
phase is further divided into collecting pair and key recovery phases. In the
precomputation phase, we choose many pairs (X,X ′), where X is fixed while X ′

takes multiple values, and for each pair, we find all possible 2n/2 sequences of
∆v5 based on Proposition 1. We store all the sequences in a large table along
with its corresponding internal state values. Next, in the online phase, we collect
many pairs that satisfy one of the differential characteristics (X, 0) → (X ′, 0).
Finally, for each of the obtained pairs, we compute ∆v5 sequences by guessing
the first round key K0. We then find a match of ∆v5 sequences between the
precomputed table and the one computed online – this allows us to determine the
internal states and to recover K0. The meet-in-the-middle nature of our attack
comes from the fact that the ∆v5 sequence is computed offline for the last five

7 Recall that this difference corresponds to an internal state difference for the plaintext
pair (m,m′).



rounds and online for the first round, and the results are later matched in a
meet-in-the-middle-like fashion.

Precomputation. From Proposition 1, the number of possible sequences of
∆v5 is 2n/2 for a fixed X and a fixed X ′. We can achieve a time/memory tradeoff
by relaxing the n/2-bit constraint of a fixed X ′ and allow 2x

′
different possible

differences for X ′, where 0 ≤ x′ ≤ n/2. Without loss of generality, assume that
the values of X ′ differ in the last x′ bits and are the same in the remaining
n/2−x′ most significant bits (MSBs). In the sequel, we will determine the optimal
value for x′ to reach the best time/data/memory complexities for the attack.

First, we show how to compute all 2x
′ · 2n/2 = 2x

′+n/2 sequences of 2b

differences as an offline precomputation in 2x
′+n/2+b time (encryptions), and

2x
′+n/2+b memory (blocks of n/2 bits). This offline precomputation results in a

table Tδ, that contains all the sequences. Since the precomputation step is the
same for all X ′ differences, further we show the procedure for a particular X ′

and assume that for the whole offline execution this procedure is repeated 2x
′

times for the possible values of X ′ differences.
In rounds 2 and 4, the input differences to the round functions are fixed to X

and X ′, respectively, while both of the output difference are ∆. To reduce the
time complexity, we first tabulate completely the round functions F2, F3 and
F4 and thus we will have a constant-time access to paired values for some input
or output differences. Namely, we construct precomputation tables T2 and T4,
which take the difference ∆ as input and return the paired values conforming
to the differentials X → ∆ and X ′ → ∆ through F2 and F4, respectively. The
strategy consists simply in iterating over all possible inputs, and storing the
results indexed by output difference as described in Algorithm 1.

Similarly, in round 3 we want to construct the table T3 that gives in constant
time a paired-value input to F3 resulting in the fixed output difference X ′′.
However, since the function F3 is assumed to be one-way and in the attack
we need to invert it, we cannot compute F−13 to construct T3. Thus, we first
evaluate F3 for all input values, store the values in a temporary table, and
later consider the difference, as detailed in Algorithm 2. After this part of the
precomputation phase, for an arbitrary fixed difference ∆ (which is the difference
∆FO2 = ∆F I3 = ∆FO4 ), the corresponding state values in rounds 2, 3, and 4 can
be looked up in tables T2, T3, and T4 in constant time. Hence, we can compute
the b-δ-set for all the 2n/2 possible choices of ∆ and store the resulting sequences
in the precomputation table Tδ, which later is used for the meet-in-the-middle
check of the online phase. This step is described in Algorithm 3.

Finally, another table T0 of size 2n/2 is generated to make more efficient the
online phase and the recovery of the subkey K0. That is, in round 0, for all values
of F I0 , the corresponding ∆FO0 is computed. Namely, for i = 0, 1, . . . , 2n/2 − 1,
F0(i)⊕ F0(i⊕X) is computed and stored in T0.

As stated previously, we repeat this procedure for 2x
′

different choices of the
difference X ′. For the sake of simplicity, the resulting tables for each X ′ are all
merged in the same table Tδ. For a fixed choice of X ′, building T0, T2, T3 and T4
requires 2n/2 round function computations each. Hence, constructing Tδ requires



less8 than 2b · 2n/2 encryptions. The entire analysis is iterated over 2x
′

choices
of X ′ so that the computational cost is less than 2x

′+b+n/2 encryptions. The
memory requirement to build T0, T2, T3 and T4 is 2n/2 blocks of n/2 bits, and is
constant as we can reuse the memory across different X ′. The size of Tδ increases
with the iteration of 2x

′
choices of X ′, namely, the memory requirement for the

precomputation phase amounts to 2b · 2x′+n/2 = 2x
′+n/2+b blocks of n/2 bits.

Collecting pairs. In the data collection phase, we query the encryption oracle
with chosen plaintexts to get enough pairs such that one conforms to the whole
6-round differential characteristic. To do so, we construct a structure of 2n/2+1

plaintexts that consists of two lists of sizes 2n/2. All the elements of the first list
are fixed to a constant random value v0 on their left half, while the right halves
are pairwise distinct. The second list is constructed similarly, except that the left
half is fixed to v0 ⊕X. As a result, we have 2n pairs of plaintexts such that the
difference in the left half equals X and the right half is nonzero.

For a single structure, the data complexity corresponds to encryption of
2n/2+1 chosen plaintexts, which can subsequently be sorted by their ciphertext
values to detect the pairs that match on their left half (n/2 bits) and n/2− x′
most significant bits of the right half. Consequently, we expect one structure of
plaintexts to provide 2n/2n/2+n/2−x

′
= 2x

′
pairs conforming to the truncated

output difference, i.e. such that only the x′ less significant bits of the right
half are nonzero. To complete the attack, we need 2n/2 pairs, as the difference
cancellation at the output of the first round holds with probability 2−n/2. Hence
by repeating the data collection for 2n/2−x

′
different values of v0, we can expect

one pair among the 2n/2 to follow the whole characteristic. Therefore, the data
complexity amounts to 2n/2−x

′ × 2n/2+1 = 2n−x
′+1 chosen plaintexts, requires

the same amount of memory access as time complexity to be generated, and can
be stored using only 2n/2 elements with the use of a hash table for the pairs
that verify the truncated output difference. The whole procedure is described in
Algorithm 4.

Recovery of K0. The previous phase results in 2n/2 candidate pairs with a
plaintext difference (X,∆v−1) and an appropriate ciphertext difference. For each
pair, we match against the precomputed table T0 to find the corresponding value
of F I0 , and thus determine uniquely a subkey candidate for K0 by K0 ← v0⊕F I0 .

However, among these 2n/2 candidates for K0, only one is correct while the
remaining are false positives. To find the correct subkey, we use the results of
Proposition 1 and the precomputation table Tδ, i.e. we construct a b-δ-set by
modifying the active bits of v0. For each modified plaintext, with the knowledge
of K0, we compute the corresponding FO0 and modify v−1 so that the value of v1
stays unchanged. Then, we query the plaintexts and observe the left half of the
corresponding ciphertexts. Hence, we can compute the sequence of ∆v5. If this
sequence is included in the precomputation table Tδ, K0 is a correct guess with
high probability, otherwise it is wrong. We note that this does not increase the

8 Less, as one evaluation of the round functions costs less than one encryption query.



Algorithm 1: Construction of the tables T2 and T4.

1: for i = 0, 1, . . . , 2n/2 − 1 do
2: Compute ∆FO2 ← F2(i)⊕ F2(i⊕X).
3: Store (i,∆FO2 ) in T2 indexed by ∆FO2 .
4: Compute ∆FO4 ← F4(i)⊕ F4(i⊕X ′)
5: Store (i,∆FO4 ) in T4 indexed by ∆FO4 .

Algorithm 2: Construction of the table T3.

1: for i = 0, 1, . . . , 2n/2 − 1 do
2: Store (i, F3(i)) in a temporal table tmp indexed by F3(i).
3: for i = 0, 1, . . . , 2n/2 − 1 do
4: Compute F3(i)⊕X ′′.
5: Look up tmp to obtain j such that F3(j) = F3(i)⊕X ′′.
6: Store (i, i⊕ j) in T3 indexed by i⊕ j.

Algorithm 3: Construction of the sequences of ∆v5.

1: for ∆ = 1, . . . , 2n/2 − 1 do
2: Obtain internal state values F I2 , F I3 and F I4 by looking up T2, T3 and T4,

respectively.
3: for all b active bits of the b-δ-set do
4: Modify ∆v0, and compute the corresponding ∆v5.
5: Compute the sequence of ∆v5 and add it to Tδ.

Algorithm 4: Data collection phase of the 6-round attack.

1: Choose 2x
′

differences X ′ so that the n/2− x′ MSBs of X ′ are 0 for all X ′.
2: Choose a difference X such that X 6= X ′.
3: for 2n/2−x

′
different values of v0 do

4: for all 2n/2 choices of v−1 do
5: Query (v0, v−1) and store it in L0 sorted by the ciphertext value.
6: Query (v0 ⊕X, v−1) and store it in L1 sorted by the ciphertext value.
7: Pick up the elements of L0 × L1 whose ciphertexts match

in the n− x′ most significant bits.

data complexity, since the structures of plaintexts already includes the plaintexts
for the b-δ-set evaluation.

Complexity analysis. In the online phase of the attack, we perform 2n/2 checks
in the precomputed table Tδ that contains all the possible stored sequences of
differences. If we do not store enough information in this table (if b is too
small), many checks will wrongly yield to valid subkey candidates K0. On the
other hand, if we store too much information (if b is too large), the table will
require higher time and memory complexity to be constructed. Thus, we need to
select an optimal value of b. One check yields a false positive with probability

2n/2/2n2
b/2 = 2n(1−2

b)/2 as there are 2n/2 valid sequences of 2b elements among

the 2n2
b/2 theoretically possible ones. Therefore, we want n(1− 2b)/2 + n/2 < 0



so that among all the 2n/2 checks, only the correct K0 results in a stored element,
and thus b ≥ 2.

In terms of tradeoff, adjusting the value x′ balances the data, time and
memory complexities. The data complexity is 2n−x

′+1 chosen plaintexts, the
time complexity is 2x

′+n/2 encryptions to construct Tδ and 2n−x
′+1 memory

access to query the encryption oracle. The memory complexity is also 2x
′+n/2

blocks of n/2 bits required to store Tδ. Consequently, the choice of x′ = n/4
makes the data complexity to become about 23n/4 chosen plaintexts, the time
complexity equivalent to about 23n/4 encryptions, and the memory complexity
to 23n/4 blocks of n/2 bits.

4 Key-recovery attacks against Feistel-3 construction

In this section, we present a 10-round key-recovery attack on the Feistel-3
construction with k = n. In the attack, we assume that different S-Boxes are
used for different words in a given round, but we consider they are the same
across all of the rounds. Recall that all the S-Boxes operate on c-bit words, and
thus there are n

2c words per branch. We consider that the P-layer is identical for
all rounds and it has the maximal branch number of n

2c + 1. The extensions of
the attack to 12 and 14 rounds for key sizes of k = 3n/2 and k = 2n, respectively,
and the analysis of a class of P-layers that not necessarily has a maximal branch
number are given in the full version of the paper [15].

The 10-round key-recovery attack is based on a non-ideal behavior of 7 rounds
of Feistel-3. We first present the 7-round distinguisher in the proposition below,
and then use it to launch a key-recovery attack on a 10-round Feistel-3 primitive
where the inner rounds are the ones from the distinguisher. To construct the
distinguisher, we first apply an equivalent transformation to the 7-round primitive,
as shown in Figure 7. Namely, the P-layer of round i+ 6 is removed from this
round, and linear transformations are added to three different positions in order
to obtain a primitive that is computationally equivalent to the original one.
Hereafter, v′i+7 represents the value of P−1(vi+7). We use the non-ideal behavior
of the new representation to mount the 10-round key recovery attack by extending
the 7-round differential by one round at the beginning and two rounds at the end.
The newly-introduced P after vi+7 is later addressed in the key-recovery part.

As in the previous section, F Ii and ∆F Ii denote the input value and input
difference of the i-th round, respectively, that is the input to the S-layer in Fi.
Similarly, FMi and ∆FMi refer to the state value and state difference after the
S-layer, that is between the S-layer and P-layer of Fi, and FOi and ∆FOi denote
the output value and output difference of the P-layer in Fi, respectively. For the
branch-wise difference, we use 0 to refer to branch with no active words, 1 to the
case when only a single pre-specified word is active, and P and P−1 for branch-
wise differences obtained after 1 has been processed by P and P−1, respectively.
Finally, X[1] and ∆X[1], respectively, denote the pre-specified active-word value
and difference of a branch-wise variable X.
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Figure 8: 10-round key-recovery for k = n.

The technique used to construct the 7-round distinguisher (described in
the proposition below) is very similar to the technique we have used in the
distinguisher on five rounds of Feistel-2. In other words, first we show that if
a pair (m,m′) of plaintexts follows a particular differential characteristic, then
the number of possible internal state values that correspond to m is limited.
Based on this, we can introduce a difference in the plaintext and predict the
output difference in the ciphertext. Again, we introduce many pairs of plaintexts
where each right half differs on δj (and thus get a b-δ-sequence) and observe that
the pairs of ciphertexts have predictable difference. Unlike the proposition for
Feistel-2 where we observed the difference in the left half of the ciphertext, for
Feistel-3, we check the difference in one word of the right half in the ciphertext
pairs (the position of this particular word plays no role in the analysis). That
is why we have to redefine F∆(m, δj). To avoid bulky notations, we define it
informally as one-word difference in the right half of the ciphertext pair that are
produced from the encryption of a plaintext pair (m,m⊕ 0‖δj) through 7-round
Feistel-3. In Figure 7, this is the ciphertext difference in the word v′i+7.

Proposition 2. Let (m,m′) be a pair of plaintexts that conforms to the 7-round

differential (0,1)
7R→ (1,0) shown in Figure 7 and let δj = 1, 2, . . . 2b − 1 forms a

b-δ-sequence. Then, the sequence F∆(m, δj), δj = 1, . . . , 2b − 1 can assume only
2n/2+4c possible values.

Proof. We show here that the number of internal state values for pairs satisfying
the 7-round differential in Figure 7 is at most 2n/2+4c. Namely, we show they
can be parameterized by five nonzero differences in five c-bit words (marked by
circles in Figure 7), and by the values of n/2− c inactive bits of F Ii+4 (marked
by a star ‘F’ in Figure 7).



We first assume that the five word differences circled in Figure 7 are fixed,
that is: ∆F Ii+2, ∆FMi+2, ∆F Ii+4, ∆F Ii+6 and ∆FMi+6 are fixed to random nonzero
values. When ∆F Ii+2 and ∆FMi+2 are fixed, we expect one value on average to be
determined for F Ii+2[1]. In Figure 7, the state in which the value is fixed only in one
word is represented by dotted lines. Then, the corresponding ∆FOi+2 = ∆vi+3 =
∆F Ii+3 can be fully computed linearly by P (∆FMi+2). Since the branch number of
P is n/2c+ 1, P (∆FMi+2) is fully active. Similarly, when ∆F Ii+6 and ∆FMi+6 are
fixed, one value on average can be determined for F Ii+6[1], and the corresponding
fully active difference ∆vi+5 = ∆F Ii+5 can also be computed linearly by P (∆FMi+6).
Then, ∆FOi+4 is computed by ∆vi+3 ⊕∆vi+5, where both ∆vi+3 and ∆vi+5 are
of type P. Since P is linear, ∆FOi+4 also has the form P, which implies that the
form of ∆FMi+4 is P−1(P) = 1. Then, the middle difference ∆F Ii+4 is considered
fixed. When ∆F Ii+4 6= ∆F Ii+2 and ∆F Ii+4 6= ∆F Ii+6, the corresponding differences
∆FOi+3 and ∆FOi+5 are computed by simply taking their XOR. Thus, both ∆FOi+3

and ∆FOi+5 are of type 1, which makes ∆FMi+3 and ∆FMi+5 fully active (denoted
by P−1). Then, the values of F Ii+3, F

M
i+3, F

O
i+3 and F Ii+5, F

M
i+5, F

O
i+5 are uniquely

determined, as well as the values for F Ii+4[1], FMi+4[1].

Finally, when we additionally consider the n/2−c inactive bits of F Ii+4 marked
by a star in Figure 7 being fixed, along with the already-fixed c bits of the active
word 1, the full n/2-bit values of FMi+4 and FOi+4 are determined. In summary, for
each value of the five c-bit active differences circled in Figure 7 and the n/2− c
inactive bits of F Ii+4, all the differences of the differential as well as one word
values in rounds i+ 2, i+ 6, and all state values in rounds i+ 3, i+ 4, i+ 5 are
uniquely fixed.

For each of 5c+n/2−c = n/2+4c word parameters, we can partially evaluate
a b-δ-set vi up to ∆v′i+7[1]. Namely, for one member of the pairs, vi[1] is modified
so that ∆vi[1] becomes δj . The modification changes the difference in subsequent
rounds, but we can still compute the corresponding difference ∆v′i+7[1] without
requiring the knowledge of the subkey bits.

Indeed, in round i+ 1, ∆FOi+1 = 0, ∆vi+2 = ∆F Ii+2 = δj . In round i+ 2, from
the original active word value of F Ii+2 and updated difference ∆F Ii+2 = δj , the
updated ∆FOi+2 can be computed as P ◦ S(F Ii+2)⊕ P ◦ S(F Ii+2 ⊕ δj). This also
derives the updated differences ∆vi+3 and ∆F Ii+3. Then, in round i+ 3 to i+ 5,
from the original value and the updated difference of F Ix , the updated difference
∆FOx , and moreover the updated differences ∆vx+1 and ∆F Ix+1 can be computed
for x = i + 3, i + 4, i + 5. Note that, in round i + 4, ∆F Ii+4 originally has only
one active word, while the updated difference is fully active. Because n/2 − c
inactive bits of F Ii+4 are parameters, and thus known to the attacker, ∆FMi+4 can
be computed in all words. Finally, in round i+ 6, the updated difference ∆vi+6

is known in all words while the original value is known only in one active word.
Since the position of the P-layer is moved, the attacker can still compute the
1-word updated difference ∆v′i+7[1].

To conclude, for each of the 2n/2+4c possible values of the parameters, the
sequence of ∆v′i+7[1] is uniquely obtained by computing ∆v′i+7[1] for all δj in
∆vi[1], which concludes the proof. ut



Algorithm 5: Construction of the difference sequences of ∆v′7[1]
(precomputation).

1: for all 2n/2+4c values of the parameters do
2: Derive all differences of the differential.
3: Derive 1-word state values in rounds 2 and 6.
4: Derive all state values in rounds 3, 4 and 5.
5: for 2b different differences in v0 do
6: Modify ∆v0[1], and update the corresponding sequence of ∆v′7[1].
7: Insert the sequence of ∆v′7[1] in the table Tδ.

Algorithm 6: Data collection for the 10-round attack.

1: Fix the n/2− c inactive bits of v0 and v−1.
2: for all 22c choices (v0, v−1) do
3: Query (v0, v−1) to obtain (v9, v10).
4: Store (v9, v10) in a hash table indexed by the wanted inactive bits in P−1(v9).
5: Construct about 24c/2n/2−c = 2−n/2+5c pairs verifying the truncated ciphertext

difference.
6: Iterate the analysis 2n−4c times by changing the the inactive-bit value of v0 and vt.

10-round key-recovery attack. Let us describe the 10-round key-recovery
attack that uses the 7-round distinguisher. As shown in Figure 8, we extend the 7-
round differential characteristic of the distinguisher by one round at the beginning
and two rounds at the end (the analysis and complexity would be similar if we
extend by two rounds at the beginning and one at the end). Recall that the
additional P -layer after v′7, introduced by the distinguisher, has to be addressed
in the key-recovery part. We also note that the active word 1 in the branches
can be located in any position, but the position has to be fixed beforehand to
be able to conduct the attack. The P-layer in round 8 is moved to two different
positions as shown in Figure 8. The newly-introduced P−1 transformation and
the P transformation after v′7 generated by the distinguisher cancel each other, we
therefore ignore them. Similarly to the analysis for Feistel-2, the attack consists
of three parts: the precomputation phase, followed by the data collection and
finally the meet-in-the-middle check to detect correct subkey candidates.

Precomputation. Given the proof of Proposition 2, the precomputation phase
is straightforward. For each of the 2n/2+4c values of the parameters, and for any
value of δj constructed at v0, the corresponding ∆v′7[1] can be computed easily
as shown in Algorithm 5. As in the attack on Feistel-2, in this phase we construct
the meet-in-the-middle table Tδ that contains all the sequences of differences in
∆v′7[1] for 2b < 2c nonzero differences δj in v0. The computational cost is about
2n/2+4c encryptions as the b parameter is relatively small and we consider only a
small fraction of all the rounds. Storing Tδ requires 2c/n× 2n/2+4c+b blocks of
n/2 bits, as the sequences contains 2b elements of c bits.



Collecting pairs. To launch the attack, we need a pair that satisfies the 7-round
differential characteristic in Figure 7, i.e. the plaintext difference (1,P) should
propagate to the ciphertext difference (P, A), where A is a truncated difference.
The probability that the plaintext difference (1,P) after the first round becomes
(0,1) is 2−c, while the probability that the ciphertext difference (P, A) after inver-
sion of the last round becomes (1,1) is 2−n/2+c, and to become (1,0) after another
inverse round is 2−c. Therefore, a random pair verifying a plaintext difference
(1,P) conforms to the inner 7-round differential with probability 2−n/2−c. Hence,

we need to collect 2n/2+c pairs satisfying the differential (1,P)
10R→ (P, A). Among

all of them, one is expected to satisfy (∆v1, ∆v0) = (0,1) and (∆v8, ∆v7) = (1,0).
The procedure is given in Algorithm 6.

For fixed values of the inactive bits in v0 and v−1, about 24c pairs can be
generated, and we expect approximately 24c · 2−n/2+c = 2−n/2+5c of them to
verify the ciphertext truncated difference (P, A). By iterating the procedure
for 2n−4c different values, we obtain 2n−4c−n/2+5c = 2n/2+c pairs satisfying the
desired (∆v0, ∆v−1) and (∆v9, ∆v10). The data complexity required to generate
the 2n/2+c pairs amounts to approximately 22c+n−4c = 2n−2c chosen plaintexts,
the computational cost is equivalent to 2n−2c memory accesses, and the memory
requirement is about 2n/2+c blocks of n/2 bits.

Detecting subkeys. For each of the 2n/2+c obtained pairs, we derive 2c can-
didates for n/2 + 2c bits of key material, namely K0[1], K8[1], and K9. For
each pair, we first guess the 1-word difference of ∆v8[1]. Then, we assume the
differential characteristic is satisfied, i.e. ∆v1 = 0, ∆v′7 = 0, and ∆v8 = 1. This
fixes the input and output differences for the active words in rounds 0 and 8, and
for all words in round 9. Then, the possible inputs for each of these S-Boxes can
be reduced to a single value, and the corresponding subkeys K0[1], K8[1] and
K9 can be calculated.

Finally, we construct the b-δ-set by modifying v0[1]. For each modified plain-
text, with the knowledge of K0[1], we modify v−1 such that v1 remains unchanged.
From the corresponding ciphertexts, with the knowledge of K9 and K8[1], we
compute the sequence of 2b differences ∆v′7[1], and if it matches one of the entries
in the precomputed table Tδ, then the guessed subkeys K0[1], K8[1], and K9 are
correct with high probability, otherwise they are wrong. When the values of c
and n are in a particular range (see below), only the right guess will remain, thus
the subkeys are recovered.

The computational cost of the key-recovery phase is the one for computing
∆v′7[1] for 2n/2+c pairs, 2c guesses for ∆v8[1], and 2b choices of δj in the b-δ-set,
which is upper bounded by 2n/2+3c encryptions.

Complexity analysis and constraints on (n, c). As shown above, the data
complexity requires 2n−2c chosen plaintexts, the time complexity is equivalent to
2n−2c + 2n/2+5c encryptions and the memory complexity is 2n/2+5c blocks of n/2
bits. We note that the overall complexity is balanced when n/2c = 7, i.e. when a
branch includes 7 S-Boxes. It is possible to achieve a simple tradeoff where only
a fraction 1/2c of all the sequences are stored in Tδ, which decreases the memory



complexity to 2n/2+4c blocks of n/2 bits, but in turn makes the data complexity
and the time complexity of the online phase increased by a factor 2c as we
have decreased the chance to hit one element in Tδ. With this tradeoff, the data
complexity becomes 2n−c chosen plaintexts, and the time complexity becomes
about 2n−c + 2n/2+4c encryptions, which is balanced for n/2c = 5 S-Boxes per
branch.

Moreover, to launch the attack, a branch must have at least 5 S-Boxes so
that n/2 + 4c < n. Additionally, in the subkey detection phase, the number
of remaining key candidates should be one or small enough. The number of
sequences in Tδ is 2n/2+4c and the number of candidates derived online is 2n/2+2c.
Thus in total, 2n+6c matches are examined, whether or not we use the tradeoff.

In theory, there exists 2c·2
b

sequences from b < c bits to c bits. Hence, the
condition to extract only the correct subkey is n+ 6c− c · 2b < 0, which gives
b > log2(6 + n/c). Since 2b < 2c, by combining the two conditions, the valid
range for (n, c) is 10c ≤ n < c(2c − 6). For example, 128-bit block ciphers with
8-bit S-Boxes and 80-bit block ciphers with 5-bit S-Boxes can be attacked.

Another possible tradeoff is the one used to achieve the best attacks on reduced
variants of the AES in [10]. If we add a second active word at the beginning of the
differential characteristic, it allows to reduce the data complexity, while keeping
the same overall complexity. This tradeoff is possible as long as there are at least
7 words per branch, i.e. n/2c ≥ 7. The main advantage of adding an active word
is to increase the size of the structures of plaintext from 22c to 24c, which allows
to construct about 28c input pairs already verifying the input difference. The
precomputation requires 2n/2+6c encryptions and a memory of 2c/n× 2n/2+6c+b

blocks of n/2 bits, the online phase requires more pairs, namely 2n/2+2c, but
this is achieved with less data: only 2n−3c chosen plaintexts. Therefore, the final
time complexity is 2n−3c + 2n/2+6c for both the encryption of the data and the
precomputation. This yields an attack as long as n/2 + 6c < n, which is true for
n/2c ≥ 7 S-Boxes. For example, with 8 S-Boxes per branch, the attack without
the second active word requires 214n/16 chosen plaintexts, 214n/16 encryptions and
the memory of about 212n/16 blocks of n/2 bits, hence the overall complexity is
214n/16. For the same primitive, but with an additional active word, the tradeoff
gives an attack that requires the same overall time complexity while the data
complexity is reduced to 213n/16 chosen plaintexts.

5 Conclusion

With the use of the meet-in-the-middle technique, we have shown the best known
generic attacks on balanced Feistel ciphers. As we imposed very small restrictions
on the round functions, our attacks are applicable to almost all balanced Feistels.
Such ciphers, with an arbitrary round function and a double key are insecure on
up to 10 rounds. In the case when the round function is SPN, for a large class of
linear P-layers, the attacks penetrate 14 rounds and recover all the subkeys. We
have produced experimental verification of the attacks supporting our claims.



Our results give insights on the lower bound on the number of rounds a secure
Feistel should have. They suggest that this number in the case of SPN round
functions should be surprisingly high. Furthermore, from the attacks on Feistel-2,
we show that as long as the ratio of key to state size is increasing, the number
of rounds that can be attacked will grow, while the data complexity will always
stay below the full codebook. Thus, we have shown that a block cipher designer
cannot fix a priori the number of rounds in a balanced Feistel and allow any (or
very large) key size, as for each increment of the key by amount of bits equivalent
to the state size, we can attack four more rounds.

We have analyzed generic constructions and as such, we could not make any
assumptions about the particular details of the ciphers, e.g. the key schedule,
the permutation layer, etc. However, the attacks on the AES have shown that
it is possible to take advantage of the cipher details in order to penetrate more
rounds. Thus, we believe that our analysis can be used as a beginning step for
attacks on larger number of rounds of specific Feistel ciphers.
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