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Abstract. Constrained pseudorandom functions have recently been in-
troduced independently by Boneh and Waters (Asiacrypt’13), Kiayias et
al. (CCS’13), and Boyle et al. (PKC’14). In a standard pseudorandom
function (PRF) a key k is used to evaluate the PRF on all inputs in the
domain. Constrained PRFs additionally offer the functionality to dele-
gate “constrained” keys kS which allow to evaluate the PRF only on a
subset S of the domain.
The three above-mentioned papers all show that the classical GGM con-
struction (J.ACM’86) of a PRF from a pseudorandom generator (PRG)
directly yields a constrained PRF where one can compute constrained
keys to evaluate the PRF on all inputs with a given prefix. This con-
strained PRF has already found many interesting applications. Unfor-
tunately, the existing security proofs only show selective security (by a
reduction to the security of the underlying PRG). To achieve full secu-
rity, one has to use complexity leveraging, which loses an exponential
factor 2N in security, where N is the input length.
The first contribution of this paper is a new reduction that only loses
a quasipolynomial factor qlogN , where q is the number of adversarial
queries. For this we develop a new proof technique which constructs a
distinguisher by interleaving simple guessing steps and hybrid arguments
a small number of times. This approach might be of interest also in other
contexts where currently the only technique to achieve full security is
complexity leveraging.
Our second contribution is concerned with another constrained PRF,
due to Boneh and Waters, which allows for constrained keys for the more
general class of bit-fixing functions. Their security proof also suffers from
a 2N loss, which we show is inherent. We construct a meta-reduction
which shows that any “simple” reduction of full security from a non-
interactive hardness assumption must incur an exponential security loss.

Keywords: Constrained pseudorandom functions, full security, com-
plexity leveraging, meta-reduction.

1 Introduction

PRFs. Pseudorandom functions (PRFs) were introduced by Goldreich, Gold-
wasser and Micali [GGM86]. A PRF is an efficiently computable keyed function

? Research supported by ERC starting grant (259668-PSPC)



F : K × X → Y, where F(K, ·), instantiated with a random key K ∗← K, cannot
be distinguished from a function randomly chosen from the set of all functions
X → Y with non-negligible probability.

Constrained PRFs. The notion of constrained PRFs (CPRFs) was intro-
duced independently by Boneh and Waters [BW13], Boyle, Goldwasser and Ivan
[BGI14] and Kiayias, Papadopoulos, Triandopoulos and Zacharias [KPTZ13].4

A constrained PRF is defined with respect to a set system S ⊆ 2X and
supports the functionality to “delegate” (short) keys that can only be used to
evaluate the function F : K × X → Y on inputs specified by a subset S ∈ S.
Concretely, there is a “constrained” keyspace Kc and additional algorithms
F.constrain : K × S → Kc and F.eval : Kc × X → Y, which for all k ∈ K, S ∈
S, x ∈ S and kS ← F.constrain(k, S), satisfy F.eval(kS , x) = F(k, x) if x ∈ S and
F.eval(kS , x) = ⊥ otherwise.

The GGM and the Boneh-Waters construction. All the aforementioned
papers [BW13,BGI14,KPTZ13] show that the classical GGM [GGM86] construc-
tion of the PRF GGM : {0, 1}λ×{0, 1}N → {0, 1}λ from a length-doubling pseu-
dorandom generator (PRG) G : {0, 1}λ → {0, 1}2λ directly gives a constrained
PRF, where for any key K and input prefix z ∈ {0, 1}≤N , one can generate
a constrained key Kz that allows to evaluate GGM(K,x) for any x with pre-
fix z. This simple constrained PRF has found many applications; apart from
those discussed in [BW13,BGI14,KPTZ13], it can be used to construct so-called
“punctured” PRFs, which are a key ingredient in almost all the recent proofs of
indistinguishability obfuscation [SW14,BCPR13,HSW14].

Boneh and Waters [BW13] construct a constrained PRF for a much more
general set of constraints, where one can delegate keys that fix any subset of bits
of the input (not just the prefix, as in GGM). The construction is based on leveled
multilinear maps [GGH13] and its security is proven under a generalization of
the decisional Diffie-Hellman assumption.

Security of constrained PRFs. The security definition for normal PRFs is
quite intuitive. One considers two experiments: the “real” experiment and the
“random” experiment, in both of which an adversary A gets access to an oracle
O(·) and then outputs a bit. In the real experiment O(·) implements the PRF
F(K, ·) using a random key; in the random experimentO(·) implements a random
function. The PRF is secure if every efficient A outputs 1 in both experiments
with (almost) the same probability.

Defining the security of constrained PRFs requires a bit more thought. We
want to give an adversary access not only to F(K, ·), but also to the constraining
function F.constrain(K, ·). But now we cannot expect the values F(K, ·) to look
random, as an adversary can always ask for a key KS ← F.constrain(K,S) and
then for any x ∈ S check whether F(K,x) = F.eval(KS , x).

4 The name “constrained PRF” is from [BW13]; in [KPTZ13] and [BGI14] these ob-
jects are called “delegatable PRFs” and “functional PRFs”, respectively. In this
paper we follow the naming and notation from [BW13].
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Instead, security is formalized by defining the experiments in two phases.
In the first phase of both experiments the adversary gets access to the same
oracles F(K, ·) and F.constrain(K, ·). The experiments differ in a second phase,
where the adversary chooses some challenge query x∗. In the real experiment the
adversary then obtains F(K,x∗), whereas in the random experiment she gets a
random value. Intuitively, when no efficient adversary can distinguish these two
games, this means that the outputs of F(K, ·) look random on all points that the
adversary cannot compute by herself using the constrained keys she has received
so far.

Selective vs. full security. In the above definition we let the adversary choose
the challenge input x∗ after she gets access to the oracles. This is the notion
typically considered, and it is called “full security” or “adaptive security”. One
can also consider a weaker “selective security” notion, where the adversary must
choose x∗ before getting access to the oracles.

The reason to consider selective security notions, not only here, but also
for other objects like identity-based encryption [BF01,BB04,AFL12] is that it is
often much easier to achieve. Although there exists a simple generic technique
called “complexity leveraging”, which translates any selective security guarantee
into a security bound for full security, this technique (which really just consists
of guessing the challenge) typically loses an exponential factor (in the length of
the challenge) in the quality of the reduction, often making the resulting security
guarantee meaningless for practical parameters.

1.1 Our Contributions

All prior works [BW13,BGI14,KPTZ13] only show selective security of the GGM
constrained PRF, and [BW13] also only give a selective-security proof for their
bit-fixing constrained PRF. In this paper we investigate the full security of these
two constructions. For GGM we achieve a positive result, giving a reduction that
only loses a quasipolynomial factor. For the Boneh-Waters bit-fixing CPRF we
give a negative result, showing that for a large class of reductions, an exponential
loss is necessary. We now elaborate on these results.

A quasipolynomial reduction for GGM. To prove full security of GGM :
{0, 1}λ×{0, 1}N → {0, 1}λ, the “standard” proof proceeds in two steps (we give
a precise statement in Proposition 2).

1. A guessing step (a.k.a. complexity leveraging), which reduces full to selective
security. This step loses an exponential factor 2N in the input length N .

2. Now one applies a hybrid argument which loses a factor 2N .

The above two steps transform an adversary Af that breaks the full security
of GGM with advantage ε into a new adversary that breaks the security of the
underlying pseudorandom generator G (used to construct the GGM function)
with advantage ε/(2N · 2N ). As a consequence, even if one makes a strong expo-
nential hardness assumption on the PRG G, one must use a PRG whose domain
is Θ(N) bits in order to get any meaningful security guarantee.
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The reason for the huge security loss is the first step, in which one guesses
the challenge x∗ ∈ {0, 1}N the adversary will choose, which is correct with
probability 2−N . To avoid this exponential loss, one must avoid guessing the
entire x∗. Our new proof also consists of a guessing step followed by a hybrid
argument.

1. A guessing step, where (for some `) we guess which of the adversary’s queries
will be the first one that agrees with x∗ in the first ` positions.5 This step
loses a factor q, which denotes the number of queries made by the adversary.

2. A hybrid argument which loses a constant factor 3.

The above two steps only lose a factor 3q. Unfortunately, after one iteration of
this approach we do not get a distinguisher for G right away. At a high level,
these two steps achieve the following: We start with two games which in some
sense are at distance N from each other, and we end up with two games which
are at distance N/2. We can iterate the above process n := logN times to end
up with games at distance N/2n = 1. Finally, from any distinguisher for games
at distance 1 we can get a distinguisher for the PRG G with the same advantage.
Thus, starting from an adversary against the full security of GGM with advantage
ε, we get a distinguisher for the PRG with advantage ε/(3q)logN .

We can optimize this by combining this approach with the original proof,
and therby obtain a quasipolynomial loss of 2q log q · (3q)logN−log log q. To give
some numerical example, let the input length be N = 210 = 1024 and the
number of queries be q = 232. Then we get a loss of 2q log q · (3q)logN−log log q =
2 · 232 · 32 · (3 · 232)10−5 = 2198 · 35 ≤ 2206, whereas complexity leveraging loses
2N2N = 21035.

Although our proof is somewhat tailored to the GGM construction, the gen-
eral “fine-grained” guessing approach outlined above might be useful to improve
the bounds for other constructions (like CPRFs, and even IBE schemes) where
currently the only proof technique that can be applied is complexity leveraging.

A lower bound for the Boneh-Waters CPRF and Hofheinz’s construc-
tion. We then turn our attention to the bit-fixing constrained PRF by Boneh
and Waters [BW13]. For this construction too, complexity leveraging—losing an
exponential factor—is the only known technique to prove full security. We give
strong evidence that this is inherent (even when the construction is only used
as a prefix-fixing CPRF).

Concretely, we prove that every “simple” reduction (which runs the adver-
sary once without rewinding; see Sect. 5.2) of the full security of this scheme
from any decisional (and thus also search) assumption must lose an exponen-
tial factor. Our proof is a so-called meta-reduction [BV98,Cor02,FS10], showing
that any reduction that breaks the underlying assumption when given access to
any adversary that breaks the CPRF, could be used to break the underlying
assumption without the help of an adversary.

5 This guessing is somewhat reminiscent of a proof technique from [HW09].
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This impossibility result is similar to existing results, the closest one being
a result of Lewko and Waters [LW14] ruling out security proofs without expo-
nential loss for so-called “prefix-encryption” schemes (which satisfy some special
properties). Other related results are those of Coron [Cor02] and Hofheinz et
al. [HJK12], which show that security reductions for certain signature schemes
must lose a factor polynomial in the number of signing queries.

The above impossibility proofs are for public-key objects, where a public
key that uniquely determines the input/output distribution of the object. This
property is crucially used in the proof, wherein one first gets the public key and
then runs the reduction, rewinding the reduction multiple times to the point
right after the public key has been received.

As we consider a secret-key primitive, the above approach seems inapplica-
ble. We overcome this by observing that for the Boneh-Waters CPRF we can
initially make some fixed “fingerprint” queries, which then uniquely determine
the remaining outputs. We can therefore use the responses to these fingerprint
queries instead of a public key as in [LW14].

Hofheinz [Hof14] has (independently and concurrently with us) investigated
the adaptive security of bit-fixing constrained PRFs. He gives a new construction
of such PRFs which is more sophisticated than the Boneh-Waters construction,
and for which he can give a security reduction that only loses a polynomial factor.
The main tool that allows Hofheinz to overcome our impossibility result is the use
of a random oracle H(·). Very informally, instead of evaluating the PRF on an
input X, it is evaluated on H(X) which forces an attacker to make every query
X explicit. Unfortunately, this idea does not work directly as it destroys the
structure of the preimages, and thus makes the construction of short delegatable
keys impossible. Hofheinz deals with this problem using several other ideas.

2 Preliminaries

For a ∈ N, we let [a] := {1, 2, . . . , a} and [a]0 := {0, 1, . . . , a}. By {0, 1}≤a =⋃
i≤a{0, 1}i we denote the set of bitstrings of length at most a, including the

empty string ∅. By Ua we denote the random variable with uniform distribution
over {0, 1}a. We denote sampling s uniformly from a set S by s ∗← S. We
let x‖y denote the concatenation of the bitstrings x and y. For sets X ,Y, we
denote by F [X ,Y] the set of all functions X → Y; moreover, F [a, b] is short for
F [{0, 1}a, {0, 1}b]. For x ∈ {0, 1}∗, we denote by xi the i-th bit of x, and by
x[i . . . j] the substring xi‖xi+1‖ . . . ‖xj .

Definition 1 (Indistinguishability). Two distributions X and Y are (ε, s)-
indistinguishable, denoted X ∼(ε,s) Y , if no circuit D of size at most s can
distinguish them with advantage greater than ε, i.e.,

X ∼(ε,s) Y ⇐⇒ ∀D, |D| ≤ s :
∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]

∣∣ ≤ ε .
X ∼δ Y denotes that the statistical distance of X and Y is δ (i.e., X ∼(δ,∞) Y ),
and X ∼ Y denotes that they have the same distribution.
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Definition 2 (PRG). An efficient function G : {0, 1}λ → {0, 1}2λ is an (ε, s)-
secure (length-doubling) pseudorandom generator (PRG) if

G(Uλ) ∼(ε,s) U2λ .

Definition 3 (PRF). A keyed function F : K × X → Y is an (ε, s, q)-secure
pseudorandom function if for all adversaries A of size at most s making at
most q oracle queries∣∣∣PrK ∗←K[AF(K,·) → 1]− Prf ∗←F [X ,Y][A

f(·) → 1]
∣∣∣ ≤ ε .

Constrained pseudorandom functions. Following [BW13], we say that a
function F : K × X → Y is a constrained PRF for a set system S ⊆ 2X , if there
is a constrained-key space Kc and algorithms

F.constrain : K × S → Kc and F.eval : Kc ×X → Y ,

which for all k ∈ K, S ∈ S, x ∈ S and kS ← F.constrain(k, S) satisfy

F.eval(kS , x) =

{
F(k, x) if x ∈ S

⊥ otherwise

That is, F.constrain(k, S) outputs a key kS that allows evaluation of F(k, ·) on
all x ∈ S.

Informally, a constrained PRF F is secure, if no efficient adversary can dis-
tinguish F(k, x∗) from random, even given access to F(k, ·) and F.constrain(k, ·)
which he can query on all x 6= x∗ and S ∈ S where x∗ 6∈ S, respectively. We will
always assume that S contains all singletons, i.e., ∀x ∈ X : {x} ∈ S; this way
we do not have to explicitly give access to F(k, ·) to an adversary, as F(k, x) can
be learned by querying for kx ← F.constrain(k, {x}) and computing F.eval(kx, x).

We distinguish between selective and full security. In the selective security
game the adversary must choose the challenge x∗ before querying the oracles.
Both games are parametrized by the maximum number q of queries the adversary
makes, of which the last query is the challenge query.

Expsel
CPRF(A,F, b, q)

K ∗← K, Ŝ := ∅, c := 0
x∗ ← A

AO(·)

C0
∗← Y, C1 := F(K,x∗)

A gets Cb
b̃← A

if x∗ ∈ Ŝ, return 0

return b̃

Expfull
CPRF(A,F, b, q)

K ∗← K, Ŝ := ∅, c := 0

AO(·)

x∗ ← A
C0

∗← Y, C1 := F(K,x∗)
A gets Cb
b̃← A

if x∗ ∈ Ŝ, return 0

return b̃

Oracle O(S)
if c = q − 1, return ⊥
c := c + 1

Ŝ := Ŝ ∪ S
kS ← F.constrain(K,S)
return kS

For atk ∈ {sel, full} we define A’s advantage as

AdvatkF (A, q) = 2
∣∣∣Prb ∗←{0,1}[Expatk

CPRF(A,F, b, q) = b]− 1
2

∣∣∣ (1)
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and denote with
AdvatkF (s, q) = maxA,|A|≤s Adv

atk
F (A, q)

the advantage of the best q-query adversary of size at most s.

Definition 4 (Security of CPRFs). A constrained PRF F is

– selectively (ε, s, q)-secure if AdvselF (s, q) ≤ ε and
– fully (ε, s, q)-secure if AdvfullF (s, q) ≤ ε.

Remark 1 (CCA1 vs. CCA2 security). In the selective and full security notion,
we assume that the challenge query x∗ is only made at the very end, when A
has no longer access to the oracle (this is reminiscent of CCA1 security). All our
positive results hold for stronger notions (reminiscent to CCA2 security) where
A still has access to O(·) after making the challenge query, but may not query
on any S where x∗ ∈ S.

Remark 2 (Multiple challenge queries). We only allow the adversary one chal-
lenge query. As observed in [BW13], this implies security against any t > 1
challenge queries, losing a factor of t in the distinguishing advantage, by a stan-
dard hybrid argument.

Using what is sometimes called “complexity leveraging”, one can show that se-
lective security implies full security: given an adversary A against full security, we
construct a selective adversary B, which at the beginning guesses the challenge
x∗, which it outputs, then runs the A and aborts if the challenge A eventually
outputs is different from x∗. The distinguishing advantage drops thus by a factor
of the domain size |X |. We prove the following in the full version [FKPR14].

Lemma 1 (Complexity leveraging). If a constrained PRF F : K × X → Y
is (ε, s, q)-selectively secure, then it is (ε|X |, s′, q)-fully secure (where s′ =
s−O(log |X |)), i.e.,

AdvfullF (s′, q) ≤ |X | · AdvselF (s, q) .

3 The GGM Construction

The GGM construction, named after its inventors Goldreich, Goldwasser and
Micali [GGM86], is a keyed function GGMG : {0, 1}λ × {0, 1}∗ → {0, 1}λ from
any length-doubling PRG G : {0, 1}λ → {0, 1}2λ, recursively defined as

GGM(K∅, x) = Kx , where ∀ z ∈ {0, 1}≤N−1 : Kz‖0‖Kz‖1 = G(Kz) (2)

(cf. Fig. 1). In [GGM86] it is shown that when the inputs are restricted to {0, 1}N
then GGMG is a secure PRF if G is a secure PRG. Their proof is one of the first
applications of the so-called hybrid argument.6 The proof loses a factor of q ·N
in distinguishing advantage, where q is the number of queries. We provide it in
the full version [FKPR14].

6 The first application is in the “probabilistic encryption” paper [GM84].

7



K∅

K0

K00

K000 K001

K01

K010 K011

K1

K10

K100 K101

K11

K110 K111

Fig. 1. Illustration of the GGM PRF. Every left child Kz‖0 of a node Kz is defined
as the first half of G(Kz), the right child Kz‖1 as the second half. The circled node
corresponds to GGM(K∅, 010).

Proposition 1 (GGM is a PRF [GGM86]). If G : {0, 1}λ → {0, 1}2λ is an
(εG, sG)-secure PRG then (for any N, q) GGMG : {0, 1}λ × {0, 1}N → {0, 1}λ is
an (ε, s, q)-secure PRF with

ε = εG · q ·N and s = sG −O(q ·N · |G|) .

3.1 GGM is a Constrained PRF

As observed recently by three works independently [BW13,BGI14,KPTZ13], the
GGM construction can be used as a constrained PRF for the set Spre defined as

Spre = {Sp : p ∈ {0, 1}≤N} , where Sp = {p‖z : z ∈ {0, 1}N−|p|} .

Thus, given a key Kp for the set Sp, one can evaluate GGMG(K, ·) on all inputs
with prefix p. Formally, the constrained PRF with key K = K∅ is defined using
(2) as follows:

GGMG.constrain(K∅, p) = GGMG(K∅, p) = Kp

GGMG.eval(Kp, x = p‖z) = GGMG(Kp, z) = Kx

Remark 3. When the domain is defined as X := {0, 1}∗ as for eq. (2) then the
GGM construction is a secure prefix-free PRF, which means that none of the
adversary’s queries can be a prefix of another query (see [FKPR14]). One might
be tempted to think that this fact together with the fact that constrained-key
derivation is simply the GGM function itself, already implies that it is a secure
constrained PRF. Unfortunately, this is not sufficient, as the (selective and full)
security notions for CPRFs do allow queries that are prefixes of previous queries.

The selective security of this construction can be proven using a standard hybrid
argument, losing only a factor of 2N in the distinguishing advantage. Proving full
security seems much more challenging, and prior to our work it was only achieved
by complexity leveraging (see Lemma 1), which loses an additional exponential
factor 2N in the distinguishing advantage, as stated in Proposition 2 below.
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Remark 4. In the proof of Proposition 2 and Theorem 1 we will slightly cheat,
as in the security game when b = 0 (i.e., when the challenge output is random)
we not only replace the challenge output Kx∗ , but also its sibling Kx∗[1...N−1]x∗N ,
with a random value. Thus, technically this only proves security for inputs of
length N − 1 (as we can e.g. simply forbid queries x‖0, x ∈ {0, 1}N−1, in which
case it is irrelevant what the sibling is, as it will never be revealed). The proofs
without this cheat require one extra hybrid, which requires a somewhat different
treatment than all others hybrids and thus would complicate certain proofs and
definitions. Hence, we chose to not include it. The bounds stated in Proposition 2
and Theorem 1 are the bounds we get without this cheat.

Proposition 2. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for
any N, q) GGMG : {0, 1}N → {0, 1}λ is a constrained PRF for Spre which is

1. selectively (ε, s, q)-secure, with

ε = εG · 2N and s = sG −O(q ·N · |G|) ;

2. fully (ε, s, q)-secure, with

ε = εG · 2N2N and s = sG −O(q ·N · |G|) .

Full security as stated in Item 2. of the proposition follows from selective security
(Item 1.) by complexity leveraging as explained in Lemma 1. To prove selective
security, we let H0 be the real game for selective security and let H2N−1 be the
random game, that is, where Kx∗ is random. We then define intermediate hybrid
games H1, . . . ,H2N−2 by embedding random values along the path to Kx∗ . In
particular, in hybrid Hi, for 1 ≤ i ≤ N , the nodes K∅,Kx∗1

, . . . ,Kx∗[1...i] are
random and for N + 1 ≤ i ≤ 2N − 1 the nodes K∅,Kx∗1

, . . . ,Kx∗[1...2N−1−i] and
Kx∗ are random. Thus two consecutive games Hi, Hi+1 differ in one node that is
real in one game and random in the other, and moreover the parent of that node
is random, meaning we can embed a PRG challenge. From any distinguisher for
two consecutive games we thus get a distinguisher for the PRG G with the same
advantage. (A formal proof can be found in [FKPR14].)

This hybrid argument only loses a factor 2N in distinguishing advantage, but
complexity leveraging loses a huge factor 2N . In the next section we show how
to prove full security avoiding such an exponential loss.

4 Full Security with Quasipolynomial Loss

Theorem 1. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for any
N, q) GGMG : {0, 1}N → {0, 1}λ is a fully (ε, s, q)-secure constrained PRF for
Spre, where

ε = εG · (3q)logN and s = sG −O(q ·N · |G|) .

At the end of this section we will sketch how to combine the proof of this theorem
with the standard complexity leveraging proof from Proposition 2 to get a smaller
loss of ε = εG · 2q log q · (3q)logN−log log q.
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Proof idea. We can view the real and the random game for CPRF security
as having distance N , in the sense that from the only node in which they differ
(which is the challenge node Kx∗) we have to walk up N nodes until we reach a
node that was chosen uniformly at random (which here is the root K∅).

As outlined in Sect. 1.1, our goal is to halve that distance. For this, we could
define two intermediate hybrids which are defined as the real and the random
games, except that the node half way down the path to x∗, i.e., Kx∗[1...N/2], is a
random node. This is illustrated in Fig. 2, where a row depicts the path from the
root, labeled ‘0’, to x∗, labeled ‘8’ and where dark nodes correspond to random
values. The path at the top of the figure is the real and the one at the bottom is
the random game (ignore anything in the boxes for now), and the intermediate
hybrids are the 2nd and the 3rd path. Of these 4 hybrids, each pair of consecutive
hybrids has the following property: they differ in one node and its distance to
the closest random node above is N/2.

There is a problem with this approach because the intermediate hybrid games
we have just constructed are not even well-defined, as the value x∗[1 . . . N/2] is
only known when the adversary makes his challenge query. This is also the
case for x∗ itself, but Kx∗ only needs to be computed once x∗ is queried; in
contrast, Kx∗[1...N/2] could have been computed earlier in the game, if the value
of some constrained-key query is a descendant of it. In order to avoid possible
inconsistencies, we do the following: we guess which of the adversary’s queries
will be the first one with a prefix x∗[1 . . . N/2]. As there are at most q queries
and there always exists a query with this property (at latest the challenge query
itself), the probability of guessing correctly is 1/q. If we guess correctly then the
node x∗[1 . . . N/2] is known precisely when the value Kx∗[1...N/2] is computed for
the first time and we can correctly simulate the game. If our guess was wrong,
we abort.

Assuming an attacker can distinguish between the real and the random game,
there must be two consecutive hybrids of the 4 hybrids that it can distinguish
with at least one third of his original advantage. Between these two hybrids,
which differ in one node d, we can again embed two intermediate hybrids, which
have a random value half way between d and the closest random node above (cf.
the outer box in Fig. 2). We continue to do so until we reach two hybrids where
there is a random node immediately above the differing node. A distinguisher
between two such games can then be used to break the PRG.

Neighboring sets with low weight. Before starting with the proof, we intro-
duce some notation. It will be convenient to work with ternary numbers, which
we represent as strings of digits from {0, 1, 2} within angular brackets 〈. . .〉. We
denote repetition of digits as 0n = 0 . . . 0 (n times). Addition will also be in
ternary, e.g., 〈202〉+ 〈1〉 = 〈210〉.

Let N = 2n be a power of 2. In the proof of Theorem 1 we will construct 3n+1
subsets S〈0〉, . . . ,S〈10n〉 ⊂ {0, . . . , N}. These sets will define the positions in the
path to the challenge where we make random guesses in a particular hybrid. The
following definition measures how “close” sets (that differ in one element) are
and will be useful in defining neighboring hybrids.
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H〈0〉

H〈100〉

H〈200〉

H〈1000〉

H〈210〉

H〈220〉

H〈211〉

H〈212〉

0 1 2 3 4 5 6 7 8

0 41 2 3 5 6 7 8

0 4 81 2 3 5 6 7

0 2 4 81 3 5 6 7

0 2 3 4 81 5 6 7

0 2 3 81 4 5 6 7

0 2 81 3 4 5 6 7

0 81 2 3 4 5 6 7

Fig. 2. Concrete example (n = 3) illustrating the iterative construction of hybrids in
Theorem 1.

Definition 5 (Neighboring sets). For k ∈ N+, sets S,S ′ ⊂ N0, S 6= S ′ are
k-neighboring if

1. S∆S ′ := (S ∪ S ′) \ (S ∩ S ′) = {d} for some d ∈ N0, i.e., they differ in
exactly one element d.

2. d− k ∈ S.
3. ∀ i ∈ [k − 1] : d− i 6∈ S.

We define the first set (with index 0 = 〈0〉) and the and last set (with index
3n = 〈10n〉) as

S〈0〉 := {0} and S〈10n〉 := {0, N} . (3)

(They will correspond to the real game, where only the root at depth ‘0’ is
random, and the random game, where the value for x∗ at depth N is random
too.) The remaining intermediate sets are defined recursively as follows. For
` = 0, . . . , n, we define the `-th level of sets to be all the sets of the form S〈?0n−`〉
(i.e., whose index in ternary ends with (n− `) zeros). Thus, S〈0〉 and S〈10n〉 are
the (only) level-0 sets.

Let SI ,SI′ be two consecutive level-` sets, by which we mean that I ′ =
I + 〈10n−`〉. By construction, these sets will differ in exactly one element {d}
(i.e., SI 6= SI′ ; and SI ∪{d} = SI′ or SI′ ∪{d} = SI). Then the two level-(`+ 1)
sets between the level-` sets SI ,SI′ are defined as

SI+〈10n−(`+1)〉 := SI ∪{d− N
2`+1 } and SI′−〈10n−(`+1)〉 := SI′ ∪{d− N

2`+1 } . (4)

A concrete example for N = 2n = 23 = 8 is illustrated in Fig. 2 (where the dark
nodes of HI correspond to SI).

An important fact we will use is that consecutive level-` sets are (N/2`)-
neighboring (see Definition 5); in particular, consecutive level-n sets (the 4 lines
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in the box in Fig. 2 illustrate 4 consecutive sets) are thus 1-neighboring, i.e.,

∀ I ∈ {〈0〉, . . . , 〈2n〉} : SI ∆SI+〈1〉 = {d} and d− 1 ∈ SI . (5)

Proof of Theorem 1. Below we prove two lemmata (2 and 3) concerning the
games defined in Fig. 3, from which the theorem follows quite immediately. As
the games and the lemmata are rather technical, we first intuitively explain what
is going on, going through a concrete example as illustrated in Fig. 2.

To prove the theorem, we assume that there exists an adversary Af that
breaks the full security of GGMG with some advantage ε, and from this, we
want to construct a distinguisher for G with advantage at least ε/(3q)n, where
n = logN . Like in the proof of Proposition 2, we can think of the two games
that Af distinguishes as the games where we let Af query GGMG, but along the
path from the root K∅ down to the challenge Kx∗ the nodes are either computed
by G or they are random values. The position of the random values are defined
by the set S〈0〉 = {0} for the real game and by S〈10n〉 = {0, N} for the random
game: in both cases the root K∅ is random, and in the latter game the final
output Kx∗ is also random. We call these two games H∅〈0〉 and H∅〈10n〉, and they

correspond to the games defined in Fig. 3 with P = ∅, and I = 〈0〉 and 〈10n〉,
respectively). As just explained, they satisfy

H∅〈0〉 ∼ Expfull
CPRF(Af ,GGM

G, 0, q) and H∅〈10n〉 ∼ Expfull
CPRF(Af ,GGM

G, 1, q) .

Thus, if Af breaks the full security of GGMG with advantage ε then∣∣Pr[H∅〈0〉 = 1]− Pr[H∅〈10n〉 = 1]
∣∣ ≥ ε . (6)

In the proof of Proposition 2 we were able to “connect” the real and random
experiments H0 and H2N−1 via intermediate hybrids H1, . . . ,H2N−2, such that
from a distinguisher for any two consecutive hybrids we can build a distinguisher
for G with the same advantage.

We did this by using random values (instead of applying G) in some steps
along the path from the root K∅ to the challenge Kx∗ . Here we cannot use the
same approach to connect H∅〈0〉 and H∅〈10n〉, as these games consider full (and

not selective) security, where we learn x∗ only at the very end, and thus “the
path to x∗” is not even defined until the adversary makes the challenge query.

We could of course reduce the problem from the full to the selective setting
by guessing x∗ at the beginning like in the proof of Lemma 1, but this would
lose a factor 2N , which is what we want to avoid.

Instead of guessing the entire x∗, we will guess something easier. During the
experiment H〈0〉 we have to compute at most q children Kz‖0‖Kz‖1 = G(Kz)

of nodes at level N/2 − 1, i.e., z ∈ {0, 1}N/2−1. One of these Kz satisfies z =
x∗[1 . . . N/2 − 1], that is, it lies on the path from the root K∅ to the challenge
Kx∗ (potentially this happens only at the very last query xq = x∗). We randomly
guess qN/2

∗← [q] for which invocation of G this will be the case for the first time.
Note that we have to wait until Af makes its last query xq = x∗ before we know
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Experiment HPI
// I ∈ {〈0〉, . . . , 〈10n〉}
// P = {p1, . . . , pt} ⊆ [N − 1]
// SI ⊆ P ∪ {0, N},
// SI defined by eq. (3) and (4).

∀x ∈ {0, 1}≤N : Kx := ⊥
K∅

∗← {0, 1}λ
// Initialize counters:
∀ j = 1 . . . N − 1 : cj = 0

// Make a random guess for each
// element in P = {p1, . . . , pt}:
∀ j ∈ [t] : qpj

∗← [q]
// Af can make exactly q distinct
// oracle queries x1, . . . , xq;
// the last (challenge) query
// xq = x∗ must be in {0, 1}N :

A
O(·)
f

b̃← Af

// Only if guesses qp1 , . . . , qpt
// were correct, return b̃,
// otherwise return 0:

if ∀ p ∈ P : x∗[1 . . . p− 1] = zp−1

then return b̃
else return 0 fi

O(x = x[1 . . . `])
// Return Kx if it is already defined:

if Kx 6= ⊥ then return Kx fi

// Get parent of Kx recursively:
Kx[1...`−1] := O(x[1 . . . `− 1])

// Increase counter for level `− 1:
c`−1 = c`−1 + 1

// Compute Kx and its sibling using G,
// unless its parent Kx[1...`−1] is a node
// which we guessed will be on the path
// from K∅ and Kx∗ and as ` ∈ P we
// must use a random value at this level;
// OR this is the challenge query xq=x∗

// and N ∈ SI , which means the answer
// to the challenge is random:

if (` ∈ P and c`−1 = q`−1)

OR (x = xq and N ∈ SI)
Kx[1...`−1]‖0‖Kx[1...`−1]‖1

∗← U2λ

// Store this node to check if guess
// was correct later:

z`−1 = x[1 . . . `− 1]
else

Kx[1...`−1]‖0‖Kx[1...`−1]‖1 := G(Kx[1...`−1])
fi

return Kx

Fig. 3. Definition of the hybrid games from the proof of Theorem 1. The sets SI are
as in Equations (3) and (4). The hybrid HPI is defined like the full security game of a
q-query adversary Af against the CPRF GGMG, but where we “guess”, for any value
p ∈ P, at which point in the experiment the node at depth p on the path from the root
K∅ to the challenge Kx∗ is computed. (Concretely, the guess is that it’s the cp−1-th
time we compute the children of a node at level p−1, we define the p level node Kx∗[1...`]

on the path.) At a subset of these points, namely SI , we embed random values. The
final output is 0 unless all guesses were correct, in which case we forward Af ’s output.

whether our guess was correct. If the guess was wrong, we output 0; otherwise
we output Af ’s output. We will denote the position of the node down to which
our guessed query should equal the path to x∗ as superscript of the hybrid H.

The experiment just described corresponds thus to hybrid H
{N/2}
〈0〉 , as defined in

Fig. 3.

The games H
{N/2}
〈0〉 and H

{N/2}
〈10n〉 behave exactly like H∅〈0〉 and H∅〈10n〉, except

for the final output, which in the former two hybrids is set to 0 with probability
1− 1/q, and left unchanged otherwise (namely, if our random guess qN/2

∗← [q]
turns out to be correct, which we know after learning x∗). This implies

Pr[H
{N/2}
〈0〉 = 1] = Pr[H∅〈0〉 = 1] · 1q and Pr[H

{N/2}
〈10n〉 = 1] = Pr[H∅〈10n〉 = 1] · 1q ,
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and with (6) ∣∣Pr[H
{N/2}
〈0〉 = 1]− Pr[H

{N/2}
〈10n〉 = 1]

∣∣ ≥ ε/q . (7)

What did we gain? We paid a factor q in the advantage for aborting when our
guess qN/2 was wrong. What we gained is that when we guess correctly we know
x∗[1 . . . N/2], i.e., the node half way in between the root and the challenge.

We use this fact to define two new hybrids H
{N/2}
〈10n−1〉, H

{N/2}
〈20n−1〉 which are de-

fined like H
{N/2}
〈0〉 , H

{N/2}
〈10n〉 , respectively, but where the children of Kx∗[1...N/2−1]

are uniformly random instead of being computed by applying G to Kx∗[1...N/2−1].
Fig. 2 (ignoring the boxes for now) illustrates the path from K∅ to Kx∗ in the

hybrids H
{4}
〈0〉 , H

{4}
〈100〉, H

{4}
〈200〉, H

{4}
〈1000〉 assuming the guessing was correct (a node

with label i corresponds to Kx∗[1...i], dark nodes are sampled at random, and
green ones by applying G to the parent).

By (7) we can distinguish the first from the last hybrid with advantage ε/q,

and thus there are two consecutive hybrids in the sequence H
{N/2}
〈0〉 , H

{N/2}
〈10n−1〉,

H
{N/2}
〈20n−1〉, H

{N/2}
〈10n〉 that we can distinguish with advantage at least ε/(3q). For

concreteness, let us fix parameters N = 8 = 23 = 2n as in Fig. 2 and assume
that this is the case for the last two hybrids in the sequence, i.e.,

|Pr[H
{4}
〈200〉 = 1]− Pr[H

{4}
〈1000〉 = 1]| ≥ ε/(3q) . (8)

The central observation here is that the above guessing step (losing a factor
q) followed by a hybrid argument (losing a factor 3) transformed a distinguish-
ing advantage ε for two hybrids H∅〈0〉, H

∅
〈1000〉 which have random values em-

bedded along the path from K∅ to Kx∗ on positions defined by N -neighboring
sets S〈0〉,S〈1000〉, into a distinguishing advantage of ε/(3q) for two hybrids that
correspond to N/2-neighboring sets, e.g. S〈200〉 and S〈1000〉.

We can now iterate this approach, in each iteration losing a factor 3q in
distinguishing advantage, but getting hybrids that correspond to sets of half
the neighboring distance. After n = logN iterations we end up with hybrids
that correspond to 1-neighboring sets, and can be distinguished with advantage
ε/(3q)n. We will make this formal in Lemma 3 below. From any distinguisher for
hybrids corresponding to two 1-neighboring sets we can construct a distinguisher
for G with the same advantage, as formally stated in Lemma 2 below. Let’s
continue illustrating the approach using the hybrids illustrated in Fig. 2.

Recall that we assumed that we can distinguish H
{4}
〈200〉 and H

{4}
〈1000〉 as stated

in eq. (8). We now embed hybrids corresponding to the sets S〈210〉,S〈220〉 in
between, illustrated in the outer box in Fig. 2 (ignore the inner box for now).
Since S〈200〉∆S〈1000〉 = {4}, by eq. (4) for ` = 1, we construct S〈200〉+〈10〉 =

S〈200〉 ∪{4− 8
22 = 2} and S〈1000〉−〈10〉 = S〈1000〉 ∪{2} . We add this new element

{2} to the “guessing set” {4}, at the price of losing a factor q in distinguishing
advantage compared to eq. (8):∣∣Pr[H

{2,4}
〈200〉 = 1]− Pr[H

{2,4}
〈1000〉 = 1]

∣∣ ≥ ε/(3q2) . (9)
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We can now consider the sequence of hybrids H
{2,4}
〈200〉 , H

{2,4}
〈210〉 , H

{2,4}
〈220〉 , H

{2,4}
〈1000〉.

There must be two consecutive hybrids that can be distinguished with advantage
ε/(32q2). Let’s assume this is the case for the middle two.∣∣Pr[H

{2,4}
〈210〉 = 1]− Pr[H

{2,4}
〈220〉 = 1]

∣∣ ≥ ε/(32q2) . (10)

Now S〈210〉∆S〈220〉 = {4}, and 4− 8/23 = 3, so we add {3} to the guessing set
losing another factor q:∣∣Pr[H

{2,3,4}
〈210〉 = 1]− Pr[H

{2,3,4}
〈220〉 = 1]

∣∣ ≥ ε/(32q3) , (11)

and can now consider the games H
{2,3,4}
〈210〉 , H

{2,3,4}
〈211〉 , H

{2,3,4}
〈212〉 , H

{2,3,4}
〈220〉 as shown

inside the two boxes in Fig. 2. Two consecutive hybrids in this sequence must
be distinguishable with advantage at least 1/3 of the advantage we had for the
first and last hybrid in this sequence; let’s assume this is the case for the last
two, then: ∣∣Pr[H

{2,3,4}
〈212〉 = 1]− Pr[H

{2,3,4}
〈220〉 = 1]

∣∣ ≥ ε/(33q3) . (12)

We have thus shown the existence of two games HPI and HPI+〈1〉 (what P and I

are exactly is irrelevant for the rest of the argument) that can be distinguished
with advantage ε/(3q)n. Any two consecutive (i.e., 1-neighboring) hybrids have
the following properties (cf. eq. 5). They only differ in one node on the path to
x∗ and its parent node is random. Moreover, the position of the differing node is
in the guessing set P, meaning we know its position in the tree. Together, this
means we can use a distinguisher between HPI and HPI+〈1〉 to break G: Given a
challenge for G we embed it as the value of the differing node and, depending
whether it was real or random, simulate one hybrid or the other. We formalize
this in the following lemma, which is proven in the full version [FKPR14].

Lemma 2. For any I ∈ {〈0〉, . . . , 〈2n〉},P ⊂ {1, . . . , N−1} where SI ∪SI+〈1〉 ⊆
P ∪ {0, N} (so the games HPI+〈1〉, H

P
I are defined) the following holds. If∣∣Pr[HPI = 1]− Pr[HPI+〈1〉 = 1]

∣∣ = δ

then G is not a (δ, s)-secure PRG for s = |Af | −O(q ·N · |G|).

Lemma 3. For ` ∈ {0, . . . , n−1}, any consecutive level-` sets SI ,SI′ (i.e., I, I ′

are of the form 〈?0n−`〉 and I ′ = I + 〈10n−`〉) and any P for which the hybrids
HPI , H

P
I′ are defined (which is the case if SI ∪ SI′ ⊆ P ∪ {0, N}), the following

holds. If ∣∣Pr[HPI = 1]− Pr[HPI′ = 1]
∣∣ = δ (13)

then for some consecutive level-(`+1) sets J ∈ {I, I+ 〈10n−`−1〉, I+ 〈20n−`−1〉}
and J ′ = J + 〈10n−`−1〉 and some P ′:∣∣Pr[HP

′

J = 1]− Pr[HP
′

J′ = 1]
∣∣ = δ/(3q) .
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The proof of Lemma 3 is in [FKPR14]. The theorem now follows from Lem-
mata 2 and 3 as follows. Assume a q-query adversary Af breaks the full security
of GGMG for domain X = {0, 1}2n with advantage ε, which, as explained in the
paragraph before eq. (6), means that we can distinguish the two level-0 hybrids
H∅〈0〉 and H∅〈10n〉 with advantage ε. Applying Lemma 3 n times, we get that there

exist consecutive level-n hybrids HPI , H
P
I+〈1〉 that can be distinguished with ad-

vantage ε/(3q)n, which by Lemma 2 implies that we can break the security of G
with the same advantage ε/(3q)n. This concludes the proof of Theorem 1.

To reduce the loss to 2q log q · (3q)n−log log q as stated below Theorem 1, we
use the same proof as above, but stop after n− log log q (instead of n) iterations.
At this point, we have lost a factor (3q)n−log log q, and have constructed games
that are (log q)-neighboring. We can now use a proof along the lines of the proof
of Proposition 2, and guess the entire remaining path of length log q at once.
This step loses a factor 2q log q (a factor 2log q = q to guess the path, and another
2 log q as we have a number of hybrids which is twice the length of the path).

5 Impossibility Result for the Boneh-Waters PRF

In this section we show that we cannot hope to prove full security without an
exponential loss for another constrained PRF, namely the one due to Boneh and
Waters [BW13].

5.1 The Boneh-Waters Constrained PRF

Leveled κ-linear maps. The Boneh-Waters constrained PRF [BW13] is based
on leveled multilinear maps [GGH13,CLT13], of which they use the following
abstraction.

We assume a group generator G that takes as input a security parameter 1λ

and the number of levels κ ∈ N and outputs a sequence of groups (G1, . . . ,Gκ),
each of prime order p > 2λ, generated by gi, respectively, such that there exists
a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ κ} with

∀a, b ∈ Zp : ei,j(g
a
i , g

b
j) = (gi+j)

ab .

(For simplicity we will omit the indices of e.) Security of the PRF is based on
the following assumption.

The κ-multilinear decisional Diffie-Hellman assumption states that given the
output of G(1λ, κ) and (g1, g

c1
1 , . . . , g

cκ+1

1 ) for random (c1, . . . , cκ+1) ∗← Zκ+1
p , it

is hard to distinguish (gκ)
∏
j∈[κ+1] cj from a random element in Gκ with better

than negligible advantage in λ.

The Boneh-Waters bit-fixing PRF. Boneh and Waters [BW13] define a
PRF with domain X = {0, 1}N and range Y = Gκ, where κ = N + 1. The sets
S ⊆ X for which constrained keys can be derived are subsets of X where certain
bits are fixed; a set S is described by a vector v ∈ {0, 1, ?}N (where ‘?’ acts as a
wildcard) as Sv := {x ∈ {0, 1}N | ∀i ∈ [N ] : (vi = ?) ∨ (xi = vi)}.
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The PRF is set up for domain X = {0, 1}N by running G(1λ, N + 1) to
generate a sequence of groups (G1, . . . ,GN+1). We let g denote the generator
of G1. Secret keys are random elements from K := Z2N+1

p :

k = (α, d1,0, d1,1, . . . , dN,0, dN,1) . (14)

and the PRF is defined as

F : K ×X → Y , (k, x) 7→ (gN+1)α
∏
i∈[N] di,xi .

F.constrain(k, v): On input a key k as in (14) and v ∈ {0, 1, ?}N describing the
constrained set, output the key kv :=

(
v,K, {Di,b}i∈[N ]\V, b∈{0,1}

)
, where

V := {i ∈ [N ] | vi 6= ?} is the set of fixed indices,

K := (g|V |+1)α
∏
i∈V di,vi and Di,b := gdi,b , for i ∈ [N ]\V, b ∈ {0, 1} .

F.eval(kv, x): On input kv = (v,K, {Di,b}i∈[N ]\V, b∈{0,1}) and x ∈ X :
– if for some i ∈ V : xi 6= vi, return ⊥ (as x is not in Sv);
– if |V | = N , output K (as Sv = {v} and K = F(k, v));

– else, compute T := (gN−|V |)
∏
i∈[N]\V di,xi via repeated application of the

bilinear maps to the elements Di,xi = gdi,xi for i ∈ [N ]\V and output

e(T,K) = (gN+1)α
∏
i∈[N] di,xi = F(k, x).

In [BW13] it is shown how to use an adversary breaking the constrained PRF
for N -bit inputs with advantage ε(λ) to break the (N + 1)-multilinear decisional
Diffie-Hellman assumption with advantage 1

2N
· ε(λ). (The exponential factor

comes from security leveraging.) In the next section we show that this is optimal
in the sense that every simple reduction from a decisional problem must lose a
factor that is exponential in the input length N .

We actually prove a stronger statement. First, this security loss is necessary
even when the CPRF is only used as a prefix-fixing PRF, that is, constrained keys
are only issued for sets S(z,?...?) with z ∈ {0, 1}≤N . Second, the loss is necessary
even when one only wants to prove unpredictability of the CPRF, where the
adversary must compute F(k, x∗) instead of distinguishing it from random.

Definition 6 (Unpredictability). Consider the following experiment for a
constrained PRF (F,F.constrain,F.eval).

– The challenger chooses k ∗← K;
– A can query F.constrain for sets Si;
– A wins if it outputs (x,F(k, x)) with x ∈ X and x /∈ Si for all queried Si.

The CPRF is (ε, t, q)-unpredictable if no A running in time at most t making
at most q queries can win the above game with probability greater than ε.

Since unpredictability follows from pseudorandomness without any security
loss (we assume that the domain X is of superpolynomial size), our impossibil-
ity result holds a forteriori for pseudorandomness. In particular, this precludes
security proofs for the Boneh-Waters CPRF using the technique from Sect. 4.
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5.2 Adaptive Security of the Boneh-Waters CPRF

Hierarchical identity-based encryption (HIBE) [HL02] is a generalization of iden-
tity-based encryption where the identities are arranged in a hierarchy and from
a key for an identity id one can derive keys for any identities that are below id.
In the security game for HIBE the adversary receives the parameters and can
query keys for any identity. He then outputs (id,m0,m1) and, provided that id
is not below any identity for which he queried a key, receives the encryption for
id of one of the two messages, and wins if he guesses which one it was.

Lewko and Waters [LW14], following earlier work [Cor02,HJK12], show that it
is hard to prove full security of HIBE schemes if one can check whether secret keys
and ciphertexts are correctly formed w.r.t. the public parameters. In particular,
they show that a simple black-box reduction (that is, one that runs the attacker
once without rewinding; see below) from a decisional assumption must lose a
factor that is exponential in the depth of the hierarchy. We adapt their proof
technique and show that a proof of full security of the Boneh-Waters PRF with
constrained keys for prefix-fixing must lose a factor that is exponential in the
length of the PRF inputs.

The proof idea in [LW14] is the following: Assume that there exists a re-
duction which breaks a challenge with some probability δ after interacting with
an adversary that breaks the security of the HIBE with some probability ε.
We define a concrete adversary A, which, after receiving the public parameters,
guesses a random identity id at the lowest level of the hierarchy and then queries
keys for all identities except id, checking whether they are consistent with the
parameters. Finally it outputs a challenge query for id.

Given a challenge, we run the reduction and simulate this adversary until
we have keys for all identities except id. We then rewind the reduction to the
point right after it sent the parameters to A and simulate A again (choosing a
fresh random identity id′; thus id′ 6= id with high probability). A now asks for
a challenge for id′ and can break it by using the key for id′ it received in the
first run. It is crucial that keys can be verified w.r.t. the parameters, as this
guarantees that the reduction cannot detect that a key from the first run was
used to win in the second run (the parameters being the same in both runs).

The reduction can thus be used to break the challenge without any adversary,
as we can simulate the adversary ourselves. (The actual proof, as well as that of
Theorem 2, is more complex, as we need to rewind more than once.) We formally
define decisional problems and simple reductions, following [LW14].

Definition 7. A non-interactive decisional problem Π = (C,D) is described
by a set of challenges C and a distribution D on C. Each c ∈ C is associated
with a bit b(c), the solution for challenge c. An algorithm A (ε, t)-solves Π if A
runs in time at most t and Pr

c
D←−C

[
b(c)← A(c)

]
≥ 1

2 + ε .

Definition 8. An algorithm R is a simple (t, ε, q, δ, t′)-reduction from a deci-
sional problem Π to breaking unpredictability of a CPRF if, when given black-box
access to any adversary A that (t, ε, q)-breaks unpredictability, R (δ, t′)-solves Π
after simulating the unpredictability game once for A.
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We show that every simple reduction from a decisional problem to unpre-
dictability of the Boneh-Waters CPRF must lose at least a factor exponential
in N . Instead of checking validity of keys computed by the reduction w.r.t. the
public parameters, as in [LW14], we show that after two concrete key queries,
the secret key k used by the reduction is basically fixed; the two received con-
strained keys are thus a “fingerprint” of the secret key. Moreover, we show that,
by using the multilinear map, correctness of any key can be verified w.r.t. to
this fingerprint; which gives us the required checkability property. We define
an adversary A that we can simulate by rewinding the reduction: After mak-
ing the fingerprint queries, A chooses a random value x∗ ∈ X and queries keys
which allow it to evaluate all other domain points, checking every key is consis-
tent with the fingerprint. (Note that keys for (1 − x∗1, ?, . . .), (x∗1, 1 − x∗2, ?, . . .),
. . . ,(x∗1, . . . , x

∗
N−1, 1− x∗N ) allow evaluation of the PRF on X \{x∗}.)

By rewinding the reduction to the point after receiving the fingerprint and
choosing a different x′, we can break security by using one of the keys obtained in
the first run to evaluate the function at x′. In [FKPR14] we prove the following.

Theorem 2. Let Π(λ) be a decisional problem for which no algorithm running
in time t = poly(λ) has an advantage non-negligible in λ. Let R be a simple
(t, ε, q, δ, t′) reduction from Π to unpredictability of the Boneh-Waters prefix-
constrained PRF with domain {0, 1}N , with t, t′ = poly(λ), and q ≥ N −1. Then
δ vanishes exponentially as a function of N (up to terms that are negligible in λ).

The reason why our impossibility result does not apply to the GGM con-
struction is that its constrained keys are not “checkable”. This is why in the
intermediate hybrids we can embed random nodes on the path to x∗, which lead
to constrained keys that are not correctly computed.
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