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Abstract. As one-more problems are widely used in both proving and analyzing
the security of various cryptographic schemes, it is of fundamental importance
to investigate the hardness of the one-more problems themselves. Bresson et al.
(CT-RSA ’08) first showed that it is difficult to rely the hardness of some one-
more problems on the hardness of their “regular” ones. Pass (STOC ’11) then
gave a stronger black-box separation showing that the hardness of some one-
more problems cannot be based on standard assumptions using black-box reduc-
tions. However, since previous works only deal with one-more problems whose
solution can be efficiently checked, the relation between the hardness of the one-
more (static) CDH problem over non-bilinear groups and other hard problems
is still unclear. In this work, we give the first impossibility results showing that
black-box reductions cannot be used to base the hardness of the one-more (static)
CDH problem (over groups where the DDH problem is still hard) on any standard
hardness assumption. Furthermore, we also extend the impossibility results to a
class of generalized “one-more” problems, which not only subsume/strengthen
many existing separations for traditional one-more problems, but also give new
separations for many other interesting “one-more” problems.

1 Introduction

The first one-more problem, n-RSA, was introduced by Bellare et al. [4] for proving
the security of the Chaum’s RSA-based blind signature scheme [17]. Formally, the n-
RSA problem asks an algorithm to invert the RSA-function at n + 1 random points
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with at most n calls to an RSA-inversion oracle. In particular, it is the regular RSA
problem when n = 0. Similar to the n-RSA problem, Bellare et al. [4] also suggested
that a class of one-more inversion problems can be formulated for any family of one-
way functions, which basically asks an algorithm to invert a one-way function at some
random points with a bounded number of queries (i.e., less than the number of given
points) to an inversion oracle. The hardness assumption on this class of problems aims
to capture the intuition that an algorithm cannot gain advantage from the inversion
oracle other than making “trivial” use of it. Instantiated with the discrete logarithm
(DL) function, the one-more DL problem, n-DL, was given in [5]. Later, Boldyreva [8]
constructed a secure blind signature scheme based on the hardness of the one-more
static CDH problem (or chosen-target CDH problem [8]). Roughly, the one-more static
CDH problem (n-sDH for short) defined in [8] is to solve n + 1 static Diffie-Hellman
(sDH) instances [12] with at most n queries to an sDH solution oracle.4

The one-more inversion problems not only make it possible to find security proofs
for many classical cryptographic constructions [7,6,2,3,13,19], but are also used to il-
lustrate the impossibilities of proving the security of some other cryptographic schemes
such as [36,27,42,25], even though the original intention of introducing them is to
“prove security”. Due to plenty of fruitful results, many cryptographic researchers also
put effort into studying the hardness of one-more inversion problems, “to see how they
relate to other problems and to what extent we can believe in them as assumptions” [5].
In CRYPTO ’08, Garg et al. [27] raised it as a major open question “to understand
relationship between the DL problem and the n-DL problem”. Earlier in the same year,
Bresson et al. [10] and Brown [11] presented the first evidence that one-more inversion
problems seem to be weaker than their “regular” ones. Specifically, they showed that
the hardness of some (n + 1)-P problem (e.g., (n + 1)-RSA) cannot be based on the
hardness of “its own” n-P problem (e.g., n-RSA) using some “restricted” black-box
reductions. Later, Pass [37] showed that black-box reductions cannot be used to base
the hardness of a special kind of one-more inversion problems (what was called one-
more problems based on homomorphic certified permutations [37]) on any standard
assumption. However, all the above impossibility results explicitly require the underly-
ing problem P to be efficiently verifiable, and thus cannot apply to the n-sDH problem
over groups where the DDH problem is hard.5

1.1 Our Results

In this paper, we present the first impossibility results showing that black-box reduc-
tions cannot be used to base the hardness of the n-sDH problem (over groups where
the DDH problem is hard) on any standard hardness assumption C. In particular, the
assumption C itself can be n′-sDH problem for smaller n′. Technically, we construct
a meta-reduction (i.e., “reduction against the reduction” [9,24,28,21]) which directly

4 The notation “n-CDH” is used in [10] instead of “n-sDH”. We use “n-sDH” because the
n-CDH problem can be defined directly based on the CDH problem (instead of the sDH prob-
lem), and our separation results apply to such n-CDH problems as well.

5 We note that the computational complexity between the n-sDH problem and the DL problem
over specific groups has also been studied in the literature [31,34,29].
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breaks the assumption C by interacting with any black-box reduction from C to the
n-sDH problem. Due to the nice feature of meta-reductions [28,37], our results also
apply to black-box reductions that may make non-black-box use of the assumption C.
Then, we extend our proof techniques to obtain separation results for a class of more
generalized “one-more” problems, which not only subsume/strengthen many existing
separations for the traditional one-more problems (e.g., n-RSA, n-DL, and the unforge-
ability of blind signatures), but also give new separations for many other interesting
“one-more” problems.

Throughout the paper, the security of a cryptographic problem P is defined via a
game between a challenger C(P) and an adversaryA. In particular, the challenger C(P)
provides the adversary A with a stateful (and possibly unbounded) oracle Orcl. The
actual behavior of the oracle Orcl is determined by the description of P. We say that a
problem P is non-interactive if its oracle Orcl = ⊥. Sometimes, we will slightly abuse
the notation, and use C to denote both the problem and its associated challenger. A hard
cryptographic problem C is said to be t-round, if the number of the messages exchanged
between the Orcl and the adversary A is at most t (which might be a priori bounded
polynomial in the security parameter).

Impossibility for One-More Static CDH Problems. By a nice observation that Cash
et al.’s trapdoor test (for the twin Diffie-Hellman problems [16]) allows some form
of verification for the CDH problem, we give the first black-box separations for the
n-sDH problem over general groups by carefully injecting the trapdoor test technique
into our meta-reduction. The difficultly of this approach lies in the fact that the trapdoor
test does not really allow us to publicly and efficiently check the validity of any single
CDH tuple (since it can only check whether or not two carefully prepared tuples are
both CDH tuples by using some private coins. Especially, if one of the two tuples is
not a CDH tuple, it cannot determine which one is not). We overcome this difficulty by
designing an unbounded adversary A with “delay verifications” and a meta-reduction
M with “dynamic decisions” on whether or not to use, and how to use the trapdoor test
in simulating A to the reductionR. Formally, we have the following theorem.

Theorem 1. There is no black-box reduction R for basing the hardness of the n-sDH
problem on any t(k)-round hard problem C (or else C could be solved efficiently), where
k is the security parameter and n = 2 · ω(k + t+ 1).

Since we consider very general black-box reductions, the requirement on n = 2 ·
ω(k+t+1) seems a bit loose. However, if one would like to consider a class of restricted
black-box reductions—single-instance reductions [26,25], a tighter separation result for
n ≥ 2(t+ 1) can be achieved.

Black-Box Separations for Generalized “One-More” Problems. A natural extension
of the traditional one-more problem is defined by “relaxing” the requirement on the
oracle. Formally, we consider a class of generalized “one-more” problems, where each
problem is associated with two non-interactive subproblems P1 and P2. Here, we do
not require P1 = P2. For any integer n ≥ 0, we denote n-(P1,P2) as the problem
which asks an algorithm to solve n + 1 random P1 instances with at most n calls to a
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P2 oracle (e.g., P1 = CDH, P2 = DL). Obviously, the traditional one-more problem
is a special case of our generalization with P1 = P2. In particular, we briefly denote it
as n-P1 if P1 = P2, which coincides with traditional notations (e.g., n-DL). Now, we
consider a class of n-(P1,P2) problems that there exists an efficient reduction T from
P1 to P2 (e.g., from CDH to DL) with the following two properties:

– T solves one P1 instance by using at most γ (non-adaptive) queries to a P2 oracle,
where γ is a constant;

– T always correctly solves its input P1 instance after obtaining γ correct responses
from the P2 oracle, and outputs “⊥” if one of the γ responses is incorrect with
overwhelming probability (we remark that this condition implicity require that T
can somehow verify the correctness of all the γ responses as a whole, but it is not
required to determine which one of the responses is incorrect, e.g., we have γ = 2
for the n-sDH problem).

Then, similar separation results also hold for such class of n-(P1,P2) problems if, in
addition, P1 has unique solution [23,37] and P2 is randomly self-reducible [1]. Note
that here we still do not explicitly require P2 to be efficiently verifiable as for the sDH
problem. Formally, we have the following theorem.

Theorem 2. If there exists an efficient reduction T from P1 to P2 with the above two
properties, P1 has unique solution and P2 is randomly self-reducible, then there is no
black-box reduction R for basing the hardness of the n-(P1,P2) problem on any t(k)-
round hard problem C (or else C could be solved efficiently), where k is the security
parameter and n = γ · ω(k + t+ 1).

Like the discussion after Theorem 1, if only single-instance reductions are consid-
ered, we can get a tighter separation result for n ≥ γ ·(t+1). Note that for the traditional
n-DL, n-RSA and n-sDH over gap Diffie-Hellman groups [35] where P1 = P2, there
is a natural reduction T with γ = 1. The above theorem indeed subsumes/strengthens
existing separations for those problems in the literature [10,37]. Since our generalized
“one-more” problem also captures the “one-more unforgeability” of blind signatures
and many other interesting “one-more” problems (e.g., n-(CDH, DL)), our results actu-
ally give a broad separation for some of those problems. For instance, one can directly
define the one-more CDH problem, n-CDH, based on the CDH problem instead of the
sDH problem, and our impossibility results apply to the n-CDH problem.

1.2 The Idea Behind Our Impossibility Results

To better illustrate our techniques, we start from a simple vanilla reductionR (depicted
in Fig.1) from the traditional one-more problem n1-sDH to n2-sDH (i.e., P1 = P2 =
sDH) for integers n2 > n1 ≥ 0, which only runs a single instance of the n2-sDH
adversary A without rewinding [10,26]. Concretely, upon receiving the challenge n1-
sDH instance y from C, the reduction R invokes a single instance of A by simulating
an n2-sDH challenger C′, and tries to find the solution x of y by interacting with A.

Intuitively, if the adversaryA can somehow see the n1-sDH instance input y ofR, it
can directly solve them by using its own n2 sDH queries toR. This intuition is actually
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Fig. 1. A single-instance reductionR from n1-sDH to n2-sDH, where n2 > n1 ≥ 0.

the basic idea of [10], which constructed a meta-reductionM that runsR with its own
n1-sDH instance, and simulates an n2-sDH adversary A toR. However, this approach
has two technical barriers. First, the sDH queries that A is allowed to make might not
be in the same group or have the same public parameters as the input y of R. Second,
R can cheatM by returning random group elements if DDH is hard in the considered
group. To get around these two barriers, the authors [10] put on additional restrictions
on R (e.g., algebraic or parameter-invariant [10]), and considered the n-sDH problem
over gap Diffie-Hellman groups [35] where the DDH problem is easy.

n2 -sDH
adversaryA

Testn2 -sDH

challenger C′

ReductionRChallenger C

Challenger C

Meta reductionM

MR

n2 -sDH

instance y′

≤n2

n2 -sDH

solution x′

Instance y

≤n1

Solution x

Instance y

≤n1

Solution x

Fig. 2. Our meta-reduction M against R from n1-round hard problem C to n2-sDH problem,
where n2 > n1 ≥ 0.

We remove the restrictions on R by using rewinding technique, which allows our
meta-reduction M (depicted in Fig.2) to directly solve y′ (i.e., to make n2 + 1 sDH
queries toR for all the instances in y′), and outputs whateverR returns as the solution
to its own challenge instance y. In this case, M actually does not care about what y
is. Without loss of generality, we simply denote y as an instance of any n1-round hard
problem C. The requirement n2 ≥ n1 + 1 is still needed to ensure that there is at least
one query that R answers without having interactions with its own challenger C. In
other words, we have to guarantee that there is at least one chance thatM can safely
rewindR without affecting the external interactions betweenR and C.

To deal with the n-sDH problem over general groups where DDH is hard, we use
a good observation on the remarkable trapdoor test algorithm (denoted by Test here-
after) introduced by Cash et al. [16] for twin Diffie-Hellman problems. Informally,
given an element y ∈ G, the algorithm outputs another uniformly distributed element
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z ∈ G together with some private coins r. Then, for any elements h, f1, f2 ∈ G, the
Test algorithm can use r to determine whether or not both (y, h, f1) and (z, h, f2) are
CDH tuples with overwhelming probability. Briefly, the Test algorithm cannot publicly
check the validity of any single CDH tuple, but it can determine whether or not two
carefully prepared tuples are both CDH tuples (by using the private coins r). Espe-
cially, if one of them is not a CDH tuple, the algorithm cannot determine which one is
not. This “inability” of the Test algorithm poses an obstacle when we try to use it in our
meta-reductionM to prevent the reductionR from cheating, sinceRmight also notice
this. To overcome this obstacle (i.e., to hide the use of the Test algorithm from R), we
first present an unbound adversary A (against the n2-sDH problem) with “delay verifi-
cations” such that it delays the verification of the odd-numbered response to the point
immediately after obtaining the next even-numbered response, and checks the validity
of the responses “two by two”. Then, we construct a meta-reductionM that carefully
tracks all the “private coins”used by the Test algorithm, and (statistically) hides the two
sDH queries needed by the Test algorithm into its own sDH queries to the reductionR.
This requires the meta-reductionM to make “dynamic decisions” on whether or not to
use, and how to use the Test algorithm in preparing each sDH query toR.

To finally establish the separation results for general black-box reductions (i.e.,
without any additional restrictions on R), we have to deal with two technical issues.
First, R might rewind the (unbounded) adversary A to obtain extra advantage. This is
circumvented by designing a “magical” adversary A such that it performs “determin-
istically” [37,25]. Second, R might invoke many instances of A, a naive rewinding of
R will result in an exponential running-time due to “nested rewindings” [22,20]. We
deal with this problem by making use of recursive rewinding techniques [41,37], which
allow our meta-reduction M to cleverly find a “safe rewinding chance” and cancel a
rewinding when it has to do too much work [38,20,15].

In all, we finally separate the n-sDH problem from any other (priori bounded)
polynomial round hard problems. The impossibility results for generalized “one-more”
problems can be analogously obtained if there is a reduction T for the underlying prob-
lem which can play a similar role as the Test algorithm for the n-sDH problem.

1.3 Related Work, Comparison and Discussion

Relation to Bresson et al. [10]. In CT-RSA ’08, Bresson et al. [10] studied the re-
lations between the traditional one-more inversion problems and their “regular” ones,
and showed that the hardness of the traditional n-P problem cannot be based on the
(n− 1)-P problem using some “restricted” (e.g., algebraic or parameter-invariant [10])
black-box reductions. Concretely, they showed that a class of restricted black-box re-
ductions cannot be used to base the hardness of n-DL, n-RSA, and n-sDH over gap
Diffie-Hellman groups [35], on their corresponding one-more problems with less oracle
queries, e.g., (n− 1)-DL, (n− 1)-RSA, (n− 1)-sDH over gap Diffie-Hellman groups.
As discussed in Section 1.2, the restrictions on R in their results seem unavoidable
since their meta-reductions heavily rely on the “direct” connections between the chal-
lenge n1-P instance input of the reductionR and the n2-P instance output byR, where
n2 ≥ n1 + 1. This is also the reason why separations of the one-more problems from
other hard problems cannot be derived. For comparison, our meta-reduction makes use
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of the “rewinding” technique and the “inner” connections between the instances in the
n-P problem and its associated oracle queries, which allows us to separate the n-P
problem from any other (priori bounded) polynomial round hard problems. In partic-
ular, we rule out the existence of general black-box reductions (i.e., without imposing
any other restrictions onR) for sufficiently large n.

Relation to Pass [37]. In STOC ’11, Pass [37] presented a broad separation result
showing that the security of constant-round, public-coin, (generalized) computational
special-sound arguments for unique witness relations cannot be based on any standard
assumption. Pass’s results apply to many well-known cryptographic problems such as
the traditional one-more inversion problems and the security of the two-move unique
blind signatures (i.e., each message has a unique signature for a fixed verification key).
In particular, Pass showed that the hardness of n-DL and n-RSA cannot be based on any
t-round standard assumption using black-box reductions if n = ω(k + 2t + 1), where
k is the security parameter.6 The use of recursive rewinding in this work is inspired by
Pass [37], which makes our meta-reduction have an analogous structure to that in [37]
and a similar requirement on n = γ · ω(k + t+ 1).

Since Pass’s proof [37] crucially relies on the fact that the underlying problem is
publicly and efficiently verifiable, their results cannot apply to the n-sDH problem over
general groups. Especially, since the Test algorithm [16] does not really allow us to pub-
licly and efficiently check the validity of any single CDH tuple (as discussed in Section
1.2), one cannot trivially use Pass’s separation results and the Test algorithm to obtain
our impossibility results in a “black-box fashion”. Actually, our results are achieved by
carefully combining many known techniques in the literature (e.g., [38,20,15,37,25])
and new techniques such as “delay verifications” and “dynamic decisions” in our meta-
reduction. We also extend our proof techniques to a class of generalized “one-more”
problems, which allows us to obtain separation results for many interesting “one-more”
problems such as the security of a class of two-move blind signatures.

Other Related Work. Fischlin and Schröder [26] showed that a class of “restricted”
black-box reductions cannot be used to prove the security of three-move blind signa-
tures based on any hard non-interactive problem. Katz et al. [33] showed that there is
no black-box construction of blind signatures from one-way permutations. Both results
overlap with ours in the context of two-move blind signatures, and we strengthen the
separation result (in this context) by proving that the security of a class of two-move
blind signatures (including non-black-box constructions) cannot be based on any poly-
nomial round hard problem using black-box reductions.

2 Preliminaries

Let |x| denote the length of a string x, and |S| denote the size of a set S. Denote x‖y as
the bit concatenation of two strings x, y ∈ {0, 1}∗. We use the notation← to indicate the
output of some algorithm, and the notation←r to denote randomly choosing elements

6 The factor “2” before t is because a knowledge extractor, whose behavior might dependent on
the distribution of its its input transcripts, is used [37]. Please refer to [37] for details.
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from some distribution (or the uniform distribution over some finite set). For example, if
A is a probabilistic algorithm, z ← A(x, y, . . . ; r) means that the output of algorithmA
with inputs x, y, . . . , and randomness r is z. When r is unspecified, we mean runningA
with uniformly random coins. We say thatA is a PPT algorithm if it runs in probabilistic
polynomial-time.

The natural security parameter throughout the paper is k, and all other quantities
are implicit functions of k. We use standard notation O and ω to classify the growth
of functions. We say that a function f(k) is negligible if for any constant c > 0, there
exists an N such that f(k) < 1/kc for all k > N .

2.1 Cryptographic Problems

In this subsection, we recall several definitions of cryptographic problems.

Definition 1 (Cryptographic Problem). A cryptographic problem P = (PGen, IGen,
Orcl,Vrfy) consists of four algorithms:

– The parameter generator PGen takes as input the security parameter 1k, outputs
a public parameter param, which specifies the instance space Y and the solution
space X , in brief, param← PGen(1k).

– The instance generator IGen takes as input the public parameter param, outputs
an instance y ∈ Y , i.e., y ← IGen(param).

– The stateful oracle algorithm Orcl(param, ·) takes as input a query q ∈ {0, 1}∗,
returns a response r for q or a special symbol ⊥ if q is an invalid query.

– The deterministic verification algorithm Vrfy takes as inputs the public parameter,
an instance y ∈ Y and a candidate solution x ∈ X , returns 1 if and only if x is a
correct solution of y, else returns 0.

Throughout this paper, we implicitly assume it is easy to check whether an element
y (resp., x) is in Y (resp., X ). We say that a cryptographic problem P = (PGen, IGen,
Orcl,Vrfy) is efficiently verifiable if Vrfy is running in polynomial-time. When Orcl =
⊥, we say that P is a non-interactive problem, and denote P = (PGen, IGen,Vrfy)
in brief. Usually, the two algorithms PGen and IGen are also required to be PPT algo-
rithms, but we do not explicitly need the requirements in this paper.

Definition 2 (Hard Cryptographic Problem). Let k be the security parameter. A cryp-
tographic problem P = (PGen, IGen,Orcl,Vrfy) is said to be hard with respect to a
threshold function µ(k), if for all PPT algorithm A, the advantage of A in the security
game with the challenger C (who provides inputs toA and answersA’s oracle queries)
is negligible in k:

AdvP,A(1
k) = Pr[param← PGen(1k), y ← IGen(param);

x← AOrcl(param,·)(y) : Vrfy(param, y, x) = 1]− µ(k).

Usually, µ(k) = 0 is used for computational problems (e.g., DL, CDH, n-DL), and
µ(k) = 1/2 is used for decisional problems (e.g., DDH, DBDH).

As in [37], we also put on restrictions on the number of interactions betweenA and
the oracle in the game, and a hard cryptographic problem is said to be t-round if the
number of the messages exchanged (via oracle queries) between C and A is at most t.
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2.2 Black-Box Reductions

A black-box reduction R from a cryptographic problem P1 to another cryptographic
problem P2 is a PPT oracle algorithm such that RA solves P1 whenever A solves P2

with non-negligible probability. In addition to normally communicating withA,R also
has many powers such as restarting or “rewinding” A. Black-box reductions often take
advantage of these features. For example,R could make use of “rewind” to get out of a
“bad condition” by first rewinding A to a previous state and then trying some different
choices [14,20].

3 Black-Box Separations of One-More Static CDH Problems

In this section, we present the first separation results for one-more static CDH problems
over general groups where the DDH problem may still be hard.

Let k be a security parameter, G be a group of prime order q ≥ 22k, and g be a gen-
erator of G. For any two group elements A = ga, B = gb, we denote CDH(A,B) =
gab = Ab = Ba. Recall that the n-sDH problem is asking an algorithm to solve
n + 1 static Diffie-Hellman (sDH) instances [12] with at most n queries to an ora-
cle that solves sDH problems. Formally, given parameters param = (k,G, q, g, h)
and n + 1 group elements y = (y1, . . . , yn+1), the algorithm is asked to output x =
(x1, . . . , xn+1) such that xi = CDH(yi, h) for all i = {1, . . . , n + 1}, with at most n
queries to an oracle sDH(·, h).

Now, we recall the trapdoor test algorithm (with compatible notations) in the fol-
lowing lemma, please refer to [16] for details.

Lemma 1 (Trapdoor Test [16]). Let G be a cyclic group of prime order q, generated
by g ∈ G. Let y ∈ G be an element of G, and r, r′ ∈ Zq are uniformly distributed over
Zq . Define z = gr

′
/yr. Then, for any elements h, f1, f2 ∈ G, we have: 1) z is uniformly

distributed over G; 2) y and z are independent, then the probability that the truth value
of

fr1 f2 = hr
′

(1)

does not agree with the truth value of

f1 = CDH(y, h) ∧ f2 = CDH(z, h) (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly holds.

Note that the probability in the above lemma is over the random choices of r
and r′, and is independent of the choices of h, f1 and f2. This fact is very impor-
tant for our separation results. For simplicity, we denote the PPT algorithm in the
above lemma as Test, and assume that it works in two phases. In the initial phase,
it takes the parameter param = (k,G, q, g, h), a group element y ∈ G, and ran-
domness r, r′ ∈ Zq as inputs, returns a group element z = gr

′
/yr ∈ G, i.e., z ←

Test(init, param, y; r, r′). In the finish phase, it takes another two elements (f1, f2)
as inputs, returns a bit e ∈ {0, 1} that indicates whether the condition fr1 f2 = hr

′
holds,

in brief, e← Test(finish, param, y, z, f1, f2; r, r
′). Besides, we say that the algorithm
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Test fails if it returns 1, but at least one of the two tuples (y, h, f1) and (z, h, f2) is not
a CDH tuple. By Lemma 1, the probability that the Test algorithm fails is at most 1/q
(which is negligible in the security parameter k), where the probability is over random
choices of r, r′ ←r Zq .

3.1 An Unbounded Adversary

In this subsection, we present an unbounded adversaryA (depicted in Fig. 3) that solves
the n-sDH problem for n ≥ 2. Informally, the adversary A only makes random queries
to its oracle, and delays the verification of the odd-numbered response to the point
immediately after obtaining the next even-numbered response from its oracle (i.e., it
verifies the responses from its oracle two by two). Besides,A always makes even num-
ber of queries to its oracle, and omits the last query if n is odd. As in [37,25], a random
function G is used by A to generate its inner random coins with its own view as input.

V := param||y
G : {0, 1}2

k
→ Z∗q , j := 1

rj = G(V ), ρj = grj , V := V ||(j, “send”, ρj)
V := V ||(j, “receive”, τj)
rj+1 = G(V ), ρj+1 = grj+1 ,
V := V ||(j + 1, “send”, ρj+1)
V := V ||(j + 1, “receive”, τj+1)

If either τj 6= hrj or τj+1 6= hrj+1, return⊥ and abort;
else j := j + 2

Find x = (x1, . . . , xn+1) such that xi = CDH(yi, h)

A

param,y

x

ρj
τj

ρj+1

τj+1

m

Fig. 3. The adversary A uses a random function G to generate all its internal randomness.

Description of A. Given the public parameter param = (k,G, q, g, h) with security
parameter k, and an n-sDH instance y = (y1, . . . , yn+1), A is asked to compute the
solution of y, with at most n queries to its sDH(·, h) oracle. Let V = param‖y, i.e.,
the view ofA. Then, the adversaryA randomly chooses a functionG from all functions
{0, 1}2k → Z∗q , and let m = bn2 c.

For j = {1, 3, . . . , 2m − 1}, A computes rj ← G(V ), and ρj = grj . Then, it
updates the view V := V ‖(j, “send”, ρj) and sends an external sDH query with ρj .
After obtaining the solution τj of ρj , A updates the view V := V ‖(j, “receive”, τj).
Then, it makes another sDH query ρj+1 in the same way as ρj by using randomness
rj+1 ← G(V ), and obtains τj+1 from its sDH oracle. If τj 6= hrj or τj+1 6= hrj+1 , A
returns ⊥ and aborts; else let j := j + 2.
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After completing 2m sDH queries without abort,A computes xi = CDH(yi, h) for
all i ∈ {1, . . . , n + 1} by brute-force search (which is not necessarily done in poly-
nomial time), and outputs x = (x1, . . . , xn+1) as the solution to its own challenge
y = (y1, . . . , yn+1).

The use of the random function G brings us two benefits. First, the distribution of
each sDH query of A is uniformly random over G, which allows our meta-reduction
M to (statistically) hide its real “intention”. Second, it is hard for the reduction R to
obtain (significant) advantage by rewindingA, sinceA always generates the same sDH
query at the same view, and a random sDH query at a freshly different view.

Besides, the way that the adversary A verifies the responses from its oracle two
by two is very crucial for our separation results, which allows our meta-reductionM
to “delay” the verification of the odd-numbered sDH response from the reduction R
(actually, it cannot efficiently do the verification if DDH is hard), and to embed two
sDH queries needed by the Test algorithm into two consecutive sDH queries toR.

3.2 The Meta-Reduction for One-More Static CDH Problems

Let R be a black-box reduction from some hard problem C to the n-sDH problem,
namely, RA can solve the hard problem C with non-negligible probability. Basically,
the reduction R is given access to the deterministic “next-messages” function of the
adversaryA, i.e., the function, given a partial view (x,m1, . . . ,mj) ofA, computes the
next message output by A, where x is the input (which includes the randomness thatR
chooses forA), and (m1, . . . ,mj) are the transcripts of the interactions betweenR and
A(x). As in [37], we use the following (standard) assumptions aboutR to simplify our
presentation:

– R never feeds the same partial view twice to its oracle A;
– When R feeds a partial view q to its oracle A, the transcripts contained in q are

generated in previous interactions betweenR and A.

Both of the two assumptions are without loss of generality, since the oracle A is a
“deterministic function” and we can easily modify R to satisfy the two conditions.
Besides, in order to better illustrate how our meta-reduction works, and how the Test
algorithm is injected, we denote instance Ai as a copy of A on a specified input x (i.e.,
A(x)). In particular, a unique positive integer i is used for each different input x (recall
that x includes the randomness thatR chooses for A).

In the concurrent zero-knowledge protocols [41,40,38], the term “slot” usually de-
notes the point where a rewinding is possible. We adapt this notion to our case, which
is slightly different from that in [37]. Intuitively, a slot in our context always opens with
an odd-numbered query and ends with the response of the immediately followed even-
numbered query. Formally, let VR be the view of R, which includes all the messages
sent and received byR in the interactions with both the adversaryA and the challenger
C. A partial view of VR is a prefix of VR. For some integer j ≥ 1, we say that a slot si
ofAi opens at a partial view V sio ifAi sends the (2j−1)-th query q1 toR immediately
after V sio (note that q1 must be a “fresh” query ofAi by our simplification assumption),
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and we say that a slot si of Ai closes at a partial view V sic if Ai receives a response r2
to the 2j-th query q2 fromR at the end of V sic . In particular, we denote the partial view
V sio as the opening of si, and the partial view V sic as the closing of si. Since a slot may
open without being closed (i.e.,R may never respond to some query qi sent byAi), we
uniquely identify a slot si by its opening. We also denote a particular closed slot si as
a pair of its opening and closing for convenience, i.e., si = (V sio , V sic ).

Definition 3 (Good Slot). Let M = M(k) be the maximum number of the messages
sent and received by the reductionR on input the security parameter k. For any positive
integer d, we say that a closed slot si = (V sio , V sic ) (of Ai) is d-good if the following
two conditions hold:

– Between the time that si opens and the time that si closes,R does not interact with
the challenger C;

– Between the time that si opens and the time that si closes, the number of slots that
open is at most M

nd .

Informally, the definition of a good slot brings us three benefits. First, since the
reduction R does not interact with the challenger C during the slot, rewinding the re-
duction R to the opening of a good slot will not affect the interactions between R and
C. Second, each slot always contains two consecutive (fresh) queries, which allows our
meta-reductionM to embed two sDH queries in a slot. Third, each slot always opens
with an odd-numbered query,M can delay the verification of the response to the first
query, and simultaneously check the validity of the two responses fromR (by using the
Test algorithm).

We make use of recursive rewinding techniques in [41,38,20,15] to rule out general
black-box reductions (i.e., without any additional restrictions on the reductions), which
was recently introduced by Pass [37] to give impossibility results for a class of witness-
hiding protocols. Basically, we provide the meta-reduction M with many rewinding
chances (i.e., slots), and let M be always “on the lookout” for good slots to rewind
R such that the rewinding will not “blow up” the running time ofM too much (e.g.,
running in an exponential time). Formally, we have the following theorem.

Theorem 3 (Black-Box Separations for One-More Static CDH Problems). For any
integers t(k) and n = 2 · ω(k + t + 1), there is no black-box reduction R for basing
the hardness of the n-sDH problem on any t-round hard problem C (or else C could be
solved efficiently), where k is the security parameter.7

Proof. We now proceed to give the description of our meta-reduction M, which re-
cursively calls a procedure SOLVE to rewind the reduction R. In the simulation of the
adversary A to R, the meta-reductionM has to maintain three technical tables L1, L2

and L3. Informally, the first table L1 is used to record all the n-sDH instances (that
M has to solve) and the corresponding solutions (that have been found by M). The

7 Basically, the constant ‘2’ can be safely absorbed by the asymptotic function ‘ω(·)’. We leave
it here mainly because it is introduced by our “delay verification” proof technique, which is
different from previous results, e.g., [37]. We also hope this can give a clear relation between
the results in Theorem 3 and its generalized results in Theorem 4.
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other two tables are used to successfully inject the Test algorithm into the simulation,
where table L2 records the randomness used by the Test algorithm (for each target sDH
instance) and table L3 records the randomness used to re-randomize each sDH query
made by the Test algorithm. For functionality, table L1 is used in a “call by reference”
method, namely, the changes of L1 at the (d+ 1)-th recursive level will be reflected at
the d-th recursive level. But this is not required for table L2 and table L3. Formally,

– Table L1 consists of four tuples (i, parami‖yi, bi,xi) and indicates that 1) R in-
vokes the i-th instance of A with parameter parami and n + 1 sDH instances
yi = (yi,1, · · · , yi,n+1) as inputs; 2)M has found the first bi solutions of yi, and
stored them in xi (i.e., |xi| = bi). Thus, L1 = ⊥ when R is invoked (byM), and
(bi = 0,xi = ⊥) when a new instance of A is invoked (byR).

– Table L2 consists of six tuples (i, ti, yi,ti , ri,ti , r
′
i,ti
, zi,ti) and indicates that the

i-th instance of A prepares an “aided” element zi,ti with randomness ri,ti and
r′i,ti , and aims to find the solution of the ti-th sDH instance yi,ti , i.e., zi,ti ←
Test(init, parami, yi,ti ; ri,ti , r

′
i,ti

).
– Table L3 consists of five tuples (i, ti, δ, ui, ρi) that indicates the actual query made

by Ai, where δ ∈ {0, 1} and ui ∈ Z∗q . If δ = 0, it means that Ai sends an odd-
numbered sDH query with ρi = yui

i,ti
. Else if δ = 1, it means that Ai sends an

even-numbered sDH query with ρi = zui
i,ti

.

Description ofM. Given a security parameter k, a description of C instance, let VR =
k‖C, M runs R with C, and executes SOLVE(1k, 0, VR,⊥,⊥,⊥) to simulate the un-
bounded adversary A. Whenever R outputs the solution of C,M outputs it and halts.
Let c = dlogkMe, for each level 0 ≤ d ≤ c, procedure SOLVE works as follows:

SOLVE(1k, d, V,L1,L2,L3):
On input a security parameter k, the current recursive level d, the partial view V of R
and three tables L1, L2 and L3, let v = V and repeat the following steps:

1. If d = 0 and R makes external interactions with C, simply relay the messages
betweenR and C, and update the view v.

2. If d > 0 and R attempts to make external interactions with C or the number
of slots opened after V in v exceeds M

kd
, cancel the current recursive level and

return. (Note that this case happens if and only if the probability that V becomes
the opening of a d-good slot is non-negligible. Thus, the algorithm can simply
cancel the current recursive rewinding at level d and return to the (d−1)-th level
whenever the slot starting from V cannot be d-good anymore.)

3. If R feeds A with a partial view which only contains the input message, denote
(param, y) as the corresponding n-sDH instance.8 Choose an unused smallest
positive integer i for this instance Ai of A, and add (i, param‖y, 0,⊥) to L1.
Finally, update the view v.

4. IfR feedsAi with a partial view which contains a response τi to a previous sDH
instance query ρi from Ai, update the view v and proceed as follows:

– If ρi is the (2j − 1)-th query of Ai for some j ≥ 1, continue;

8 Recall that the input message contains the n-sDH instance and the randomness thatR chooses
for A. Besides,R never fed the same input to A before by our simplification assumptions.
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– If ρi is the 2j-th query of Ai for some j ≥ 1, let (ρ′i, τ
′
i) and (ρi, τi) be the

last two consecutive pairs of query and response ofAi, retrieve (i, ti, 0, u′i, ρ
′
i)

and (i, ti, 1, ui, ρi) from L3, and (i, ti, yi,ti , ri,ti , r
′
i,ti
, zi,ti) from L2, such

that ρ′i = y
u′i
i,ti

and ρi = zui
i,ti

, and compute f1 = (τ ′i)
1/u′i , f2 = (τi)

1/ui .
Then, if Test(finish, parami, yi,ti , zi,ti , f1, f2; ri,ti , r

′
i,ti

) = 0, abort the
simulation ofAi. Otherwise, retrieve (i, parami‖yi, bi,xi) from L1. If ti =
bi + 1, update the tuple (i, parami‖yi, bi,xi) in L1 by letting bi = ti and
xi = xi‖f1 (or else, we must have ti ≤ bi, which means the solution of
yi,ti has been found previously). Finally, let si = (V sio , v) be the slot with
closing v, and distinguish the following cases:
• If si opened before V (i.e., si did not open at the current recursive level),

continue;
• Else if V sio = V (i.e., si opened at V ) and d > 0, end the current

recursive level and return.9

• Else if V sio 6= V (i.e., si opened after V ) and si is a (d + 1)-good slot,
repeat the procedure SOLVE(1k, d+1, V sio ,L1,L2,L3) until bi = n+1.

• Otherwise, continue;
5. If R is expecting a message from Ai, retrieve (i, bi, parami‖yi, xi) from L1

(recall that parami = (k,G, p, g, h)), and proceed as follows:
– If Ai has completed 2m = 2 · bn2 c sDH queries (i.e., Ai has to send the

solution of yi to R), send xi to R if bi = n + 1 (i.e., the solution xi of yi
has been found), else output “fail” and halt.

– Else if it is the (2j − 1)-th query for some j ≥ 1, let ti = bi + 1 if bi <
n + 1, else ti = n + 1. If there is no tuple (i, ti, yi,ti , ∗, ∗, ∗) in L2, choose
ri,ti , r

′
i,ti
←r Zq , compute zi,ti ← Test(init, parami, yi,ti ; ri,ti , r

′
i,ti

), and
add the tuple (i, ti, yi,ti , ri,ti , r

′
i,ti
, zi,ti) to L2. Then, choose ui ←r Z∗q ,

send ρi = yui
i,ti

toR, and add the tuple (i, ti, 0, ui, ρi) to L3.
– Else if it is the 2j-th query for some j ≥ 1, let ρi be the (2j − 1)-th query

of Ai, retrieve (i, ti, 0, ui, ρi) and (i, ti, yi,ti , ∗, ∗, zi,ti) from L3 and L2,

respectively, such that ρi = yui
i,ti

. Then, choose u′i ←r Z∗q , send ρ′i = z
u′i
i,ti

to
R, and add the tuple (i, ti, 1, u

′
i, ρ
′
i) to L3.

Finally, update the view v accordingly.
6. IfR returns the solution of C, output the solution and halt.

Remark 1. By our simplification assumptions, R never feeds the same partial view
twice to A. This allows M to simply prepare each sDH query (on behalf of A) by
using freshly chosen randomness, since our unbounded adversary A (in Section 3.1)
uses a random functionG to deterministically generate its “inner” randomness by using
the interaction transcripts withR as input.

To show that our meta-reduction M can efficiently solve problem C (with non-
negligible probability), we only have to show that 1) M perfectly simulates the un-

9 This means that the rewinding at the partial view V (at level d) is successful, and the algorithm
returns to the (d− 1)-th level to check whether it has found all the solutions of yi for instance
Ai (i.e., to check whether bi = n+ 1).



Black-Box Separations for One-More (Static) Problems and Its Generalization 15

bounded adversary A except with negligible probability; 2)M runs in expected poly-
nomial time. We prove the two claims in the following two lemmas.

Lemma 2. M perfectly simulates the unbounded adversary A except with negligible
probability.

Proof. Since M always randomizes its sDH queries to R (on behalf of A) by using
uniformly chosen randomness from Z∗q (i.e., ui or u′i in step 5), the distribution of these
queries is essentially the same to that of A (which always makes random sDH queries
to R). We finish the proof of this lemma by proving the following two cases: 1) If R
cheats in the interactions (i.e., by returning a false answer to an sDH query), M will
reject it in the same way asA except with negligible probability; 2) IfR does not cheat,
M can find the correct solution xi of the n-sDH input yi of instance Ai from table L1

(i.e., it will not output “fail” in step 5).
For the first case, since both the meta-reduction M and the unbounded adversary

A do not immediately check the validity of any odd-numbered response, the simulation
of A after receiving an odd-numbered response from R (i.e., the first case in step 4) is
essentially the same as that of the real adversary A. After receiving an even-numbered
query, the unbounded adversary A will check the validity of the previous two consecu-
tive responses, and will always return ⊥ and abort if one of the previous two responses
is invalid. As for the meta-reduction M, it always embeds the first query of the Test
algorithm in an odd-numbered query, and the second query of the Test algorithm in
the immediately followed even-numbered query, and then checks the two consecutive
responses by using the Test algorithm. Obviously, if the Test algorithm does not fail,
M can perfectly detect whether R cheats or not, which is essentially the same as A.
Now, we show that the probability that the Test algorithm fails at least one time is neg-
ligible. Recall that the total number of the messages sent and received byR is bounded
by M(k), for any partial view v of R, there are at most M(k) messages in v. Thus,
M has to run the Test algorithm at most (n + 1)M(k) times (since R can invoke at
most M(k) instances of A, and for each instance Ai,M has to run the Test algorithm
at most (n+ 1) times). SinceM always independently and randomly chooses the ran-
domness for each time running of the Test algorithm (in step 5), the probability that the
Test algorithm will fail at least one time is at most (n+1)M(k)

q by Lemma 1, which is
negligible in k.

For the second case, let v be the partial view of R, at which R expects the simu-
lated instance Ai to provide the solution of its input n-sDH yi. Since the unbounded
adversary A always sequentially makes 2m = 2 · bn2 c sDH queries, there must exist
at least m slots of Ai in the partial view v. Recall that the total number of recursive
levels is bounded by c = dlogkMe (which is a constant ifR runs in polynomial time),
there must exist some recursive level d such that there are at least m

c+1 slots of Ai in
the partial view v (by the pigeon hole principle). Since n = 2 · ω(k + t + 1), we have
m
c+1 ≥ k + t + 1 for sufficiently large k. Hereafter, we always assume that there is at
least k + t + 1 slots of Ai at level d. By the definition of SOLVE, the total number of
slots opened at level d is at most M

kd
(this obviously holds at level d = 0). Thus, there

are at least t+1 slots ofAi that contain at most M
kd+1 slots (or else there are at least k+1

slots of Ai that contain more than M
kd+1 slots, which makes the total number of slots
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opened at level d exceeds M
kd

, and the recursive rewinding at level d will be canceled).
Since C is t-round, there is at least one slot of Ai (in those t+ 1 slots) during whichR
has no interactions with the challenger C. Obviously, such a slot is (d + 1)-good, thus
will be rewound. In all, we have proven that for each complete instance Ai, there must
exist at least one good slot that would be rewound. SinceM will end the recursive calls
to SOLVE at the opening of a (d+1)-good slot in step 4 until bi = n+1,M can always
find the solution xi of the input n-sDH instance yi of Ai from table L1 before it has
to send the solution of yi to R (i.e.,M will not output “fail” in step 5). Since R does
not cheat in this case, xi must be the correct (unique) solution of yi. This completes the
proof of Lemma 2.

Lemma 3. M runs in expected polynomial time.

Proof. We estimate the maximum running time of M that never outputs “fail” and
halts in the simulation. Since the total number of the messages sent and received by
R is bounded by M(k), there are at most M(k) good slots that might be rewound at
each recursive level. Let v be a partial view (at level d) immediately after which a slot s
opens. Then, let δ be the probability that s becomes (d+1)-good, where the probability
is over all the randomness used in the interactions between M and R after v. Now,
assume that we arrived at a partial view v′ such that s = (v, v′) is (d+ 1)-good, then if
M rewinds R to v (i.e., rewinding R to the opening of s at recursive level d + 1), the
probability that the slot becomes (d+ 1)-good is essentially close to δ. This is because
the behavior of the simulated adversary (by M) after rewinding R to v (i.e., at level
d+ 1) is almost identically distributed to that starting from v at level d. Since δ is non-
negligible (or else it is unlikely to arrive at the partial view v′),M can expect to obtain
a (d + 1)-good slot with probability negligibly close to 1 by rewinding R polynomial
times at v. Let p(k) be such a polynomial. Then, M can expect to find the solution
of some yi,j for Ai with probability negligibly close to 1 by rewinding R at most p(k)
times. Thus, for each of those good slots, the expected number of rewindings is bounded
by (n + 1)p(k) (recall thatM has to find the solutions of (n + 1) sDH instances for
eachAi), and the total number of rewindings at each recursive level is expected at most
(n + 1)p(k)M(k). By an induction computation, we have the expected number of the
messages sent and received by M is bounded by ((n + 1)p(k)M(k))c+1, which is a
polynomial in k if M(k) is a polynomial in k. This completes the proof of Lemma 3.

4 More Black-Box Separations for One-More Problems

Let P1 = (PGen, IGen1,Vrfy1) and P2 = (PGen, IGen2,Vrfy2) be two non-interactive
cryptographic problems with the same parameter generator PGen. Now, we give the
definition of the generalized “one-more” problems.

Definition 4 (Generalized “One-More” Problems). For any integer n ≥ 0, the gen-
eralized “one-more” problem n-(P1,P2) = (PGen, IGen,Orcl,Vrfy) associated with
two subproblems P1 and P2 is defined as follows:

– The parameter generator PGen(1k) algorithm returns the public parameter param
for P1 and P2.
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– The instance generator IGen(param) independently runs the IGen1(param) algo-
rithm n + 1 times to generate (n + 1) random P1 instances {yi}i∈{1,...,n+1}, and
returns an instance y = (y1, . . . , yn+1).

– The stateful oracle algorithm Orcl takes as inputs a public parameter param, and
a P2 instance y, returns the solution x of y or a special symbol ⊥ if y is an invalid
query. (If P2 is not a unique solution problem, the oracle can return one of the
candidate solutions in a predefined rule, e.g., the first one in lexicographic order.)

– The verification algorithm Vrfy takes the public parameter param, an instance y =
(y1, . . . , yn+1), and a candidate solution x = (x1, . . . , xn+1) as inputs, returns 1
if and only if Vrfy1(param, yi, xi) = 1 for all i ∈ {1, . . . , n+ 1}.

In particular, if P1 = P2, we briefly denote n-(P1,P2) as n-P1. Besides, the n-
(P1,P2) problem is said to be hard if for any PPT adversary A, the advantage of A
in solving all the (n + 1) random P1 instances in y with at most n P2 queries to the
oracle Orcl is negligible.

This class of problems not only subsumes the traditional one-more problems (where
P1 = P2, e.g., n-RSA, n-DL), the unforgeability of two-move blind signatures (where
it is likely P1 6= P2) and so forth, but also encompasses many other interesting problems
that have not been (well) studied in the literature. For example, to solve n + 1 BDH
instances by using n DL queries, i.e., n-(BDH,DL) in our notation [18].

Our separation results in Theorem 3 can be generalized to the n-(P1,P2) problem
if there is a PPT reduction T which can be used to solve one P1 instance by only using
γ (non-adaptive) queries to a P2 oracle, where γ can be any constant (e.g., γ = 2 for
the n-sDH problem). In particular, we assume that reduction T works in two phases:
Given the public parameter param, a P1 instance y, and a randomness r, it enters into
the query phase and outputs a vector of P2 instances z = (z1, . . . , zγ). In brief, z ←
T(query, param, y; r). After being fed back with the solution vector f = (f1, . . . , fγ)
of z where fi is a candidate solution of zi, T enters into the finish phase, and returns
the solution x of y or a special symbol⊥. In brief, x/⊥ ← T(finish, param, y, z, f ; r).
Informally, we say that a reduction T is a “promise reduction” if it always tries to return
a correct answer, otherwise returns ⊥ to indicate that “some of its inputs are invalid”.

Definition 5 (Promise Reduction). Let Ωt be the randomness space of T, we say that
a reduction T from P1 to P2 is a promise reduction if it satisfies the following two
properties:

Efficient computability: There is a PPT algorithm that computes T.
Correctness-preserving: Fixing the parameter (param, y), for any z ← T(query,

param, y; r), any candidate solutions f of z, and x← T(finish, param, y, z, f ; r),
we have

– If Vrfy2(param, zi, fi) = 1 holds for all i ∈ {1, . . . , γ}, we have that x 6= ⊥
and Vrfy1(param, y, x) = 1 hold;

– If there exists i ∈ {1, . . . , γ} such that Vrfy2(param, zi, fi) = 0, then we have
x = ⊥ with overwhelming probability;

where the probabilities are over the random choice of r ←r Ωt.
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Remark 2. The first requirement on the correctness-preserving property of T can be re-
laxed to “hold with non-negligible probability” if P1 is efficiently verifiable (i.e., Vrfy1
is a PPT algorithm). Since we can repeat the reduction T polynomial times (at a cost
of slightly increasing the running time ofM) to get a correct solution with probability
negligibly close to 1. The strong requirement is used here for simplicity.

Theorem 4 (Black-Box Separation for Generalized “One-More” Problems). For
integer n > 0, let n-(P1,P2) be defined as in Definition 4. If P1 has unique solution,
P2 is randomly self-reducible and there is a promise reduction T from P1 to P2 with
at most γ queries. Then, there is no black-box reduction R for basing the hardness of
the n-(P1,P2) problem on any t(k)-round hard problem C (or else C could be solved
efficiently), where k is the security parameter and n = γ · ω(k + t+ 1).

The proof is very similar to the proof of Theorem 3, we defer it to the full version.

Remark 3. The requirement on n = γ ·ω(k+t+1) is needed to successfully apply “re-
cursive rewinding” [41,38,20,15] to rule out general black-box reductions. However,
if one would like to consider restricted black-box reductions—single-instance reduc-
tions [26,25], a tighter separation result for n ≥ γ · (t+ 1) can be achieved.

Since our generalized “one-more” problems abstract many interesting problems,
Theorem 4 actually gives a very broad impossibility result for a large class of problems.
For the three traditional one-more inversion problems we have the following corollary.

Corollary 1. There is no black-box reduction R for basing the hardness of n-DL, n-
RSA, or n-sDH over gap Diffie-Hellman groups on any t(k)-round hard problem C
(or else C could be solved efficiently), where k is the security parameter and n =
ω(k + t+ 1).

Actually, our separation results naturally apply to the n-CDH problem, which can
be directly defined based on CDH problems as in Definition 4 (i.e., P1 = P2 = CDH).

Corollary 2. There is no black-box reductionR for basing the hardness of the n-CDH
problem over general groups on any t(k)-round hard problem C (or else C could be
solved efficiently), where k is the security parameter and n = 2 · ω(k + t+ 1).

Since the one-more unforgeability of blind signatures can be treated as a standard
generalized “one-more” problems, our separation results actually apply to a class of
two-move blind signatures [17,8,30] that are statistically blinding [32,39] and allow
statistical signature-derivation check [26]. We defer the details to the full version.

Corollary 3. If a two-move (unique) blind signature BS is statistically blinding and
allows statistical signature-derivation check, then there is no black-box reduction R
for basing the one-more unforgeability of BS on any polynomially round hard problem
C (or else C could be solved efficiently).

Besides, our results also apply to many other interesting problems that may not have
been (well) studied in the literature. For example, if P2 is the DL problem, P1 can be
any other DL-based problems such as CDH, DDH and BDH.
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Finally, we clarify that our impossibility result only rules out black-box reductions
from other (standard) hard problems to this class of problems, it does not mean the
problems in the class are easy to solve, or there are no non-black-box reductions basing
the hardness of these problems on other (standard) hard problems. In fact, some of them
might be very useful in proving or analyzing cryptographic constructions.

Acknowledgments. We thank Yi Deng, Phong Q. Nguyen, and the anonymous reviewers
of CRYPTO 2014 and ASIACRYPT 2014 for their helpful comments and suggestions
on earlier versions of our paper.

References

1. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. Journal of
Computer and System Sciences, 39(1):21–50, 1989.

2. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification
and signature schemes. In EUROCRYPT, pages 268–286, 2004.

3. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification
and signature schemes. Journal of Cryptology, 22(1):1–61, 2009.

4. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The power of RSA inver-
sion oracles and the security of Chaum’s RSA-based blind signature scheme. In Financial
Cryptography, pages 309–328, 2001.

5. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, 2003.

6. M. Bellare and G. Neven. Transitive signatures: new schemes and proofs. IEEE Transactions
on Information Theory, 51(6):2133–2151, 2005.

7. M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In CRYPTO, pages 162–177, 2002.

8. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the Gap-
Diffie-Hellman-group signature scheme. In PKC, pages 31–46, 2003.

9. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In EURO-
CRYPT, pages 59–71, 1998.

10. E. Bresson, J. Monnerat, and D. Vergnaud. Separation results on the “one-more” computa-
tional problems. In CT-RSA, pages 71–87, 2008.

11. D. R. L. Brown. Irreducibility to the one-more evaluation problems: More may be less.
Cryptology ePrint Archive, Report 2007/435, 2007.

12. D. R. L. Brown and R. P. Gallant. The static Diffie-Hellman problem. Cryptology ePrint
Archive, Report 2004/306, 2004.

13. S. Canard, A. Gouget, and J. Traoré. Improvement of efficiency in (unconditional) anony-
mous transferable e-cash. In Financial Cryptography, pages 202–214, 2008.

14. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for thresh-
old cryptosystems. In CRYPTO, pages 98–115, 1999.

15. R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in the plain
model from standard assumptions. In FOCS, pages 541–550, 2010.

16. D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In
EUROCRYPT, pages 127–145, 2008.

17. D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.
18. Y. Chen, Q. Huang, and Z. Zhang. Sakai-ohgishi-kasahara non-interactive identity-based

key exchange scheme, revisited. In ACISP, pages 274–289. 2014.



20 J. Zhang, Z.F. Zhang, Y. Chen et al.

19. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear com-
plexity. In Financial Cryptography, pages 143–159, 2010.

20. Y. Deng, V. Goyal, and A. Sahai. Resolving the simultaneous resettability conjecture and a
new non-black-box simulation strategy. In FOCS, pages 251–260, 2009.

21. Y. Dodis, I. Haitner, and A. Tentes. On the instantiability of hash-and-sign RSA signatures.
In TCC, pages 112–132. 2012.

22. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. Journal of the ACM,
51(6):851–898, 2004.
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