
All-But-Many Encryption

A New Framework for Fully-Equipped UC Commitments

Eiichiro Fujisaki

NTT Secure Platform Laboratories
fujisaki.eiichiro@lab.ntt.co.jp

Abstract. We present a general framework for constructing non-interactive
universally composable (UC) commitment schemes that are secure against
adaptive adversaries in the non-erasure model under a re-usable com-
mon reference string. Previously, such “fully-equipped” UC commitment
schemes have been known only in [5, 6], with strict expansion factor
O(κ); meaning that to commit λ bits, communication strictly requires
O(λκ) bits, where κ denotes the security parameter. Efficient construc-
tion of a fully-equipped UC commitment scheme is a long-standing open
problem. We introduce new abstraction, called all-but-many encryption
(ABME), and prove that it captures a fully-equipped UC commitment
scheme. We propose the first fully-equipped UC commitment scheme
with optimal expansion factor Ω(1) from our ABME scheme related to
the DCR assumption. We also provide an all-but-many lossy trapdoor
function (ABM-LTF) [18] from our DCR-based ABME scheme, with a
better lossy rate than [18].

1 Introduction

1.1 Motivating Application: Fully-Equipped UC Commitments

Universal composability (UC) framework [4] guarantees that if a protocol is
proven secure in the UC framework, it remains secure even if it is run concur-
rently with arbitrary (even insecure) protocols. This composable property gives
a designer a fundamental benefit, compared to the classic definitions, which only
guarantee that a protocol is secure if it is run in the standalone setting. UC com-
mitments are an essential ingredient to construct high level UC-secure protocols,
which imply UC zero-knowledge protocols [5, 10] and UC oblivious transfer [6],
thereby meaning that any UC-secure two-party and multi-party computations
can be realized in the presence of UC commitments. Since UC commitments
cannot be realized without an additional set-up assumption [5], the common
reference string (CRS) model is widely used. A commitment scheme consists of
a two-phase protocol between two parties, a committer and a receiver. In the
commitment phase, a committer gives a receiver the digital equivalent of a sealed
envelope containing value x, and, in the opening phase, the committer reveals x
in a way that the receiver can verify it. From the original concept, it is required
that a committer cannot change the value inside the envelope (binding prop-
erty), whereas the receiver can learn nothing about x (hiding property) unless

the committer helps the receiver opens the envelope. Informally, a UC commit-
ment scheme maintains the above binding and hiding properties under any con-
current composition with arbitrary protocols. To achieve this, a UC commitment
scheme requires equivocability and extractability at the same time. Informally,
equivocability of UC commitments in the CRS model can be interpreted as fol-
lows: An algorithm (called the simulator) that takes the secret behind the CRS
string can generate an equivocal commitment that can be opened to any value.
On the other hand, extractability can be interpreted as the ability of the sim-
ulator extracting the contents of a commitment generated by any adversarial
algorithm, even after the adversary saw many equivocal commitments generated
by the simulator.

Several factors as shown below feature UC commitments:
Non-Interactivity. If an execution of a commitment scheme is completed,

simply by sending each one message from the committer to the receiver both in
the commitment and opening phases, then it is called non-interactive; otherwise,
interactive. From a practical viewpoint, non-interactivity is definitely favorable
– non-interactive protocols are much easier to implement and more resilient to
real threats such as denial of service attacks. Even from a theoretical viewpoint,
non-interactive protocols generally make security proofs simpler.

CRS Re-usability. The CRS model assumes that CRS strings are generated
in a trusted way and given to every party. For practical use, it is very important
that a global single CRS string can be fixed beforehand and it can be re-usable
in an unbounded number of executions of cryptographic protocols. Otherwise, a
new CRS string must be set up in a trusted way every time when a new execution
of a protocol is invoked.

Adaptive Security. If an adversary decides to corrupt parities only before a
protocol starts, it is called a static adversary. On the other hand, if an adversary
can decide to corrupt parties at any point in the executions of protocols, it
is called an adaptive adversary. The attacks of adaptive adversaries are more
realistic in the real world. So, adaptive UC security is more desirable.

Non-Erasure Model. When a party is corrupted, its complete inner state is
revealed, including the randomness being used. Some protocols are only proven
UC-secure under the assumption that the parties can securely erase their inner
states at any point of an execution. However, reliable erasure is a difficult task
on a real system. So, it is desirable that a non-erasure protocol is proven secure.

1.2 Previous Works

Canetti and Fischlin [5] presented the first UC secure commitment schemes. One
of their proposals is “fully-equipped” – non-interactive and adaptively secure in
the non-erasure model under a global re-usable common reference string. By
construction, however, the proposal strictly requires, to commit to λ-bit secret,
O(λκ) bits in communication andO(λ) modular exponentiations in computation.
Canetti et al. [6] also proposed another fully-equipped UC commitment scheme
only from (enhanced) trapdoor permutations. It requires general non-interactive
zero knowledge proofs and is simply inefficient.

So far, these two have been the only known fully-equipped UC commitment
schemes. The known subsequent constructions of UC commitments [10, 8, 3, 22,
20, 13] have improved efficiency, but sacrifice at least one or a few requirements 1.
Efficient construction of a fully-equipped UC commitment scheme is a long-
standing open problem.

1.3 Our Contribution

The UC framework is complicated with many subtleties. Therefore, it is desir-
able to translate the essence of basic UC secure protocols into simple crypto-
graphic primitives. We introduce special tag-based public key encryption (Tag-
PKE) that we call all-but-many encryption (ABME), and prove that it implies
“fully-equipped” UC commitments. We propose a compact ABME scheme re-
lated to the DCR assumption and thereby the first fully-equipped UC commit-
ment scheme with optimal expansion factor Ω(1). To commit λ bit, it requires
Ω(κ) bits and a constant number of modular exponentiations. We also present
an all-but-many lossy trapdoor function (ABM-LTF) [18] from our DCR-based
ABME scheme, with a better lossy rate than [18].

In the full version [14], we present an ABME scheme from the DDH assump-
tion with overhead Ω(κ/log κ), which is slightly better than the prior work (with
Ω(κ)). We also present a fully-equipped UC commitment scheme from a weak
ABME scheme under the general assumption (where (enhanced) trapdoor per-
mutations exist), which is far more efficient than the prior scheme [6] under the
same assumption.

Our Approach: All-But-Many Encryption. In an ABME scheme, a
secret-key holding user (i.e., the simulator in the UC framework) can generate
a fake ciphertext, which can be opened to any message with consistent random-
ness. On the other hand, it must be infeasible for a secret-key non-holding user
(i.e., the adversary in the UC framework) (1) to distinguish a fake ciphertext
from a real (honestly generated) ciphertext, even after the message and ran-
domness are revealed, and (2) to produce a fake ciphertext (on a fresh tag) even
given many fake ciphertexts.

To realize such a scheme, we divide its functionality into two primitives,
called probabilistic pseudo random functions (PPRF) and extractable sigma pro-
tocols (extΣ). The former is a kind of a probabilistic version of a pseudo random
function (family) in the public parameter model. The latter is special sigma (i.e.,
canonical 3-round public-coin HVZK) protocols [7] with some extractability. The
concept of extractable sigma protocols is not completely new. A weaker notion,
called weak extractable sigma protocols, appears in [15] to construct a few (in-
teractive) simulation sound trapdoor commitment (SSTC) schemes. See also [16,
21, 17] for SSTC. This paper requires a stronger notion and its realization, which
employed in a different framework. If two primitives are successfully combined,
an ABME scheme can be constructed. We discuss more in the following.

1 Only [22] and [13] satisfy all but one requirement. [22] does not satisfy CRS re-
usability, whereas [13] does not support the non-erasure model.

Probabilistic Pseudo-Random Function (PPRF). A PPRF = (Genspl,Spl) is a
probabilistic version of a pseudo random function family in the public param-
eter model. Genspl(1

κ) generates a pair of public-key/seed (pk,w), and A PPT
algorithm Spl takes (pk,w, t) and outputs (or samples) u ← Spl(pk,w, t). Let
Lpk(t) = {u|∃(w, v) : u = Spl(pk,w, t, v)}. Informally, a PPRF requires that (a)
u looks pseudo-random on any t (pseudo randomness) and (b) it is infeasible

for any adversary to find u∗ in some super set, L̂pk(t∗), of Lpk(t∗) on any fresh

t∗, even after it has access to oracle Spl(pk,w, ·) (unforgeability on L̂pk), where

L̂pk := {(t, u) |u ∈ L̂pk(t)}. The super set L̂pk will be clear later.

Extractable Sigma Protocols. An extractable sigma protocol is a special sigma
protocol associated with a language-generation algorithm and a decryption algo-
rithm. Recall the sigma protocols [7]. A sigma protocol Σ on NP language L is
a canonical 3-round public coin interactive proof system such that the prover
can convince the verifier that he knows the witness w behind common input
x ∈ L, where the prover first sends commitment a; the verifier sends back chal-
lenge (public-coin) e; the prover responds with z; and the verifier finally accepts
or rejects the conversation (a, e, z) on x. A sigma protocol is associated with a
simulation algorithm simΣ that takes x (regardless of whether x ∈ L or not)
and challenge e, and produces an accepting conversation (a, e, z) ← simΣ(x, e)
without witness w. It is guaranteed that, if x ∈ L, the distributions (a, e, z)
produced by simΣ(x, e) on random e is statistically indistinguishable from the
transcript generated between two honest parties, called honest-verifier statisti-
cally zero knowledge (HVSZK). If x 6∈ L, for every a, there is unique e if there
is an accepting conversation (a, e, z), which is called special soundness.

An extractable sigma protocol extΣ = (Genext, Σ,Dec) uses two more algo-
rithms: The language-generation algorithm Genext outputs a pair of public/secret
keys, (pk, sk), where pk determines two disjoint sets Lpk and Lext

pk . Here sigma
protocol Σ works on Lpk and the decryption algorithm Dec works on Lext

pk , mean-
ing that Dec(sk, x, a) outputs challenge e if x ∈ Lext

pk and if an accepting conver-
sation (a, e, z) exists on x. Due to special soundness, e is uniquely determined if
x 6∈ Lpk. Therefore, the decryption algorithm is well defined.

Combining them. Suppose extΣ and PPRF are so well combined that, for
(Lpk, L

ext
pk) generated by Genext, Lpk is the language derived from PPRF and

PPRF is unforgeable on L̂pk (:= U ′pk\Lext
pk), where U ′pk denotes the entire set

with respects to pk. We can then transform the extractable sigma protocol into
an ABME scheme in the similar way that a sigma protocol is converted to an
instance-dependent commitment scheme [2, 19]. To encrypt message e on tag t,
a sender picks random u, runs simΣ on instance (t, u) with challenge e, to get
(a, e, z)← simΣ(pk, (t, u), e), and finally outputs (t, u, a). Due to unforgeability

of PPRF, it holds that (t, u) ∈ U ′pk\L̂pk with an overwhelming probability. Then,
e is uniquely determined given ((t, u), a), as long as an accepting conversation
(a, e, z) exists on (t, u). By our precondition, we can decrypt (t, u, a) using sk, as
e = Dec(sk, (t, u), a) because (t, u) ∈ Lext

pk . On the other hand, a fake ciphertext
on tag t is produced using (w, v) as follows: one sets u := Spl(pk, w, t; v), with
random v, where (t, u) ∈ Lpk, and computes a, as similarly as an honest prover

computes the first message on common input (t, u) with witness (w, v). To open
a to e, he produces the third message z in the sigma protocol. It is obvious by
construction that he can open a to any e because (t, u) ∈ Lpk.

Realizing Extractable Sigma Protocols. Although sigma protocols (with HVSZK)
exist on many NP languages, it is not known how to extract the challenge as
discussed above. The following is our key observation to realize the functional-
ity. Sigma protocols are often implemented on Abelian groups associated with
homomorphic maps, in which the first message of such sigma protocols implies
a system of linear equations with e and z. Hence, there is a matrix derived from
the linear systems. Due to completeness and special soundness, there is an in-
vertible (sub) square matrix if and only if x 6∈ Lpk (provided that the linear
system is defined in a finite field). Therefore, if one knows the contents of the
matrix, one can solve the linear systems when x 6∈ Lpk and obtain e if its length
is logarithmic. Suppose for instance that Lpk is the DDH language – it does
not form a PPRF, but a good toy case to explain how to extract the challenge.
Let (g1, g2, h1, h2) 6∈ Lpk, meaning that x1 6= x2 where x1 := logg1(h1) and
x2 := logg2(h2). The first message (A1, A2) of a canonical sigma protocol on Lpk
implies linear equations (

a1
a2

)
=

(
1 x1
α αx2

)(
z
e

)
(1)

where A1 = ga11 , A2 = ga22 , and g2 = gα1 . The above matrix is invertible if and
only if (g1, g2, h1, h2) 6∈ Lpk. We note that e is expressed as a linear combination
of a1 and a2, i.e., β1a1 + β2a2, where the coefficients are determined by the
matrix. Therefore, if the decryption algorithm takes (α, x1, x2) and the length

of e is logarithmic, it can find out e by checking whether ge1 = Aβ1

1 A
β2

2 or not.
In the case when a partial information on the values of the matrix is given, the
decryption algorithm can still find logarithmic-length e if the matrix is made
so that e can be expressed as a linear combination of unknown values – the
unknown values do not appear with a quadratic form or a more degree of forms
in the equations.

In some case, we might be able to invert a homomorphic map, such as f(a) =
ga, using trapdoor f−1. Then, the decryption algorithm can obtain (a1, a2) as
well as the entire values of the matrix and hence extract the entire (polynomial-
length) e. This happens in our DCR based implementation. In the case, the

equivalent condition that the matrix is invertible is, not x 6∈ Lpk, but x 6∈ L̂pk for

some superset L̂pk, since the corresponding linear system is defined not on a finite
field, but on a finite ring, such as Znd . This means that we require unforgeability
on L̂pk, so as to make an adversary output x = (t, u) in Lext

pk = U ′pk\L̂pk.

1.4 Other Related Works

Simulation-based selective opening CCA (SIM-SO-CCA) secure PKE [12] is re-
lated to ABME, but both are incomparable. Indeed, the SIM-SO-CCA secure
PKE scheme proposed in [12] does not satisfy the notion of ABME. On the other

hand, ABME does not satisfy SIM-SO-CCA PKE, because it does not support
CCA security. Although the scheme in [12] could be tailored to a fully-equipped
UC commitment scheme, it cannot overcome the barrier of expansion factor
O(κ), because it strictly costs O(λκ) bits to encrypt λ bit.

Hofheinz has presented the notion of all-but-many lossy trapdoor function
(ABM-LTF) [18], mainly to construct indistinguishable-based selective opening
CCA (IND-SO-CCA) secure PKE schemes. ABM-LTF is lossy trapdoor function
(LTF) [25] with (unbounded) many lossy tags. The relation between ABM-LTF
and ABME is a generalized analogue of LTF and lossy encryption [24, 1] with
unbounded many loss tags. However, unlike the other primitives, ABME always
enjoys an efficient “opening” algorithm that can open a ciphertext on a “lossy”
tag to any message with consistent randomness. Hofheinz has proposed two
instantiations. One is related to the DCR assumption and the other is based on
pairing groups of a composite order. In the DCR-based ABM-LTF, lossy tags
are an analogue of Waters signatures defined in DJ PKE. Such tags are carefully
embedded in a matrix so that it can be non-invertible if tags are lossy; otherwise
invertible. We were inspired by the lossy tag idea and have generalized it as
PPRF. In the latest e-print version [18], Hofheinz has proven that his DCR-
based ABM-LTF can be converted to a SIM-SO-CCA PKE scheme. To realize
this, an opening algorithm for ABM-LTF is needed, and he converted his DCR-
based ABM-LTF into one with an opening algorithm, by sacrificing efficiency.
We note that ABM-LTF with an opening algorithm meets the notion of ABME.
We will show in Sect. 8 how Hofheinz’s DCR-based ABM-LTF is converted to an
ABME scheme. Its expansion factor is Ω(1). However, compared to our DCR-
based ABME scheme in Sect. 7, Hofheinz’s ABM-LTF based ABME scheme is
rather inefficient for practical use. Indeed, its expansion rate of ciphertext length
per message length is ≥ 31. In addition, you must use a modulus of ≥ n6. On
the other hand, our DCR-based ABME scheme has a small expansion rate of
(5 + 1/d) and you can use modulus of nd+1 for any d ≥ 1. We compare them in
Sect. 8. We remark that Hofheinz has not shown that his DCR-based ABM-LTF
can be converted to a UC commitment scheme.

2 Preliminaries

We write PPT and DPT algorithms to denote probabilistic polynomial-time and
deterministic poly-time algorithms, respectively. For random variables, Xκ and
Yκ, ranging over {0, 1}κ, the (statistical) distance between Xκ and Yκ is defined
as Dist(Xκ, Yκ) , 1

2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that
two probability ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are statistically

indistinguishable (in κ), denoted X
s
≈ Y , if Dist(Xκ, Yκ) = negl(κ). We say that

X and Y are computationally indistinguishable (in κ), denoted X
c
≈ Y , if for

every PPT D (with one-bit output), {D(1κ, Xκ)}κ∈N
s
≈ {D(1κ, Yκ)}κ∈N.

3 Building Blocks: Definitions

We now formally define probabilistic pseudo random functions and extractable
sigma protocols.

3.1 Probabilistic Pseudo Random Function (PPRF)

PPRF = (Genspl,Spl) consists of the following two algorithms:

– Genspl, the key generation algorithm, is a PPT algorithm that takes 1κ as
input, creates pk and picks up w ← KSPspl

pk to outputs (pk, w), where pk

uniquely determines KSPspl
pk.

– Spl, the sampling algorithm, is a PPT algorithm that takes (pk, w) and
t ∈ {0, 1}κ, picks up inner random coins v ← COINspl, and outputs u.

Here we require that pk determines set Upk. Let us define U ′pk = {0, 1}κ × Upk,
Lpk(t) = {u ∈ Upk | ∃w, ∃ v : u = Spl(pk,w, t; v)}, and Lpk = {(t, u) | t ∈
{0, 1}κ and u ∈ Lpk(t)}. We are only interested in the case that Lpk is relatively
small in U ′pk, in order to avoid sampling from U ′pk by chance. We require that
PPRFs satisfy the following security requirements:

Efficiently samplable and explainable domain: For every pk given by
Genspl, set U is efficiently samplable and explainable [12], that is, there is an
efficient sampling algorithm on U that takes pk and random coins R and out-
puts u uniformly from Upk. In addition, for every u ∈ Upk, there is an efficient
explaining algorithm that takes pk and u and outputs random coins R behind
u, where R is uniformly distributed subject to sample(Upk;R) = u.

Pseudo randomness: Any adversary A, given pk generated by Genspl(1κ),
cannot distinguish whether it has had access to Spl(pk, w, ·) or U(·). Here U is the
following oracle: If Spl(pk,w, ·) is a deterministic algorithm, U : {0, 1}κ → Upk
is a random oracle. (Namely, it returns the same (random) value on the same
input.) If Spl(pk, w, ·) is probabilistic, then U(·) picks up a fresh randomness

u
U← Upk for each query t. We say that PPRF is pseudo random if, for all non-

uniform PPT A, AdvprfPPRF,A(κ) =
∣∣∣Pr[ExptprfPPRF,A(κ) = 1]− Pr[ExptprfU,A(κ) = 1]

∣∣∣
is negligible in κ, where ExptprfPPRF,A(κ) and ExptprfU,A(κ) are defined in Fig. 1.

ExptprfPPRF,A(κ):

(pk, w)← Genspl(1κ)

b← ASpl(pk,w,·)(pk)
return b.

ExptprfU,A(κ):

(pk, w)← Genspl(1κ)

b← AU(·)(pk)
return b.

Fig. 1. The experiments, ExptprfPPRF,A(κ) and ExptprfU,A(κ)

Unforgeability (on L̂pk): Let L̂pk(t) be some super set of Lpk(t). Let L̂pk =

{(t, u) | t ∈ {0, 1}κ and u ∈ L̂pk(t)}. We define the game of unforgeability on L̂pk
as follows: An adversary A takes pk generated by Genspl(1κ) and may have access

to Spl(pk, w, ·). The aim of the adversary is to output (t∗, u∗) ∈ L̂pk such that

t∗ has not been queried. We say that PPRF is unforgeable on L̂pk if, for all non-

uniform PPT A, Adveuf-L̂PPRF,A(κ) = Pr[Expteuf-L̂PPRF,A(κ) = 1] (where Expteuf-L̂PPRF,A is
defined in Fig. 2) is negligible in κ.

In some application, we require a stronger requirement, where in the same
experiment above, it is difficult for the adversary to output (t∗, u∗) in L̂pk, which
did not appear in the query/answer list QA. We say that PPRF is strongly un-

forgeable on L̂pk if, for all non-uniform PPTA, Advseuf-L̂PPRF,A(κ) = Pr[Exptseuf-L̂PPRF,A(κ) =

1] (where Exptseuf-L̂PPRF,A is defined in Fig. 2) is negligible in κ.

We remark that (strong) unforgeability implies (1) that L̂pk should be small

enough in U ′pk to avoid sampling from L̂pk by chance, and (2) that, if Spl is a

DPT algorithm and L̂pk = Lpk, it is implied by pseudo randomness.

Expteuf-L̂PPRF,A(κ):

(pk, w)← Genspl(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
If t∗ has not been queried

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Exptseuf-L̂PPRF,A(κ):

(pk, w)← Genspl(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
(t∗, u∗) 6∈ QA

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Fig. 2. The experiments of unforgeability (in the left) and strong unforgeability (in the
right).

3.2 Extractable Sigma Protocol

An extractable sigma protocol, extΣ = (Genext, comΣ, chΣ, ansΣ, simΣ, Vrfy,Dec)
is a sigma protocol, associated with two algorithms, Genext and Dec, with the
following properties.

– Genext is an PPT algorithm that takes 1κ and outputs (pk, sk), such that
pk defines the entire set U ′pk, and two sub disjoint sets, Lpk and Lext

pk , i.e.,
Lpk ∪ Lext

pk ⊂ U ′pk and Lpk ∩ Lext
pk = ∅. We also require that Lpk determines

binary efficiently recognizable set Rpk such that Lpk = {x|∃w : (x,w) ∈
Rpk}.

– comΣ is a PPT algorithm that takes pk and (x,w) ∈ Rpk, picks up inner
coins ra, and outputs a.

– chΣ(pk) is a publicly-samplable set determined by pk.

– ansΣ is a DPT algorithm that takes (pk, x, ra, e), where e ∈ chΣ(pk), and
outputs z.

– Vrfy is a DPT algorithm that accepts or rejects (pk, x, a, e, z).
– simΣ is a PPT algorithm that takes (pk, x, e) and outputs (a, e, z) = simΣ

(pk, x, e; rz), where rz ← COINsim. We additionally require that rz = z.
Namely, (a, e, rz) = simΣ(pk, x, e; rz).

– Dec is a DPT algorithm that takes (sk, x, a) and outputs e or ⊥.

We require that extΣ satisfies the following properties:
Completeness: For every (pk, sk) ∈ Genext(1κ), every (x,w) ∈ Rpk, every

ra (in an appropriate specified domain) and every e ∈ chΣ(pk), it always holds
that Vrfy(x, comΣ(x,w; ra), e, ansΣ(x,w, ra, e)) = 1.

Special Soundness: For every (pk, sk) ∈ Genext(1κ), every x ∈ U ′pk\Lpk
and every a, there is unique e ∈ chΣ(pk) if there is an accepting conversation
for a on x. We say that a pair of two different accepting conversations for the
same a on x, i.e., (a, e, z) and (a, e′, z′), with e 6= e′, is a collision on x.

Enhanced Honest-Verifier Statistical Zero-Knowledgeness (eHVSZK):
For every (pk, sk) ∈ Genext(1κ), every (x,w) ∈ Rpk, and every e ∈ chΣ(pk), the
following ensembles are statistically indistinguishable in κ:

{(comΣ(pk, x, w; ra), e, ansΣ(pk, x, w, ra, e))} (pk, sk) ∈ Genext(1κ), (x,w) ∈ Rpk,
e ∈ chΣ(pk), κ ∈ N.

s
≈{simΣ(pk, x, e; rz)}(pk,sk)∈Genext(1κ),(x,w)∈Rpk,e∈chΣ(pk),κ∈N

Here the probability of the left-hand side is taken over random variable
rz and the right-hand side is taken over random variable ra. We remark that
since (a, e, rz) = simΣ(pk, x, e; rz), we have Vrfy(pk, x, a, e, z) = 1 if and only
if (a, e, z) = simΣ(pk, x, e; z). Therefore, one can instead use simΣ to verify
(a, e, z) on x.

Extractability: For every (pk, sk) ∈ Genext(1κ), every x ∈ Lext
pk , and every

a such that there is an accepting conversation for a on x, Dec always outputs
e = Dec(sk, x, a) such that (a, e, z) is an accepting conversation on x. We note
that, when x 6∈ Lpk, e is unique given a, due to the special soundness property.
Therefore, the extractability is well defined because Lpk ∩ Lext

pk = ∅.

4 ABM Encryption

All-but-many encryption scheme ABM.Enc = (ABM.gen, ABM.spl, ABM.enc,
ABM.dec, ABM.col) consists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where
pk defines a set Upk. We let U ′pk = {0, 1}κ × Upk. pk also determines two

disjoint sets, Ltd
pk and Lext

pk , such that Ltd
pk ∪ Lext

pk ⊂ U ′pk.
– ABM.spl is a PPT algorithm that takes (pk,w, t), where t ∈ {0, 1}κ, picks up

inner random coins v ← COINspl, and computes u ∈ Upk. We write Ltd
pk(t) to

denote the image of ABM.spl on t under pk, i.e.,

Ltd
pk(t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk,w, t; v)}.

We require Ltd
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Ltd

pk(t)}. We set L̂td
pk :=

U ′pk\Lext
pk . Since Ltd

pk ∩ Lext
pk = ∅, we have Ltd

pk ⊆ L̂td
pk ⊂ U ′pk.

– ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ U ′pk, and message x
∈ MSP, picks up inner random coins r ← COINenc, and computes c =
ABM.enc(t,u)(pk, x; r), where MSP denotes the message space uniquely de-
termined by pk, whereas COINenc denotes the inner coin space uniquely de-
termined by pk and x 2.

– ABM.dec is a DPT algorithm that takes sk, (t, u), and ciphertext c, and

outputs x = ABM.dec(t,u)(sk, c).
– ABM.col = (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms,

respectively, such that

• ABM.col1 takes (pk, (t, u), w, v) and outputs (c, ξ)← ABM.col
(t,u)
1 (pk,w, v),

where v ∈ COINspl.
• ABM.col2 takes ((t, u), ξ, x), with x ∈ MSP, and outputs r ∈ COINenc.

We require that all-but-many encryption schemes satisfy the following prop-
erties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic
pseudo random function (PPRF) as defined in Sect. 3.1 with unforgeability

on L̂td
pk(= U ′pk\Lext

pk).
2. Dual mode property:

– (Decryption mode) For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ),
every (t, u) ∈ Lext

pk , and every x ∈ MSP, it always holds that

ABM.dec(t,u)(sk,ABM.enc(t,u)(pk, x)) = x.

– (Trapdoor mode) Define the following random variables:
distenc(t, pk, sk, w, x) denotes random variable (u, c, r) defined as follows:

v ← COINspl; u = ABM.spl(pk, w, t; v); r ← COINenc; c = ABM.enc(t,u)(pk,
x; r). distcol(t, pk, sk, w, x) denotes random variable (u, c, r) defined as fol-

lows: v ← COINspl; u = ABM.spl(pk,w, t; v); (c, ξ) = ABM.col
(t,u)
1 (pk, w, v);

r = ABM.col
(t,u)
2 (ξ, x). Then, the following ensembles are statistically in-

distinguishable in κ:{
distenc(t, pk, sk, w, x)

}
(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

s
≈
{
distcol(t, pk, sk, w, x)

}
(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

We say that a ciphertext c on (t, u) under pk is valid if there exist x ∈ MSP

and r ∈ COINenc such that c = ABM.enc(t,u)(pk, x; r). We say that a valid

2 We allow the inner coin space to depend on messages to be encrypted, in order
to be consistent with our weak ABM encryption scheme from general assumption
appeared in the full version [14]

ciphertext c on (t, u) under pk is real if (t, u) ∈ Lext
pk , otherwise fake. We remark

that as long as c is a real ciphertext, regardless of how it is generated, there is
only one consistent x in MSP and it is equivalent to ABM.dec(t,u)(sk, c).

5 ABME from extΣ on Language derived from PPRF

Let PPRF = (Genspl,Spl) be a PPRF and let extΣ = (Genext, Σ,Dec) be an
extractable sigma protocol.

Assume the following conditions hold.

– The first output of Genext(1κ) is distributed identically to the first output of
Genspl(1κ).

– For every Lpk generated by Genext, Lpk is the language derived from PPRF;
namely, Lpk = {(t, u) | ∃(w, v) : t ∈ {0, 1}κ, u = Spl(pk, w, t; v)}.

– For (Lpk, L
ext
pk , U

′
pk) generated by Genext, PPRF is unforgeable on L̂pk, where

L̂pk := U ′pk\Lext
pk .

Then, we can construct an ABME scheme as described in Fig. 3.

– ABM.gen(1κ) runs Genext(1κ) to output (pk, sk). It chooses w ← KSPspl
pk and finally

outputs (pk, (sk, w)). We note that by a precondition the distribution of pk from
Genext(1κ) is identical to that of Genspl(1κ).

– ABM.spl(pk, w, t; v) outputs u := Spl(pk, w, t; v) where v
U← COINspl.

– ABM.enc(t,u)(pk,m; r) runs (a,m, r) ← simΣ(pk, (t, u),m; r) to return the first

output a, where r
U← COINenc

pk (:= COINsim
pk).

– ABM.dec(t,u)(sk, c) outputs m = Dec(sk, (t, u), c).

– ABM.col
(t,u)
1 (pk, w, v; ra) outputs (c, ξ) such that c := comΣ(pk, (t, u), (w, v); ra),

and ξ := (pk, t, u, w, v, ra).

– ABM.col
(t,u)
2 (ξ,m) outputs r := ansΣ(pk, (t, u), w, v, ra,m), where ξ =

(pk, t, u, w, v, ra).

Fig. 3. ABME from extΣ on language derived from PPRF

By construction, the adaptive all-but-many property holds in the resulting
scheme. The dual mode property also holds because: (a) If (t, u) ∈ Lext

pk , the first
output of simΣ(pk, (t, u),m) is perfectly binding to challenge m due to special
soundness (because Lext

pk ⊂ U ′pk\Ltd
pk, with Ltd

pk := Lpk), and m can be extracted

given (pk, (t, u), a) using sk due to extractability. (b) If (t, u) ∈ Ltd
pk, ABM.col

runs the real sigma protocol with witness (w, v). Therefore, it can produce a fake
commitment that can be opened in any way, while it is statistically indistinguish-
able from that of the simulation algorithm simΣ (that is run by ABM.enc), due
to enhanced HVSZK. Therefore, the resulting scheme is ABME.

6 Fully-Equipped UC Commitment from ABME

We show that ABME implies fully-equipped UC commitment.
We work in the standard universal composability (UC) framework of Canetti

[4]. We concentrate on the same model in [5] where the network is asynchronous,
the communication is public but ideally authenticated, and the adversary is
adaptive in corrupting parties and is active in its control over corrupted parties.
Any number of parties can be corrupted and parties cannot erase any of their
inner state. We consider UC commitment schemes that can be used repeatedly
under a single common reference string. The multi-commitment ideal function-
ality FMCOM from [6] is the ideal functionality of such commitments, which is
given in Figure 4.

A fully-equipped UC commitment scheme is constructed as follows: A trusted
party chooses and puts pk of ABME in the common reference string. In the
commit phase, committer Pi takes tag t = (sid, ssid, Pi, Pj) and message x
committed to. It then picks up random u from Upk and compute an ABM en-

cryption c = ABM.enc(t,u)(pk, x; r) to send (t, u, c) to receiver Pj , which outputs
(receipt, sid, ssid, Pi, Pj). In the reveal phase, Pi sends (x, r) to Pj and Pj
accepts if and only if c = ABM.enc(t,u)(pk, x; r). If Pj accepts, he outputs x,
otherwise do nothing. The formal description is given in the full version [14].

Theorem 1. The proposed commitment scheme from ABME UC-securely real-
izes the FMCOM functionality in the FCRS-hybrid model in the presence of adaptive
adversaries in the non-erasure model.

Proof (Sketch). The formal proof is given in the full version [14]. We here

sketch the essence. We consider the man-in-the-middle attack, where we show
that the view of environment Z in the real world (in the CRS model) can be
simulated in the ideal world. Let Pi, Pj be honest players and let Pi′ be a
corrupted player controlled by adversary A. In the man-in-the-middle attack,
Pi′ (i.e., A) is simultaneously participating in the left and right interactions. In
the left interactions, A interacts with Pi, as playing the role of the receiver. In
the right interactions, A interacts with Pj , as playing the role of the committer.

The following sketch corresponds to security proof in the (static) man-in-the-
middle attack. It is not difficult to handle the adaptive case if this case has been
proven secure.

In the ideal world, A actually interacts with simulator S in both interac-
tions, where S pretends to be Pi and Pj respectively. In the left interactions, en-
vironment Z sends (commit, sid, ssid, Pi, Pi′ , x) to the ideal commitment func-
tionality FMCOM (via honest Pi). After receiving (receipt, sid, ssid, Pi, Pi′)
from FMCOM, S starts the commitment protocol as the committer without given
message x. It sends to A (u, c) on t = (sid, ssid, Pi, Pi′) as computed in Table 1.
In the decommitment phase when Z sends (open, sid, ssid) to FMCOM (via hon-

est Pi), S receives x from FMCOM and then computes r = ABM.col
(t,u)
2 (ξ, x) to

send (t, x, r) to A. In the right interactions, S receives (t′, u′, c′) from A where

t′ = (sid′, ssid′, Pi′ , Pj). It then extracts x̃ = ABM.dec(t
′,u′)(sk, c′) to send to

FMCOM. FMCOM then sends (receipt, sid, ssid, Pi′ , Pj) to environment Z (via
honest Pj). In the decommitment phase when A opens (t′, u′, c′) correctly with
(x′, r′), S sends (open, sid, ssid) to FMCOM; otherwise, do nothing. Upon receiv-
ing (open, sid, ssid), if the same (sid, ssid, ..) was previously recorded, FMCOM

sends stored x̃ to environment Z (via honest Pj); otherwise, do nothing. We
note that in the ideal world, honest parties convey inputs from Z to the ideal
functionalities and vice versa. The view of Z consists of the view of A plus the
value sent by FMCOM.

In HybridFcrs (the real world in the CRS model), A interacts with real
(committer) Pi in the left interactions, and real (receiver) Pj in the righ interac-
tions. In the right interactions, at the end of the decommitment phase, Pj sends
x′ to Z if A has opened (t′, u′, c′) correctly with (x′, r′). The view of Z consists
of the view of A plus the value sent by Pj .

The goal is to prove that the two views of Z above are computationally
indistinguishable. As usual, we consider a sequence of hybrid games on which
the probability spaces are identical, but we change the rules of games step by
step. See Table 1 for summary.

Hybrid Game 1 is identical to the ideal world except that in the left inter-
actions, at the beginning of the commitment phase, S (as Pi) is given message x on
tag t = (sid, ssid, Pi, Pi′) by FMCOM. S computes u ← ABM.spl(pk, w, t), and

c = ABM.enc(t,u)(pk, x; r), picking up random r, to send (t, u, c) to adversary A.
In the decommitment phase, S sends (t, x, r) to A.

Hybrid Game 2 is identical to Hybrid Game 1 except that in the right
interactions, after receiving (t′, u′, c′), S2 sends ε to FMCOM. In the decommitment
phase when A opens (t′, u′, c′) correctly with (x, r), S sends (open, sid, ssid, x′)
to FMCOM. FMCOM sends x′ to environment Z (via ideal P̃j), instead of sending ε.

Hybrid Game 3 is identical to Hybrid Game 2 except that in the left inter-
actions, S instead picks up random u← Upk and computes c = ABM.enc(t,u)(pk, x; r),
to send (t, u, c) to A.

[Ideal ⇒ Hybrid1] The two views of Z between the ideal world and Hybrid1

are statistically close, due to the trapdoor mode property.
[Hybrid1 ⇒ Hybrid2] We note that the distance of the two views of Z between

Hybrid1 and Hybrid2 is bounded by the following event. Let BDI denote the event
in Hybrid Game I (I ∈ {1, 2}) that S receives a fake ciphertext (t′, u′, c′) from
A, i.e., (t′, u′) ∈ Ltd

pk, in the right intersections. If this event does not occur,
the view of Z in both games are identical, which means ¬BD1 = ¬BD2. Hence,
the distance of the views of Z in the two games is bounded by Pr[BD], where
BD := BD1 = BD2. We then evaluate Pr[BD] in Hybrid Game 2. (We note that
we might not generally evaluate the probability in Hybrid Game 1, because S
must decrypt (t′, u′, c′), which seems that it needs sk, but knowing sk implies
some information on w.) We want to suppress Pr[BD] by using the assumption

that (ABM.gen, ABM.spl) is unforgeable on L̂td
pk. In Hybrid Game 2, we can

construct an adversary B that breaks unforgeability of (ABM.gen,ABM.spl) on

L̂td
pk as follows. In the left and right interactions, B simulates the role of S and

interacts withA. B uses ABM.spl(pk,w, ·) as oracle to play the role of S in the left

interaction. After A halts, B outputs (t′, u′) at random from the communication
with A in the right interactions. We note that, since the communication channel
is fully authenticated, it holds that t′ 6= t for all t, t′, because t = (?, ?, Pi, Pi′)

and t′ = (?, ?, Pi′ , Pj). If (t′, u′) ∈ L̂td
pk, B succeeds in breaking unforgeability on

L̂td
pk, which is upper-bounded by some negligible function. Since event BD occurs

at most with the success probability of B. Hence, its probability is negligible,
too.

[Hybrid2 ⇒ Hybrid3] It is obvious by construction that the distance of the
two views of Z between Hybrid2 and Hybrid3 is bounded by the advantage of
pseudo-randomness of (ABM.gen, ABM.spl).

[Hybrid3 ⇒ HybridFMCOM] By construction, the two views of Z between Hybrid3

and HybridFMCOM are identical.
Therefore, the two views of Z between the ideal world and HybridFMCOM are

computationally close.

Games Pi(S)
(t,u,c)−→ Corr. Pi′ (A)

(t′,u′,c′)−→ Pj(S)
(t′,x̃)−→ FMCOM

u = ABM.spl(pk, w, t; v)

Ideal (c, ξ) = ABM.col
(t,u)
1 (pk, w, v) (t′, u′, c′) x̃ = x̃

open: x, r = ABM.col
(t,u)
2 (ξ, x) open: (x′, r′) ABM.dec(t

′,u′)(sk, c′)
u← ABM.spl(pk, w, t)

Hybrid1 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = x̃

open: x, r open: (x′, r′) ABM.dec(t
′,u′)(sk, c′)

u← ABM.spl(pk, w, t)

Hybrid2 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)
u← Upk

Hybrid3 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)

Pi
(t,u,c)−→ Corr. Pi′ (A)

(t′,u′,c′)−→ Pj Pj
u← Upk

HybridFcrs c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x′

open: x, r open: (x′, r′)

Table 1. The man-in-the-midle attack in the hybrid games

Here t = (sid, ssid, Pi, Pi′) and t′ = (sid′, ssid′, Pi′ , Pj). The view of Z con-
sists of the view of A plus the contents in the rightest column.

7 Compact ABME from Damg̊ard-Jurik PKE

Damg̊ard-Jurik PKE. LetΠ = (K,E,D) be a tuple of algorithms of Damg̊ard-
Jurik (DJ) PKE [9]. A public key of DJ PKE is pkdj = (n, d) and the corre-
sponding secret-key is skdj = (p, q) where n = pq is a composite number of
distinct odd primes, p and q, and 1 ≤ d < p, q is a positive integer (when
d = 1 it is Paillier PKE [23]). We often write Π(d) to clarify parameter d. We

let g := (1 + n). To encrypt message x ∈ Znd , one computes Epkdj(x;R) =

gxRn
d

(mod nd+1) where R ← Z×n 3. For simplicity, we write E(x) instead
of Epkdj(x), if it is clear. DJ PKE is enhanced additively homomorphic, mean-
ing that, for every x1, x2 ∈ Znd and every R1, R2 ∈ Z×n , one can efficiently
compute R such that E(x1 + x2;R) = E(x1;R1) · E(x2;R2). Actually it can
be done by computing R = gγR1R2 (mod n), where γ is an integer such that
x1 + x2 = γnd + ((x1 + x2) mod nd). It is known that Z×

nd+1 is isomorphic to

Znd ×Z×n (the product of a cyclic group of order nd and a group of order φ(n)),
and, for any d < p, q, element g = (1 + n) has order nd in Z×

nd+1 [9]. Therefore,

Z×
nd+1 is the image of E(·; ·). We note that it is known that Z×

nd+1 is efficiently
samplable and explainable [10, 12]. It is also known that DJ PKE is IND-CPA if
the DCR assumption holds true [9].

Construction Idea. (ABM.gen,ABM.spl) below forms Waters-like signa-
ture scheme based on DJ PKE, where there is no verification algorithm and
the signatures look pseudo random assuming that DJ PKE is IND-CPA. We
then construct an extractable sigma protocol on the language derived from
(ABM.gen,ABM.spl), as discussed in Sect. 5. Here, the decryption algorithm
works only when the matrix below in (3) is invertible, which is equivalent to
that (t, (ur, ut)) ∈ Lext

pk , where Lext
pk =

{(t, (ur, ut))|D(ut) 6≡ x1x2+y(t)D(ur) mod p∧D(ut) 6≡ x1x2+y(t)D(ur) mod q}.

Therefore, we require that (ABM.gen,ABM.spl) should be unforgeable on L̂td
pk(=

U ′pk\Lext
pk). To prove this, we additionally require two assumptions on DJ PKE,

called the non-multiplication assumption and the non-trivial divisor assumption,
described in Appendix C. The first one is an analogue of the DH assumption
in an additively homomorphic encryption. If we consider unforgeability on Ltd

pk,

this assumption suffices, but we require unforgeability on L̂td
pk. Then we need the

latter assumption, too. These two assumptions are originally introduced in [18]
to obtain a DCR-based ABM-LTF.

7.1 ABME from Damg̊ard-Jurik with Optimal Expansion Factor
Ω(1)

– ABM.gen(1κ): It gets (pkdj, skdj)← K(1κ) (the key generation algorithm for

DJ PKE), where pkdj = (n, d) and skdj = (p, q). It then picks up x1, x2
U←

Znd , R1, R2
U← Z×

nd+1 , and computes g1 = E(x1;R1) and g2 = E(x2;R2). It

then picks up h̃← E(1) and computes h = (h0, . . . , hκ) such that hj := h̃yj

where yj
U← Znd+1 for j = 0, 1, . . . , κ. Let H(t) = h0

∏κ
i=1 h

ti
i (mod nd+1)

and let y(t) = y0 +
∑κ
i=1 yiti (mod nd), where (t0, . . . , tκ) represents the

bit string of t. We note that H(t) = h̃y(t). It outputs (pk, (sk, w)) where

3 In the original scheme, R is chosen from Z×
nd+1 . However, since Z×n is isomorphic to

the cyclic group of order nd in Z×
nd+1 by mapping R ∈ Z×n to Rn

d

∈ Z×
nd+1 , we can

instead choose R from Z×n .

pk := (n, d, g1, g2,h), sk := (p, q) and w := x2, where we define U ′pk :=

{0, 1}κ×(Z×
nd+1)2 that contains the disjoint sets of Ltd

pk and Lext
pk as described

below.
– ABM.spl(pk, x2, t; (r,Rr, Rt)): It chooses r ← Znd and outputs u := (ur, ut)

such that ur := E(r;Rr) and ut := gx2
1 E(0;Rt)·H(t)

r
where Rr, Rt ← Z×

nd+1 .

We let Ltd
pk = {(t, (ur, ut)) | ∃(x2, (r,Rr, Rt)) : ur = E(r, ;Rr) and ut =

gx2
1 E(0;Rt)H(t)r}. We then define Lext

pk = {(t, (ur, ut)) |D(ut) 6≡ x1x2 +
y(t)D(ur) mod p ∧ D(ut) 6≡ x1x2 + y(t)D(ur) mod q}. Since (t, (ur, ut)) ∈
Ltd
pk holds if and only if D(ut) ≡ x1x2 + y(t)D(ur) (mod nd), it implies that

D(ut) ≡ x1x2 + y(t)D(ur) (mod n). Hence, Ltd
pk ∩ Lext

pk = ∅.
– ABM.enc(t,(ur,ut))(pk,m; (z, s,RA, Ra, Rb)): To encrypt message m ∈ Znd ,

it chooses z, s
U← Znd and computes A := gz1H(t)

s
umt R

nd

A (mod nd+1),
a := E(z;Ra) · gm2 (mod nd+1) and b := E(s;Rb) · umr (mod nd+1), where

RA, Ra, Rb
U← Z×

nd+1 . It outputs c := (A, a, b) as the ciphertext of m on
(t, (ur, ut)).

– ABM.dec(t,(ur,ut))(sk, c): To decrypt c = (A, a, b), it outputs

m :=
x1D(a) + y(t)D(b)−D(A)

x1x2 − (D(ut)− y(t)D(ur))
mod nd. (2)

– ABM.col
(t,(ur,ut))
1 (pk, x2, (r,Rr, Rt)): It picks up ω, η

U← Znd , R′A, R
′
a, R

′
b

U←
Z×
nd+1 . It then computes A := gω1 · H(t)

η · R′A
nd

(mod nd+1), a := gωR′a
nd

(mod nd+1), and b := gηR′b
nd

(mod nd+1). It outputs c := (A, a, b) and
ξ := (x2, (r,Rr, Rt), (ur, ut), ω, η, R

′
A, R

′
a, R

′
b).

– ABM.col2(ξ,m): To open c to m, it computes z = ω − mx2 mod nd, s =
η−mr mod nd, α = b(ω−mx2−z)/ndc, and β = b(η−mr−s)/ndc. It then

sets RA := R′A·R
−m
t ·gα1 ·H(t)

β
(mod nd+1), Ra := R′a·R−m2 ·gα (mod nd+1),

and Rb := R′b · R−mr · gβ (mod nd+1). It outputs (z, s,RA, Ra, Rb), where

A = gz1H(t)sumt R
nd

A (mod nd+1), a = E(z;Ra) · gm2 (mod nd+1), and b =
E(s;Rb) · umr (mod nd+1).

We note that ABM.col runs a canonical sigma protocol on Ltd
pk to prove

that the prover knows (x2, (r,Rr, Rt)) such that ur = Epk(r;Rr) and ut =
gx2
1 Epk(0;Rt)H(t)r. Hence, the trapdoor mode works correctly when (t, (ur, ut)) ∈
Ltd
pk. On the contrary, ABM.enc runs a simulation algorithm of the sigma proto-

col with message (challenge) x. Notice that (A, a, b) implies the following linear
system on Znd , D(A)

D(a)
D(b)

 =

x1 y(t) D(ut)
1 0 x2
0 1 D(ur)

 z
s
m

 (3)

The matrix is invertible if

D(ut) 6= (x1x2+y(t)D(ur)) (mod p) and D(ut) 6= (x1x2+y(t)D(ur)) (mod q),

which means that (t, (ur, ut)) ∈ Lext
pk . Hence, the decryption mode works cor-

rectly.

Lemma 1 (Implicit in [18]). (ABM.gen,ABM.spl) is PPRF with unforgeabil-

ity on L̂td
pk(= U ′pk\Lext

pk), under the assumptions, 3, 4, and 5.

The proof is given in the full version [14]. By this lemma, we have:

Theorem 2. The scheme constructed as above is an ABME scheme if the DCR
assumption (Assumption 3), the non-tirvial divisor assmuption (Assumption 4),
and the non-multiplication assumption (Assumption 5) hold true.

This scheme has a ciphertext consisting of only 5 group elements (including
(ur, ut)) and optimal expansion factor Ω(1). This scheme requires a public-key
consisting of κ+ 3 group elements along with some structure parameters.

8 ABM-LTF based ABME and Vice Versa

Hofheinz [18] has presented the notion of all-but-many lossy trapdoor func-
tion (ABM-LTF). We provide the definition in Appendix B. We remark that
ABM-LTF requires that, in our words, (ABM.gen, ABM.spl) be strongly un-
forgeable, whereas ABME only requires it be unforgeable. However, as shown in
[18], unforgeable PPRF can be converted into strongly unforgeable PPRF via a
chameleon commitment scheme. Therefore, this difference is not important. We
note that we can regard Hofheinz’s DCR-based ABM-LTF (with only unforge-
ability) as a special case of our DCR-based ABME scheme by fixing a part of
the coin space as (RA, Ra, Rb) = (1, 1, 1). Although the involved matrix of his
original scheme is slightly different from ours, the difference is not essential. In
the end, we can regard Hofheinz’s DCR-based ABM-LTF as

ABM.eval(t,(ur,ut))(pk, (m, z, s)) := ABM.enc(t,(ur,ut))(pk,m; (z, s, 1, 1, 1)),

where (m, z, s) denotes a message. This ABM-LTF has ((d− 1) log n)-lossyness.
In the latest e-print version [18], Hofheinz has shown that his DCR-based ABM-
LTF can be converted to SIM-SO-CCA PKE. To construct it, Hofheinz implicitly
considered the following PKE scheme such that

ABM.enc(t,(ur,ut))(pk,M ; (m, z, s)) :=(ABM.eval(t,(ur,ut))(pk, (m, z, s)),

M ⊕H(m, z, s)),

where H is a suitable 2-universal hash function from (Znd)3 to {0, 1}κ (κ <
n). According to the analysis in Sect. 7.2 in [18], if d ≥ 5, it can open an
ciphertext arbitrarily using Barvinok’s alogorithm, when (t, (ur, ut)) ∈ Lloss.
Then it turns out ABME in our words. For practical use, it is rather inefficient,
because its expansion rate of ciphertext length per message length is ≥ 31, and
the modulus of ≥ n6 is required. The opening algorithm is also costly. Table 2
shows comparison.

On the contrary, our DCR-based ABME (strengthened with strong unforge-

ability) can be converted to ABM-LTF. Remember that (A, a, b) = ABM.enc(t,(ur,ut))

(pk,m; (z, s,RA, Ra, Rb)). It is obvious that we can extract not only message

ABME expansion factor ciphertext-length message-length pk-length

ABME from [18] ≥ 31∗ (5(d+ 1) + 1) logn logn (κ+ 3)d logn

Sect. 7.1 (d ≥ 1) 5 + 1/d 5(d+ 1) logn d logn (κ+ 3)d logn

Table 2. Comparison among ABMEs

∗ : d ≥ 5 is needed.

m but (z, s) by inverting the corresponding matrix, but we point out that we
can further retrieve (RA, Ra, Rb), too. This mean that our DCR based ABME
turns out ABM-LTF. Indeed, after extracting (m, z, s) from (A, a, b), we have

(RA)n
d

, (Ra)n
d

, (Rb)
nd in Z×

nd+1 . We remark that RA, Ra, Rb lie not in Z×
nd+1 but

in (Z/nZ)×. So, letting α = rn
d

mod nd+1 where r ∈ (Z/nZ)×, r = α(nd)−1

mod
n is efficiently solved by φ(n). Thus, our DCR based ABME turns out ABM-LTF
with (d log n)-lossyness for any d ≥ 1, whereas Hofheinz’s DCR based ABM-LTF
is ((d− 1) log n)-lossy.

ABM-LTF exp. factor output-length input-length lossyness

ABM-LTF [18] 5/3 (5(d+ 1) + 1) logn 3d logn (d− 1) logn

ABM-LTF from Sect. 7 5/3 (5(d+ 1) + 1) logn 3(d+ 1) logn d logn
Table 3. Comparison among ABM-LTFs

9 Acknowledgments

We thank Kirill Morozov and his students for nice feedback in the early version
of this work. We also thank Dennis Hofheinz for valuable discussion.

References

1. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In A. Joux, editor,
EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
1–35. Springer-Verlag, 2009.

2. M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant rounds.
In STOC ’90, pages 482–493. ACM, 1990.

3. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 126–144. Springer-Verlag, 2003.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2001), pages 136–145. IEEE Computer Society, 2001. The full version
available at at Cryptology ePrint Archive http://eprint.iacr.org/2000/067.

5. R. Canetti and M. Fischlin. Universally composable commitments. In J. Kilian,
editor, CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
19–40. Springer-Verlag, 2001.

6. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC 2002, pages 494–503. ACM,
2002. The full version is available at http://eprint.iacr.org/2002/140.

7. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Desmedt [11], pages 174–187.

8. I. Damg̊ard and J. Groth. Non-interactive and reusable non-malleable commitment
schemes. In STOC 2003, pages 426–437. ACM, 2003.

9. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, PKC 2001, volume
1992 of Lecture Notes in Computer Science, pages 125–140. Springer-Verlag, 2001.

10. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In
M. Yung, editor, CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 581–596. Springer-Verlag, 2002. The full version is available at
http://www.brics.dk/RS/01/41/.

11. Y. G. Desmedt, editor. Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 21-
25, 1994, Proceedings, volume 839 of Lecture Notes in Computer Science. Springer-
Verlag, 1994.

12. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against
chosen-ciphertext selective opening attacks. In H. Gilbert, editor, EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 381–402. Springer-
Verlag, 2010.

13. M. Fischlin, B. Libert, and M. Manulis. Non-interactive and re-usable universally
composable string commitments with adaptive security. In D. H. Lee and X. Wang,
editors, ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science,
pages 468–485. Springer-Verlag, 2011.

14. E. Fujisaki. All-but-many encryption: A framework for efficient fully-equipped UC
commitments. IACR Cryptology ePrint Archive, 2012:379, 2012.

15. E. Fujisaki. New constructions of efficient simulation-sound commitments using
encryption and their applications. In O. Dunkelman, editor, CT-RSA, volume 7178
of Lecture Notes in Computer Science, pages 136–155. Springer-Verlag, 2012.

16. J. A. Garay, P. P.Mackenzie, and K. Yang. Strengthening zero-knowledge protocols
using signatures. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 177–194. Springer-Verlag, 2003.

17. R. Gennaro. Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In M. K. Franklin,
editor, CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
220–236. Springer-Verlag, 2004. The full version available at at Cryptology ePrint
Archive http://eprint.iacr.org/2003/214.

18. D. Hofheinz. All-but-many lossy trapdoor functions. In D. Pointcheval and T. Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of Lecture Notes in Com-
puter Science, pages 209–227. Springer-Verlag, 2012. (last revised 18 Mar 2013
at http://eprint.iacr.org/2011/230).

19. T. Itoh, Y. Ohta, and H. Shizuya. Language dependent secure bit commitment.
In Desmedt [11], pages 188–201.

20. Y. Lindell. Highly-efficient universally-composable commitments based on
the DDH assumption. In K. G. Paterson, editor, EUROCRYPT 2011, vol-
ume 6632 of Lecture Notes in Computer Science, pages 446–466. Springer-
Verlag, 2011. The full version available at at Cryptology ePrint Archive
http://eprint.iacr.org/2011/180.

21. P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 382–400. Springer-Verlag, 2004.

22. R. Nishimaki, E. Fujisaki, and K. Tanaka. An efficient non-interactive universally
composable string-commitment scheme. IEICE Transactions, 95-A(1):167–175,
2012.

23. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer-Verlag, 1999.

24. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In D. Wagner, editor, CRYPTO 2008, volume 5157
of Lecture Notes in Computer Science, pages 554–571. Springer-Verlag, 2008.

25. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
R. E. Ladner and C. Dwork, editors, STOC 2008, pages 187–196. ACM, 2008.

A Ideal Multi-Commitment Functionality

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S:

– Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from
Pi, proceed as follows: If a tuple (commit, sid, ssid, . . .) with the same
(sid, ssid) was previously recorded, does nothing. Otherwise, record the tuple
(sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj) to Pj and S.

– Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as
follows: If a tuple (sid, ssid, Pi, Pj , x) was previously recorded, then send
(reveal, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, does nothing.

Fig. 4. The ideal multi-commitment functionality

B All-But-Many Lossy Trapdoor Functions

We recall all-but-many lossy trapdoor functions (ABM-LTF) [18], by slightly
modifying the notation to fit our purpose. All-but-many lossy trapdoor function
ABM.LTF = (ABM.gen,ABM.spl,ABM.eval,ABM.inv) consists of the following
algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where
pk defines a set Upk. We let U ′pk = {0, 1}κ × Upk. pk also determines two

disjoint sets, Lloss
pk and Linj

pk, such that Lloss
pk ∪ L

inj
pk ⊂ U ′pk.

– ABM.spl is a PPT algorithm that takes (pk,w, t), where t ∈ {0, 1}κ, picks up
inner random coins v ← COINspl, and computes u ∈ Upk. We write Lloss

pk (t)
to denote the image of ABM.spl on t under pk, i.e.,

Lloss
pk (t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk, w, t; v)}.

We require Lloss
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lloss

pk (t)}. We set L̂loss
pk :=

U ′pk\L
inj
pk. Since Lloss

pk ∩ L
inj
pk = ∅, we have Lloss

pk ⊆ L̂loss
pk ⊂ U ′pk.

– ABM.eval is a DPT algorithm that takes pk, (t, u), and message x ∈ MSP and

computes c = ABM.eval(t,u)(pk, x), where MSP denotes the message space
uniquely determined by pk.

– ABM.inv is a DPT algorithm that takes sk, (t, u), and c, and computes x

= ABM.inv(t,u)(sk, c).

All-but-many encryption schemes require the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic
pseudo random function (PPRF), as defined in Sect. 3.1, with strongly un-

forgeability on L̂loss
pk = U ′pk\L

inj
pk. Strong unforgeability in this paper is called

evasiveness in [18].
2. Inversion For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), every (t, u) ∈
Linj
pk, and every x ∈ MSP, it always holds that

ABM.inv(t,u)(sk,ABM.eval(t,u)(pk, x)) = x.

3. `-Lossyness For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), and every

(t, u) ∈ Lloss
pk , the image set ABM.eval(t,u)(pk,MSP) is of size at most |MSP| ·

2−`.

Here Lloss
pk (resp. Linj

pk) in ABM-LTFs corresponds to Ltd
pk (resp. Lext

pk) in ABMEs.
We remark that ABM-LTFs [18] require that (ABM.gen,ABM.spl) should be
strongly unforgeable, whereas ABMEs requires that (ABM.gen,ABM.spl) be just
unforgeable.

C Assumptions and Some Useful Lemmas

Let us write Π(d) to denote DJ PKE with parameter d.

Assumption 3. We say that the DCR assumption holds if for every PPT A,
there exists a key generation algorithm K such that AdvdcrA (κ) =

Pr[Exptdcr−0A (κ) = 1]− Pr[Exptdcr−1A (κ) = 1]

is negligible in κ, where

Exptdcr−0A (κ) :

n← K(1κ); R
U← Z×n2

c = Rn mod n2

return A(n, c).

Exptdcr−1d,A (κ) :

n← K(1κ); R
U← Z×n2

c = (1 + n)Rn mod n2

return A(n, c).

Assumption 4 ([18]). We say that the non-trivial divisor assumption holds on
Π(d) if for every PPT A, AdvdivisorA,Π(d)(κ) = negl(κ) where

AdvdivisorA,Π(d)(κ) = Pr[(pk, sk)← K(1κ); A(pk) = c : 1 < gcd(D(c), n) < n].

This assumes that an adversary cannot compute an encryption of a non-trivial
divisor of n, i.e., E(p), under given public-key pkdj only. Since the adversary is
only given pkdj, the assumption is plausible.

Lemma 2. If A is an adversary against Π(d), there is adversary A′ against
Π(1) such that

AdvdivisorA,Π(d)(κ) ≤ AdvdivisorA′,Π(1)(κ).

Assumption 5 ([18]). We say that the non-multiplication assumption holds on
DJ PKE Π(d) if for every PPT adversary A, the advantage of A, Advmult

A,Π(d)(κ) =

negl(κ), where Advmult
A,Π(d)(κ) = Pr[(pk, sk) ← K(1κ); c1, c2 ← Z×

nd+1 ; c∗ ←
A(pk, c1, c2) : Dsk(c∗) = Dsk(c1) ·Dsk(c2)].

This assumes that an adversary cannot compute E(x1·x2) for given (pkdj,E(x1),E(x2)).
If the multiplicative operation is easy, DJ PKE turns out a fully-homomorphic
encryption (FHE), which is unlikely. Although breaking the non-multiplication
assumption does not mean that DJ PKE turns out a FHE, this connection gives
us some feeling that this assumption is plausible.

Lemma 3. If A is an adversary against DJ PKE Π(d), there is an adversary
A′ against Π(1) such that

Advmult
A,Π(d)(κ) ≤ Advmult

A′,Π(1)(κ).

