
XLS is not a Strong Pseudorandom Permutation

Mridul Nandi

Indian Statistical Institute, Kolkata
mridul@isical.ac.in,

Abstract. In FSE 2007, Ristenpart and Rogaway had described a generic
method XLS to construct a length-preserving strong pseudorandom per-
mutation (SPRP) over bit-strings of size at least n. It requires a length-
preserving permutation E over all bits of size multiple of n and a block-
cipher E with block size n. The SPRP security of XLS was proved from
the SPRP assumptions of both E and E. In this paper we disprove the
claim by demonstrating a SPRP distinguisher of XLS which makes only
three queries and has distinguishing advantage about 1/2. XLS uses a
multi-permutation linear function, called mix2. In this paper, we also
show that if we replace mix2 by any invertible linear functions, the con-
struction XLS still remains insecure. Thus the mode has inherit weakness.

Keywords: XLS, SPRP, Distinguishing Advantage, length-preserving
encryption.

1 Introduction

The notion of domain extension arises in many areas of cryptography such as
hash function, pseudorandom function or PRF, strong pseudorandom permuta-
tion or SPRP [12] etc. Usually, we design a building block defined for a small
and fixed bit size domain. Then, by applying the building block iteratively, we
obtain a similar kind of function defined over arbitrary domain. For example,
a blockcipher defined on n bits can be used to define an encryption algorithm
which can encrypt any message of size multiple of n. To define a ciphertext for
a message whose size is not a multiple of n, one can first apply some padding
rule to make the (padded) message of size multiple of n. This method can not
preserve length as it expands ciphertext length. A length-preserving encryption
is called an enciphering scheme. The length-preserving property makes our
task more difficult and restricted than length expanding encryptions. On the
other hand, designing enciphering schemes over all bit strings of size multiple
of block-size (i.e., n) seems to be easier than defining over arbitrary bit strings.
Many such enciphering schemes have been defined [10, 9].

Non-Generic Methods. There are several known methods for turning a
blockcipher into an enciphering schemes over arbitrary bit strings. One can ap-
ply the underlying block cipher twice and use the intermediate output as an
one-time pad for partial block (used in EME [7], TET [8], HEH [16] etc.); The
other constructions e.g., HCTR [17], HCH [3], XCB [13] use hash-then counter

paradigm. A standard trick like ciphertext stealing can also be applied to specific
constructions (e.g., AEZ [1]). However, all these approaches are not generic.

We call a method domain completion (or generic domain completion) if
it converts any enciphering scheme over bit strings of size multiple of n into
an enciphering scheme over any bit strings (possibly of size at least n).

To our best knowledge, so far only two domain completions have been proposed.

1. A popular, efficient and neatly defined domain completion method is XLS
(eXtended by Latin Square) designed by Ristenpart and Rogaway [15]. The
design rational of XLS is similar to that of elastic blockcipher as both follow
encrypt-then-mix paradigm.

2. Following hash-counter-hash paradigm, Nandi proposed a domain comple-
tion method in [14].

In addition to these, a heuristically described method, called Elastic block-
cipher [4], was proposed by Cook, Yung and Keromytis. Later elastic blockci-
pher, defined over all bits of sizes in between n and 2n, has been more formally
defined in [5].

Applications of Domain Completion Method. While primarily interested
in the theoretical question of how to obtain domain extension for ciphers, arbitrary-
input-length enciphering is a problem with many applications. A well-known
application is disk-sector encryption in which size of ciphertext and plaintext re-
main same as the sector size of the disk. In general, enciphering scheme is easy to
define for input sizes of multiple of n (block size of the underlying blockcipher).
Domain completion methods can be used to define the enciphering schemes for
arbitrary bit strings. It is also used in other symmetric key algorithms such as
authenticated encryption. For example, XLS is widely adapted in many authenti-
cated encryptions, e.g. AES-COPA [2], Deoxys, Joltik, KIASU, Marble, SHELL
etc. [1].

1.1 Our Contribution

In this paper we demonstrate a chosen plaintext-ciphertext adversary (CPCA)
distinguisher against XLS (see Algorithm A0 in section 3.2). The attack makes
only three encryption and decryption oracle queries in an interleaved manner
and has distinguishing advantage about 1/2. Thus, the security claim of XLS is
wrong.

XLS uses a linear multi-permutation (very efficiently computable) mix2 which
satisfies some property. Authors called any such linear permutation satisfying the
property a good mixing function. It is natural to think a possible remedy of XLS
to replace mix2 by other good mixing function or some other stronger linear
permutations. Unfortunately, we show that these remedies would not work. To
establish our claim, we consider a generalized version of XLS (we call it GXLS)

which applies any arbitrary linear permutations instead of mix2. Moreover, we
consider keys of two invocations of the underlying blockcipher E to be indepen-
dently chosen. We demonstrate similar CPCA-distinguishers (in section 4) for
GXLS having advantage at least 1/4. So we conclude that XLS has design flaws
in its modes not in the choice of linear mixing functions.

2 XLS and Its General Form GXLS

Basics and Notation.

1. An s-bit string X is denoted as X = X[1]X[2] · · ·X[s] where X[i] ∈ {0, 1}.
We denote X[i..j] = X[i] · · ·X[j] and |X| = s.

2. A length-preserving function f satisfies |f(X)| = |X| for all X.
3. Any linear function from {0, 1}s to {0, 1}t can be represented by a t×s binary

matrix. Let rol(X) represent left circular bit-rotation, that is, for any bit-
string X := X[1]X[2] · · ·X[s] of length s, let rol(X) = X[2]X[3] · · ·X[s]X[1].
Note that rol is a linear invertible function and is represented by the following
s× s invertible matrix:

R =


0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

 =

(
0 Is−1
1 0

)
.

Here, Is−1 represents the identity matrix of size s− 1.
4. Throughout the paper, let n be a fixed integer representing the block-size of

the underlying blockcipher E.

2.1 XLS and GXLS on {0, 1}2n−1

In this section we describe how XLS has been defined for bit strings of size 2n−1.
Later we show distinguishing attack of XLS by making queries of size 2n−1 only.
We refer readers to the original paper [15] for the definition of XLS over arbitrary
bit strings. We first define a linear function mix2 : {0, 1}2n−2 → {0, 1}2n−2 as
below

mix2(AB) = (A⊕rol(A⊕B), B⊕rol(A⊕B)) = ((R+I)·A+R·B, R·A+(R+I)·B)

=

(
R + I R

R R + I

)
·
(
A

B

)
where |A| = |B| = n−1 and I is the identity matrix of size n−1. It is easy to see
that the inverse of the linear map mix2 is itself. Such a permutation is also called
an involution. Now we describe the XLS algorithm [15] over the set of all 2n− 1
bit strings based on two n-bit (random) permutations E and E and the linear
permutation mix2. We would like to note that we express the input, output and
intermediate variables with different notations from those of [15] which would
be used to describe our attack and analysis.

E

E

E

P Q

A

U

V

W

B

DC

mix2

mix2

a

u = a⊕ 1

v

b = v ⊕ 1

Π1

Π2

P Q

A

U

V

W

B

mix1

mix2

C

Π3

D′

Π1

Π2

Π3

P Q

A

U

D

A

DC

a

v

B

(3)(1) (2)

Fig. 2.1. Illustration of (1) XLS, (2) GXLS and (3) 3-round Elastic Blockcipher. The
XLS and 3-round Elastic blockcipher are special cases of GXLS.

Algorithmic Definitions of XLS and GXLS Now we describe the algorithms
XLS and GXLS which are defined on 2n− 1 bits.

Algorithm XLSE,E

Input: (P,Q) ∈ Fn
2 × Fn−1

2

Output: (C,D) ∈ Fn
2 × Fn−1

2 .
01 E(P) = a‖A, a ∈ F2.
02 u = a!, (U,W) = mix2(A,Q).
03 E(u‖U) = v‖V .
04 b = v!, (B,D) = mix2(V,W).
05 E(b‖B) = C.
06 return (C,D).

Algorithm GXLS[Π1,mix1, Π2,mix2, Π3]
Input: (P,Q) ∈ Fn

2 × Fn−1
2

Output: (C,D) ∈ Fn
2 × Fn−1

2 .
01 Π1(P) = A.
02 (U,W) = mix1(A,Q).
03 Π2(U) = V .
04 (B,D) = mix2(V,W).
05 Π3(B) = C.
06 return (C,D).

Here ! denotes bit complement. Here mix1 and mix2 are two invertible linear
functions on 2n− 1 bits and mix2 is a linear invertible function over {0, 1}2n−2
bits as described before. The Πi’s are independent uniform random (or pseudo-
random) permutations whereas in XLS E and E are independent uniform ran-
dom (or pseudorandom) permutations. We also denote the generalized-XLS as
GXLS[Π1,mix1, Π2,mix2, Π3](P,Q) = (C,D) as above (in the right hand side of
Fig. 2.1). Note that the XLS algorithm is nothing but GXLS[E, !‖mix2, E , !‖mix2, E]
where (!‖f)(b,X) = b!‖f(X). In order for GXLS to be invertible, mix1 and mix2
should be invertible.

2.2 Elastic Blockcipher

The three round Elastic blockcipher can also be viewed as a GXLS[Π1,mix3, Π2,
mix3, Π3] where mix3(A,B) = ((A[i1] · · ·A[is]) ⊕ B,A[i1] · · ·A[is]), |A| = n,
|B| = s and 1 ≤ i1 < · · · < is ≤ n are some fixed integers (specific choices of
these values depend on the underlying blockcipher). We illustrate this method
in Fig 2.1 when i1 = n−s+1, . . . , is = n. Basic mix function of it can be defined
as (X‖Y) 7→ X⊕Y ‖X where |X| = |Y | = s. Similarly, four or higher number of
rounds can be defined. So all of these follow the encrypt-mix paradigm iterated
several rounds. We capture this paradigm for three iterations in GXLS. In the
following sections, we prove that three rounds are not sufficient for having SPRP.

3 Insecurity of XLS

In this section we show that XLS is not SPRP (strong pseudorandom permu-
tation). In fact we establish a distinguisher making only three oracle queries
having distinguishing advantage about 1/2. Moreover, if we repeat this attack
independently, we can amplify the distinguishing advantage close to one. We first
briefly define basics of security notions related to distinguishing advantages.

3.1 Security Definitions

Let Ri denote the uniform random function from {0, 1}i to {0, 1}i, i.e., the uni-
form distribution on the set Func({0, 1}i, {0, 1}i) of all functions from {0, 1}i to
itself. Given a set L ⊆ N := {1, 2, · · · }, we denote RL for the tuple 〈Ri〉i∈L of
random functions where Ri’s are jointly independently distributed. We call the
set L length set. We call RL a length-preserving uniform random function on
{0, 1}L := ∪i∈L{0, 1}i. Similarly, let Pi denote the uniform random permutation
on {0, 1}i, i.e., the uniform distribution on the set Perm({0, 1}i, {0, 1}i) of all
permutations on {0, 1}i. Note that the inverse random permutation, P−1i , is also
an uniform random permutation. We similarly define length-preserving uniform
random permutation PL on {0, 1}L which is independent composition of Pi for
all i ∈ L.

Now let A be an oracle algorithm which has access of two length-preserving
oraclesO1 andO2. SupposeAmakes queries from the set {0, 1}L for both oracles.
We define SPRP-advantage of A for a length-preserving random permutation
FL (not necessarily uniform) by

Advsprp
FL

(A) = Pr[AFL,F−1
L = 1]− Pr[APL,P−1

L = 1].

In general, we can define advantage for two pairs of tuples of length-preserving
random functions (FL, F

′
L) and (GL, G

′
L) as

AdvA((FL, F
′
L), (GL, G

′
L)) = Pr[AFL,F′L = 1]− Pr[AGL,G′L = 1].

If A interacts with a length-preserving random permutation O1 and its inverse
O2 then we can assume the following:

1. A is not making any repetition query.
2. If xi is O1-query and yi is its response then there is no O2-query xj = yi for

some j > i and vice-versa.

We can assume these since the responses are determined for these types of
queries. An adversary satisfying the above conditions is called an allowed ad-
versary.

Theorem 1. [11] Let RL and R′L be independently chosen length-preserving
uniform random functions and let PL be length-preserving uniform random per-
mutation. Then for any allowed adversary A which makes at most Q queries,
we have,

AdvA((PL, PL
−1), (RL, R

′
L)) ≤ Q(Q− 1)

2m+1

where m = min{` : ` ∈ L}.

The above result says that an uniform length-preserving random permutation
is very close to an uniform length-preserving random function. Thus if we want
to prove that an enciphering scheme is not SPRP-secure by small number of
queries then it would be enough to compute the distinguishing advantage from
uniform random functions for an allowed adversary. For example, when Q = 3,
if for length-preserving construction FL, AdvA((PL, PL

−1), (FL, F
−1
L)) := c is

significant for an allowed adversary then Advsprp
FL

(A) is at least c−2−n+2 which
is also significant.

Remark 1. The above is one side of the implication of the Theorem 1. The other
application is to show a construction FL SPRP by showing AdvA((FL, FL

−1),
(RL,R′L)) is negligible.

3.2 SPRP Distinguishing Algorithm

Distinguishing Algorithm A0 for XLS.

1. Make encryption query (P1, Q1) and obtains response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1 + 1) and obtains re-

sponse (P2, Q2).
3. Make encryption query (P3 = P2, Q3) and obtains response (C3, D3)

where

Q3 = Q1 + (I + R−2) · (Q1 +Q2 + 1).

4. return 1 if D3 = Q1 +Q3 +D1, 0 otherwise.

3.3 Analysis of Attack

To see why our attack works, let us first observe some useful relations among
internal variables in the computations of XLS.

E

E

E

P1 Q1

A1

U1

V1

W1

B1

D1C1

mix2

mix2

a1

u1 = a1!

v1

b1 = v1!

Query-1 (encryption)

E

E

E

P2 Q3

A2

U3 = U1

V3 = V1

W3

B3

D3C3

mix2

mix2

a2

u2 = a2!

v3 = v1

b3 = v3!

Query-3 (encryption)

E

E

E

P2 Q2

A2

U2

V2

W2

B1

D2 = D1 + 1C1

mix2

mix2

a2 = u2!

u2

v1 = b1!

b1

Query-2 (decryption)

Fig. 3.1. A0 makes three queries and obtains collisions on U1 and U3 values with
probability 1/2 (due to the event that a1 = a2).

Lemma 1. With the notations as described in the algorithm XLS, we have A+
B = (R−1 + I) · (Q+D).

Proof. Since mix2 is inverse of itself we have (V,W) = mix2(B,D). By equating
W with line 02 of XLS algorithm, we have

R ·B + (R + I) ·D = R ·A+ (R + I) ·Q.

Thus, R · (A+B) = (R + I) · (Q+D) and so the result follows. ut

Lemma 2. With the notations as described in the algorithm XLS, we have U +
V = R−1 · (Q+D).

Proof. Due to line 02 and 04, we have R · U + (I + R) ·W = Q and R · V +
(I + R) ·W = D. Thus, R · (U + V) = (D +Q) and so the result follows. ut

The basic idea of our attack is to obtain an internal collision. Suppose we
have two queries (Pi, Qi) with responses (Ci, Di), i = 1, 2 such that the Ui values
remain the same. So the outputs Vi are also same. Due to above lemma, we have
Q1 ⊕D1 = Q2 ⊕D2. For a uniform random permutations this event can occur
with a probability of about 2−n+1. Now we show that in query-1 and query-3, U
values collide with probability 1/2 and so we can distinguish XLS from uniform
random permutation with advantage about 1/2 (for large n, 2−n+1 is negligible).

Theorem 2. The Algorithm of A0 has distinguishing advantage about 1/2 against
XLS.

Proof. Note that A0 makes three encryption and decryption queries in an in-
terleaved manner. Let us denote the intermediate variables of computations of
ith query by using suffix i, 1 ≤ i ≤ 3. Let us denote G = R−1 + I. By Lemma 1,
we have A1 +B1 = G · (Q1 +D1) and A2 +B1 = A2 +B2 = G · (Q2 +D2) and
so A1 +A3 = A1 +A2 = G · (Q1 +D1 +Q2 +D2) = G · (Q1 +Q2 + 1). Now we
make our main claim:

Claim: U1 = U3.

U1 + U3 = (R + I) · (A1 +A3) + R · (Q1 +Q3)

= (R + I) ·G(Q1 +Q2 + 1) + R · (Q1 +Q3)

= (R + R−1) · (Q1 +Q2 + 1) + R · (Q1 +Q3)

Since Q3 = Q1 + (I + R−2) · (Q1 +Q2 + 1), we have U1 = U3. ut
The rest of the proof is straightforward. As we have collision on U values,

we have collision on V values, i.e., V1 = V3. But this can happen if the first
bit of inputs of E in query 1 and 3 match which can happen with probability
1/2. Assuming this, we can exploit the collision to make distinguishing attack
as discussed before the theorem. We have D3 = Q1 +Q3 +D1. This can hold for
a uniform random permutation E with probability about 2−n+1. So the result
follows. ut
Remark 2. The same attack works for any length of the form kn− 1 with same
advantage. We only need the size of the partial block to be n − 1. Note that
we need the first bit of output of E in query 1 and 3 should match which
can happen with probability 1/2. For other length inputs, the distinguishing
advantage reduces as we need more bits collision. In general, if we want to
distinguish XLS only on kn + s bits inputs then we need collision on the first
n− s bits of outputs of E in query 1 and 3 which can happen with probability
about 2s−n. So the distinguishing advantage would be about 2s−n − 21−n. So
if the partial block size s is small the distinguishing advantage of our attack
reduces. This is very natural as most of the intermediate bits are processed
through E .

4 Distinguishing attack on GXLS on {0, 1}2n−1

Now we demonstrate how we can modify the distinguishing attack for GXLS.
This would suggest that any simple modification on XLS (such as changing mix
functions with others) do not work. In other words, we show that the mode,
not the mixing function, has inherent weakness. Behavior of this distinguishing
attack depends on different cases of invertible mixing matrices mix1 and mix2.
As we need to assume these as linear permutations, we can represent these by
the following (2n− 1)× (2n− 1) invertible matrices.

mix1 =

(
M [1]n×n N [1]n×(n−1)

M [2](n−1)×n N [2](n−1)×(n−1)

)
,

mix−12 =

(
M ′[1]n×n N ′[1]n×(n−1)

M ′[2](n−1)×n N
′[2](n−1)×(n−1)

)
.

Before we demonstrate our attacks we state some notations and results which
would be used.

Notations. Given a r × s matrix A we denote C(A) the column space of the
matrix.

Lemma 3. Let Mr×s and Nr×t be two matrices and cr×1 is a vector such that

C(N) 6⊆ C(M). For any two uniform random vectors a
$← {0, 1}s and q

$← {0, 1}t
(not necessarily independent) Pr[M · a = N · q + c] ≤ 1/2.

Proof. This is straightforward when M is of the form
(
Ir ∗
0 0

)
where r is the rank

of M and ∗ means that the sub matrix could be anything. In this case there
must exist i > r such that ith row of N is non-zero. As qi is uniform on {0, 1},
by equating the event on ith bit we get probability at most 1/2 to achieve the
event.

For a general matrix M , we can find two non-singular square matrices S and
T such that S ·M · T =

(
Ir ∗
0 0

)
. So the given probability p should be same as

Pr[SMT · (T−1a) = SN · q + S · c].

Let us denote M ′ = SMT , a′ = T−1a, c′ = Sc and N ′ = SN . With this
notation, we have p = Pr[M ′ ·a′ = N ′ · q+ c′]. Now note that M ′ has the form as
considered before. Due to invertible property of S and T , we have the property
that C(N ′) 6⊆ C(M ′) and, a′ and q′ follow individually uniform distributions. ut

Now we describe our attacks for different cases of the sub matrices of the
mix functions. Conventionally, we use suffix 1, 2 and 3 to denote intermediate
values for the first, second and third queries respectively.

4.1 rank(M [2]) ≤ n− 2

In this case we first claim that the column space of N [2] must contain a vector
which does not belong to the column space of M [2]. Otherwise, the rank of
(n− 1)× (2n− 1) matrix (M [2] N [2]) is less than n− 2 which contradicts that
the matrix mix1 is invertible.

Now we run the algorithm A0 only for the first two queries. As before, we
have M [2](A1 + A2) = N [2](Q1 +Q2) +N ′[2] · 1. Using the lemma 3, we know
that when the algorithm is interacting with uniform random permutation, the
probability that N [2](Q1 +Q2)+N ′[2] ·1 belongs to the column space of M [2] is
less than 1/2. However, for the case of GXLS it occurs with probability one. So
we can distinguish with advantage at least 1/2. We formally describe the attack
algorithm by A1 below.

Distinguishing Algorithm A1.

1. Make encryption query (P1, Q1) and obtain response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1+1) and obtain response

(P2, Q2).
3. return 1 if N [2](Q1 +Q2) +N ′[2] · 1 ∈ C(M [2]), 0 otherwise.

Note that given a vector v and a matrix M [2], there is an efficient algorithm
to check whether a vector v belongs to the column space of M [2]. For this we
essentially need to solve the system of equations M [2] · x = v and whenever we
arrive contradiction a solution does not exist equivalently v is not a member of
the column space. Alternatively we can first find some invertible matrices S and
T (by some standard elementary operations) such that

S ·M [2] · T =

(
Ir ∗
0 0

)
where r denotes the rank of M [2]. So M [2] · x = v if and only if(

Ir ∗
0 0

)
(T−1x) = S · v

which holds if and only if for all i > r, the ith entry of S · v is zero.

Remark 3. Similar attack works when rank(M ′[2]) ≤ n− 2. In this case we only
need to interchange the role of encryption and decryption queries.

4.2 Case: rank(M [2]) = rank(M ′[2]) = n− 1, rank(N [1]) ≤ n− 2

As N [1] does not have full rank, we can find Q1 6= Q2 such that N [1]Q1 =
N [1]Q2. So U values collide for two encryption queries (P,Q1) and (P,Q2). Now
we write the relationship among intermediate variables. So A1 = A2 and due to
choice of Q1 and Q2 we also have U1 = U2 and hence V1 = V2. Now, let us write
mix2 function as

mix2 =

(
M ′′[1]n×n N ′′[1]n×(n−1)

M ′′[2](n−1)×n N
′′[2](n−1)×(n−1)

)
.

By the applications of mix1 and mix2 functions for two queries, we have

1. W1 = M [2] ·A1 +N [2] ·Q1, W2 = M [2] ·A2 +N [2] ·Q2 and
2. D1 = M ′′[2] · V1 +N ′′[2] ·W1, D2 = M ′′[2] · V2 +N ′′[2] ·W2.

So W1 + W2 = N [2] · (Q1 + Q2) and D1 + D2 = N ′′[2] · (W1 + W2) =
N ′′[2] ·N [2] · (Q1 +Q2). Note that for a random function, we observe this with
probability 2−n+1. We formally describe the attack algorithm by A2 below.

Distinguishing Algorithm A2.

1. Let N [1]Q1 = N [1]Q2.
2. Make encryption query (P1, Q1) and obtains response (C1, D1).
3. Make encryption query (P1, Q2) and obtains response (C2, D2).
4. return 1 if D2 = D1 +N ′′[2] ·N [2] · (Q1 +Q2), 0 otherwise.

4.3 Case: rank(M [2]) = rank(M ′[2]) = n− 1, rank(N [1]) = n− 1

We make three queries same as A0 except the choice of Q3 whose value is de-
termined below. We have

1. U1 + U3 = M [1](A1 +A2) +N [1]Q1 +N [1]Q3.
2. M [2](A1 +A2) = N [2](Q1 +Q2) +N ′[2](D1 +D2) (from the computations

of W1 and W2).

As the rank of M [2] is n − 1 and the right hand side of item 2 above is
known, we can guess (A1 + A2) correctly with probability 1/2 (since there are
only two choices). So we can guess M [1](A1 + A2) from M [2](A1 + A2) with
probability at least 1/2. Let X be the guessed value of M [1](A1 +A2). We now
choose Q3 such that U1 + U3 = 0 (i.e., U1 = U3). From the item 1 of above,
we define Q3 = N [1]−1 ·X + Q1. Note that N [1] is assumed to be invertible in
this case. So Pr[U1 = U3] ≥ 1/2. This essentially leads to a similar distinguisher
as in XLS. However, we need to compute the distinguishing event similar to the
computation of the previous case. By the applications of mix1, mix−12 and mix2
functions for three queries, we have

1. W1 +W2 = N ′[2] · (D1 +D2),
2. W2 +W3 = N [2] · (Q2 +Q3), and
3. N ′′[2] · (W1 +W3) = D1 +D3.

So we have D3 = D1 +N ′′[2] · (N ′[2] · (D1 +D2) +N [2] · (Q1 +Q3)) which can
be observed with probability 2−n+1 for a random function. We formally describe
the attack algorithm by A2 below.

Distinguishing Algorithm A3.

1. Make encryption query (P1, Q1) and obtains response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1 + 1) and obtains response

(P2, Q2).
3. Guess M [1](A1 +A2), denoted X, from N [2](Q1 +Q2) +N ′[2](D1 +D2)
4. Choose Q3 such that N [1](Q1 +Q3) = X.
5. Make encryption query (P3 = P2, Q3) and obtains response (C3, D3).
6. return 1 if D3 = D1 +N ′′[2] · (N ′[2] · (D1 +D2) +N [2] · (Q1 +Q3)),
7. return 0, otherwise.

5 Conclusion

In this paper we provide chosen plaintext and ciphertext distinguishing attack
(i.e., SPRP distinguisher) of XLS. It makes three encryption and decryption calls
and has distinguishing advantage about 1/2. This attack can be further extended
to a general form of XLS following mix-then-encrypt paradigm. We believe that
it can not be repaired without introducing any non-linear functionality, e.g. an
additional blockcipher call. So we need four blockcipher calls to make this types
of design secure. Both Elastic blokcipher and Nandi’s construction make four
calls of non-linear functions. However, Nandi’s construction could be potentially
faster, as it requires two universal hash invocations (which can be achieved by
applying four rounds of AES [6]) and one call of weak-PRF (optimistically, one
can apply eight rounds of AES) in addition with a full blokcipher call (which is
e.g., ten rounds of AES). So in total it requires 26 rounds of AES which is much
faster than four full invocations of AES.

Acknowledgement. This work is supported by Centre of Excellence in Cryp-
tology at Indian Statistical Institute, Kolkata.

References

1. CAESAR submissions, 2014. http://competitions.cr.yp.to/caesar-
submissions.html.

2. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and authenticated online ciphers. In
ASIACRYPT (1), pages 424–443, 2013.

3. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-encrypt-hash approach. In Rana Barua and Tanja Lange,
editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages
287–302. Springer, 2006.

4. Debra L. Cook, Moti Yung, and Angelos D. Keromytis. Elastic aes. IACR Cryp-
tology ePrint Archive, 2004:141, 2004.

5. Debra L. Cook, Moti Yung, and Angelos D. Keromytis. Elastic block ciphers:
method, security and instantiations. Int. J. Inf. Sec., 8(3):211–231, 2009.

6. Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, and Fred-
erik Vercauteren. Computational aspects of the expected differential probability
of 4-round aes and aes-like ciphers. Computing, 85(1-2):85–104, 2009.

7. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315–327.
Springer, 2004.

8. Shai Halevi. TET: A wide-block tweakable mode based on Naor-Reingold. Cryp-
tology ePrint Archive, Report 2007/014, 2007. http://eprint.iacr.org/.

9. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482–
499. Springer, 2003.

10. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004.

11. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 31–46. Springer, 2002.

12. M. Luby and C. Rackoff. How to construct pseudo-random permutations from
pseudo-random functions. In Advances in Cryptology – Crypto 1985, number 218
in Lecture Notes in Computer Science, page 447, New York, 1984. Springer-Verlag.

13. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB)
mode of operation. Cryptology ePrint Archive, Report 2004/278, 2004.
http://eprint.iacr.org/.

14. Mridul Nandi. A generic method to extend message space of a strong pseudoran-
dom permutation. Computación y Sistemas, 12(3), 2009.

15. Thomas Ristenpart and Phillip Rogaway. How to enrich the message space of a
cipher. In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer
Science, pages 101–118. Springer, 2007.

16. Palash Sarkar. Improving upon the tet mode of operation. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, ICISC, volume 4817 of Lecture Notes in Computer
Science, pages 180–192. Springer, 2007.

17. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length
enciphering mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC,
volume 3822 of Lecture Notes in Computer Science, pages 175–188. Springer, 2005.

