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Abstract. Semantic-security of individual plaintext bits given the corre-
sponding ciphertext is a fundamental notion in modern cryptography. We
initiate the study of this basic problem for Order-Preserving Encryption
(OPE), asking “what plaintext information can be semantically hidden
by OPE encryptions?” OPE has gained much attention in recent years
due to its usefulness for secure databases, and has received a thorough
formal treamtment with innovative and useful security notions. How-
ever, all previous notions are one-way based, and tell us nothing about
partial-plaintext indistinguishability (semantic security).
In this paper, we propose the first indistinguishability-based security no-
tion for OPE, which can ensure secrecy of lower bits of a plaintext (under
essentially a random ciphertext probing setting). We then justify the def-
inition, from the theoretical plausibility and practicality aspects. Finally,
we propose a new scheme satisfying this security notion (the first one to
do so). In order to be clear, we note that the earlier security notions,
while innovative and surprising, nevertheless tell us nothing about the
above partial- plaintext indistinguishability because they are limited to
being one-way-based.

Keywords: Order-preserving encryption, secure encryption, security notions,
indistinguishability, foundations.

1 Introduction

Securing cloud database with untrusted cloud servers needs to hide information
from the database manager itself, and has resulted in new research areas.

Order-Preserving Encryption (OPE): This is, perhaps, the most promis-
ing new primitives in the area of encrypted database processing [1, 17, 3, 7, 8,
28]. It is a symmetric encryption over the integers such that ciphertexts pre-
serve the numerical orders of the corresponding plaintexts. That is, ∀m,m′{m <
m′ ⇒ EncK(m) < EncK(m′)}. OPE was originally studied in an ad-hoc fashion
in the database community by Agrawal, Kiernan, Ramakrishnan, Srikant and
Xu [1], and seemed like a clever heuristics. However, its careful foundational
study was initiated with surprising formal cryptographic models and proofs by
Boldyreva, Chenette, Lee, and O’Neill [7, 8].Overall, it has received much recent
attention in the cryptographic community [7, 8, 28], in the database community
[1, 17, 3], as well as in other applied areas.



OPE is attractive since it allows one to simultaneously perform very effi-
ciently over encrypted data numerous fundamental database operations: sorting,
simple matching (i.e., finding m in a database), range queries (i.e., finding all
messages m within a given range {i, . . . , j}), and SQL operations [1, 20, 21, 23].
Furthermore, OPE is more efficient than these other primitives. For instance,
the simple matching operation realized by OPE only requires logarithmic time
in the database size [1], while the same operation realized by, say, searchable en-
cryption [9, 22], needs linear time in the size, which is too costly for a database
containing a few millions data items.

Security of OPE: Despite its importance, security of OPE is far from being
understood at this time. Even the most fundamental problem: “what plaintext
information can be semantically hidden” is open. This is important. Imagine the
following ”string embedding” problem: we concatenate numerical strings to get
a larger number and we have degree of freedom in this concatenation, don’t we
want to hide the most crucial string by embedding it at a location within the large
number which hides it better than otherwise? Hasn’t this very issue (partial in-
formation security in a ciphertext) been at the heart of cryptographic formalisms
of encryption technologies in the last 30 years or so? Indeed, a naturally defined
indistinguishability notion for OPE, indistinguishability under ordered CPA at-
tack (IND-O-CPA) [7], was not only unachievable but it was shown that any
OPE under this notion is broken with overwhelming probability if the OPE
scheme has a super-polynomial size message space. (And if the message space is
only polynomial size, an OPE scheme completely loses its utility, of course.)

OPE is an inherently “leaky” method: The reason behind the above neg-
ative result is that an OPE scheme has to reveal something about plaintexts
other than their order, i.e., information about the distance between the two
plaintexts. By definition (as stated above), an OPE scheme’s encryption function
EncK has to satisfy the monotone increasing property, m0 < m1 ⇒ EncK(m0) <
EncK(m1). Hence, the difference EncK(m1) − EncK(m0) of two ciphertexts has
to become noticeably large if the difference m1−m0 of the corresponding plain-
texts becomes large. The negative result of [7] mentioned above is, in fact, proved
using an attack based on this observation.

To date, no one can tell what exactly OPE must leak and what it can protect.
Our motivation is the fact that the existing security notions are not really helpful
in understanding this simple basic question. If we have started to take the formal
approach to the problem, why should we stop short of answering such a question?
Here are a few notions to date:

IND-O-CPA [7]: It is similar to the LOR-based indistinguishability notion [4]
for symmetric key encryption, except that queries of the adversary have to satisfy
some order-preserving property. This notion is natural but as we stated above,
it is not achievable for schemes with a super-polynomial size message space [7].

POPF-CCA [7]: This is a very important notion which says that a CCA ad-
versary cannot distinguish a pair of an encryption and decryption oracles from a
pair of an order-preserving random oracle and its inverse. This notion is natural
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and therefore should be further studied. But currently, nothing is known about
what partial information it can hide and what it cannot hide, as pointed out in
[8].

(r, q+1)-WOW [8] (Window One-Wayness): It says that1 no adversary, who
gets q + 1 encryptions C∗, C1, . . . , Cq of uniformly randomly selected unknown
messages, can find an interval I of length ≤ r satisfying DecK(C∗) ∈ I. This
notion is important since it captures the following natural database setting:
Randomly selected q+1 elements stored in a database system in their encrypted
form and an adversary A who wants to know one of them breaches the database
and gets all the ciphertexts in it. This notion, however, does not ensure anything
about the secrecy of internal plaintext partial information, since it is “one-way-
based” in nature.

(r, q + 1)-WDOW [8]: It is another one-way-based notion defined in [8]. Since
it is one-way-based, it also does not tell us what partial information about the
plaintexts is hidden.

1.1 Our Contributions

This paper presents the first attempt to give a new perspective to the funda-
mental open problem: “go beyond one-wayness security and investigate what
internal plaintext partial information OPE can hide.” Here (while respecting
earlier important works on the subject) we propose the first achievable indis-
tinguishability notion for OPE regarding partial plaintext information hiding.
More specifically: we show that our notion can assure secrecy of lower bits of a
plaintext in the same natural settings as WOW [8].

Our Security Notion — (X , θ, q)-indistinguishability: It is defined based on
(r, q + 1)-WOW [8]. But since WOW is inherently one-way-based, our security
notion is defined as a “hybrid” of WOW and indistinguishability as follows.
Consider the same database setting as WOW, where an honest entity (not the
adversary!) stores q + 1 his data elements m∗,m1, . . . ,mq in their encrypted
forms in a database and an adversary A, who wants to get knowledge of m∗,
breaches the database system and gets all ciphertexts in it. Above, the messages
m1, . . . ,mq have been selected according to given distributions X1, . . . ,Xq.

The difference from WOW is that m∗ has been selected as follows: two mes-
sages m∗

0 and m∗
1 are generated using a polynomial time machine Mg called

message generator, and set m∗ ← m∗
b , where b is a random bit hidden from A.

For X = (Xi)i=1,...,q, an OPE scheme is called (X , θ, q)-indistinguishable if
the advantage of A in the above game (guessing the bit b beyond probability
1/2) is negligible for any A and for any Mg whose output satisfies

|m∗
1 −m∗

0| ≤ θ. (1.1)

1 Here we adopt the simpler definition of the window one-wayness notion given in
Appendix B of the full paper of [8], which can be reduced to the definition of Section
3 of that paper and and vise versa.
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Restriction (1.1) enables us to avoid the known attack [7] since it applies only
when the distance between m∗

0 and m∗
1 is large.

Our Results: We will show in Section 2 the following fact:

Fact 1 (informal) If an OPE scheme satisfies (X , θ, q)-indistinguishability, the
least significant ⌊log2 θ⌋ bits of a plaintext are hidden from the adversary in the
above database setting.

We then propose a new OPE scheme Ēk,θ based on a pseudo-random function
PRF and show the following facts in Section 4. Below, X1, . . . ,Xq are distributions
on [1..M ] such that they are independent from one another and one can take a
sample from Xi in time polynomial in λ.

Theorem 2 (informal). Let β and t be constants satisfying 0 < t < β ≤
1. Suppose that the message space size M is super-polynomial in the security
parameter λ. Then, for any X = (Xi)i satisfying ∀i : H∞(Xi) ≥ β log2 M , Ēk,θ
satisfies (X ,M t, q)-indistinguishability under the condition that PRF is secure.

Remarks: First, our security notion does not ensure the secrecy of higher bits
of the plaintext, and, in fact, there is no known scheme which can ensure their
secrecy, since the scheme of [7] also reveals its high order bits [8]. Second, since
any distribution Y on [1..M ] satisfies 0 ≤ H∞(Y) ≤ log2 M , the condition
H∞(Xi) ≥ β log2 M means that the ratio of H∞(Xi) to the maximum log2 M
has to be more than β. Third, Theorem 2 requires that the message space size
M is super-polynomial in λ: which is exactly the same condition assumed by
Boldyreva et.al.[8] to get their results. Fourth, Theorem 2 shows stronger security
when t is closer to β, though the advantage bound decrease is slower in this case.

Due to the above results, we can conclude the following crucial facts:

Knowledge of X : Theorem 2 only requires X to satisfy the entropy bound.
Hence, we can show (X , θ, q)-indistinguishability even when we do know the tuple
X of message distributions completely in advance. This fact is very important
because the complete knowledge of X is not realistic in a central application,
like the secure database above, when, for instance, plaintexts are names of new
students (with the lexicographic order) or scores of some examination.

Fraction t < β of Lower Bits Are Hidden: Due to Fact 1, (X ,M t, q)-
indistinguishability implies secrecy of the least significant ⌊logM t⌋ bits of a
plaintext. Since the maximum bit length of a message in the message space [1..M ]
is ⌊log2 M⌋ + 1, Theorem 2 shows that our scheme with the above parameters
can ensure secrecy of the fraction

⌊logM t⌋
⌊log2 M⌋+ 1

≈ t < β (1.2)

of the least significant bits of a plaintext. The above secrecy can be shown even
when we do not have complete knowledge of plaintext distributions.

Any Fraction of Low-order Bits Are Hidden in the Uniform Distribu-
tion Case: In the most significant case where plaintexts distribute uniformly
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at random, Theorem 2, in particular, shows that our scheme can ensure secrecy
of any fraction of the least significant bits of the plaintext because the maxi-
mum log2 M of the min-entropy is achieved by the uniform distribution and we
therefore can set β to 1 in this case.

Allowing Decryption Queries: As in [8], we can naturally make our scheme
secure even when we allow the adversary to make decryption queries at any time,
using the “Encrypt-then-Mac” composition (adding MAC data) [5].

Open Problem:We can show that our scheme satisfies EncK(m+1) = EncK(m)+
1 with high probability. Hence, an adversary can break the scheme if she can
get EncK(m∗

b+ (small value)), where (m∗
0,m

∗
1) is a challenge query of her. (Our

proof for Theorem 2 ensures that she can get it only with negligible probability.)
Designing a scheme ensuring security for this case is an important open problem.

Finally, we give a note about the construction of our scheme. Since Boldyreva
et.al. [7] already gave a natural security notion, POPF-CCA, one important ap-
proach to study indistinguishability of OPE is to show that POPF-CCA implies
some indistinguishability notion, such as ours. However, we take a different ap-
proach in this paper because currently, we do not have much knowledge about the
random order-preserving function used in the definition of POPF-CCA, which
means that showing our security notion based on POPF-CCA seems to us to be
hard. Rather, we define a specific scheme Ēk,θ designed for showing our security
notion. Showing some indistinguishability results for the more natural security
notion, POPF-CCA, is, of course, of independent interest and we leave it as an
important open problem.

1.2 Other Security Notions

We also introduce two more security notions for OPE.

(k, θ)-FTG-O-nCPA: This is an (artificial) variant of an indistinguishability
notion. We will give the definition of it in Section 3 and show that this notion
with suitable parameter implies (X , θ, q)-indistinguishability for any X = (Xi)i
such that H∞(Xi) is larger than the predetermined constant. We then use this
fact to show (X , θ, q)-indistinguishability of our proposed scheme.

WOWM — Stronger Variant of WOW [8]: Informally, (r, q + 1)-WOWM
says that no adversary given EncK(m∗), and (mi,EncK(mi))i=1,...,q can find an
interval I of length ≤ r satisfying m∗ ∈ I. This is stronger than (r, q+1)-WOW
because it allows an adversary to watch (mi)i while (r, q + 1)-WOW prohibits
her from doing this.

We will show in Section 5 the following facts. The (X , θ, q)-indistinguishability
notion with suitable parameters implies (r, q + 1)-WOWM. For any constant
0 ≤ ρ < 1, our scheme with suitable parameters satisfies (Mρ, q + 1)-WOWM
(and therefore (Mρ, q + 1)-WOW).
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1.3 Comparison with Known Results [7, 8]

First, we clarify what our results owe to [8]: we consider the same natural
“database as a service” setting of WOW as described in Section 1.1, and our
results are shown under the same condition as WOW [8], that is, the message
space size M is super-polynomial in λ. (Note that, technically, our proposed
scheme owes the excellent “lazy sampling” of [7] as well.)

Next, we clarify the difference of them. The earlier results on OPE are indeed
remarkable and opened the door to our investigation, but there are some crucial
differences which we would like to point out explicitly.

About Our Security Notion: (X , θ, q)-indistinguishability of the scheme [7]
is unknown, because our goal is newly defined. Moreover, we can prove that the
known scheme [7] cannot satisfy (Uq,M t, q)-indistinguishability for t > 1/2. (See
our full paper for the proof.)

Our scheme achieves (Uq,M t, q)-indistinguishability for any 0 ≤ t < 1, where
Uq was the tuple of the uniform distributions on the message space. This means
that it can hide (in the sense of semantic security) any fraction t of the least
significant bits of a plaintext in our setting with uniformly randomly selections
of plaintexts. Even when plaintext distributions are not the uniform ones, the
scheme can hide fraction t < β of lower bits of a plaintext. (β is determined
depending on the min-entropy measure of other plaintexts).

About WOW [8]: The known best result [8] is (1, q)-WOW security of the
scheme of [7]. But it is proved that this scheme cannot achieve (Mρ, q+1)-WOW
[8] for any ρ > 1/2. In contrast, for any constant 0 ≤ ρ < 1, our scheme with
suitable parameters can satisfies (Mρ, q+1)-WOWM (and therefore (Mρ, q+1)-
WOW, in particular).

Finally, we describe the POPF-CCA notion given in the seminal work [7].

About POPF-CCA [7]: POPF-CCA is very important notion which can en-
sure indistinguishability from an ideal object, while our security notion cannot
ensure it. Hence, POPF-CCA, as a notion, is more natural and has much po-
tential like other real-vs-ideal definitions and it can ensure security in lots of
situations while ours can ensure it in the specific situation described before.
E.g. our notion can ensure nothing when an adversary knows EncK(m) and
EncK(m+ 1) while POPF-CCA can ensure something even in this situation. In
particular, our notion does not imply POPF-CCA and therefore, POPF-CCA
has independent interest.

But currently and unfortunately, nothing is known about what POPF-CCA
can hide and what it cannot hide, as pointed out in [8]. This is the motivation be-
hind our entire investigation. Our result is the first positive result in the sense of
indistinguishability. Showing some indistinguishability for a more natural notion
like, say, POPF-CCA, is an important open issue.

1.4 Other Related Works

Property preserving encryptions [18, 2, 10] was introduced by Pandey and Rouse-
lakis [18] as a variants of the OPE. Although the security notions for this scheme
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can be the same as for OPE, almost the same attack as that of [7] can break
any OPE scheme under these security notions when the scheme has a super-
polynomial size message space. See our full paper for the details.

CEOE and MOPE schemes (introduced by Boldyreva, Chenette, Lee, and
O’Neill [8]), mOPE and stOPE schemes (introduced by Popa, Li, and Zeldovich
[19]), and GOPE schemes (introduced by Xiao and Yen [25]) achieve stronger
security than OPE by sacrificing some of their functionalities, by allowing inter-
actions, or by considering restrictive cases, respectively. Comparable encryption
schemes (introduced by Furukawa [12, 13]) consider an encrypted database where
the database manager can search messages m satisfying m > u on behalf of a
user if a key Ku depending on u is given from the user as a query. These notions
are of independent interests, some may require further formalizations, and are
all beyond the scope of this work.

Yum, Kim, Kim, Lee and Hong [28] propose a more efficient method to
compute the encryption and decryption functions of the known scheme [7]. Xiao,
Yen, and Huynh [27] study OPE in a multi-user setting. Xiao and Yen [26]
estimates the min-entropy of a plaintext encrypted by the known scheme [7].

2 (X , θ, q)-indistinguishability

We introduce notations and terminology and then define our security notion.

Intervals: For integers a and b ≥ a, interval [a..b] is the set {a, . . . , b}. [b], (a..b],
[a..b), and (a..b) denote [1..b], [a+1..b], [a..b− 1], and [a+1..b− 1], respectively.

Order-Preserving Encryption: An OPE scheme is a symmetric key encryp-
tion E = (Kg,Enc,Dec) whose message spaceM and ciphertext space are inter-
vals in N and which satisfies m < m′ ⇒ EncK(m) < EncK(m′) for ∀m,m′ ∈ M
and ∀K ← Kg(1λ). Here “<” represents the numerical order. Throughout this
paper, we assume w.l.o.g. thatM can be written as [1..M ].

Definition 3 ((X , θ, q)-indistinguishability) Let λ, E = (Kg,Enc,Dec), θ =
θ(λ) > 0, and q = q(λ) > 0 be a security parameter, an OPE scheme, a real
number, and a polynomial respectively and X = (Xi)i∈[1..q] be a tuple of distri-
butions on the message space of E . E is said to be (X , θ, q)-indistinguishable if
for any polynomial time machine Mg (called message generator) whose outputs
(m∗

0,m
∗
1, info) satisfies

m∗
0 < m∗

1, |m∗
1 −m∗

0| ≤ θ (2.1)

and any polynomial time adversary A, Adv.Exp
(X ,θ,q)-indis.
E (Mg,A) =

|Pr[Exp(X ,θ,q)-indis.
E (Mg,A, 1) = 1] − Pr[Exp

(X ,θ,q)-indis.
E (Mg,A, 0) = 1]| is negligi-

ble. Here Exp
(X ,θ,q)-indis.
E (Mg,A, b) is defined as follows.

K ← Kg(1λ), (m∗
0,m

∗
1, info)← Mg(1λ),m1

$← X1, . . . ,mq
$← Xq,

d← A(EncK(m∗
b), (mi,EncK(mi))i∈[1..q], info),Return d.
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Remarks: First, when we consider the above notion, the probability that mi ∈
[m∗

0..m
∗
1] has to be negligible because otherwise, an OPE scheme under the above

notion is broken by an adversary simply by checking EncK(m∗
b) > Enck(mi). This

condition will be automatically satisfied in our theorems due to the selection of
parameters of our scheme. Second, due to the bit string info moving between the
parties, we can re-interpret the above definition as Mg and A being the “guess
and find stages” of a single adversary (Mg,A) where info is her state.

Low-order Bits Can be Hidden: Our security notion ensures the secrecy
of the least significant ⌊log2 θ⌋ bits of a plaintext, due to the following: Let
L = ⌊log2 θ⌋ and take any (maximal) interval I satisfying the following theorem:
for any two elements of I, all of their bits except the least significant L bits are
the same. That is, I can be written as I = {2Lu+ x | x ∈ [0..2L − 1]} for some
u. By definition the length of I is not more than θ.

Then, our security notion, in particular, ensures that any element m∗
0 of I is

indistinguishable from that of a uniformly random element m∗
1 of I, because our

condition (1.1) is satisfied due to the definition of I. Since the least significant L
bits of uniformly random element m∗

1 of I distribute uniformly at random on the
L-bit space [0..2L− 1], the indistinguishability of m∗

0 and m∗
1 can ensure secrecy

of the least significant L bits of m∗
0.

3 (k, θ)-FTG-O-nCPA

In this section, we introduce a security notion, (k, θ)-FTG-O-nCPA, and using
it, we give a sufficient condition for (X , θ, q)-indistinguishability.
(k, θ)-FTG-O-nCPA: It is Find-Then-Guess [4] type indistinguishability for
nCPA adversary whose queries satisfy the conditions (3.1), . . . (3.4) described
later. Here nCPA (non-adaptive CPA) [16, 14, 15] is a type of attack where the
adversary is required to output encryption queries m1, . . . ,mq and challenge
query (m∗

0,m
∗
1) together at the same time and gets their answers thereafter.

Definition 4 ((k, θ)-FTG-O-nCPA) For real numbers k = k(λ) > 0 and θ =
θ(λ) > 0, an OPE E is said to be (k, θ)-FTG-O-nCPA secure if for any polyno-

mial time adversary A = (Afind,Aguess), the advantage Adv.Exp
(k,θ)-FTG-O-nCPA
E (A)

= |Pr[Exp(k,θ)-FTG-O-nCPA
E (A, 1) = 1]−Pr[Exp

(k,θ)-FTG-O-nCPA
E (A, 0) = 1]| is neg-

ligible. Here Exp
(k,θ)-FTG-O-nCPA
E (A, b) is defined as follows (below, q is an arbi-

trary number selected by A):

K ← Kg(1λ), ((m∗
0,m

∗
1), (mi)i∈[1..q], st)← Afind(1

λ),

d← Aguess(EncK(m∗
b), (EncK(mi))i∈[1..q], st),Return d.

(m∗
0,m

∗
1) and m1, . . . ,mq are called a challenge query and encryption queries

respectively. The output of A has to satisfy the following (3.1), (3.2), and (3.3).
We also assume (3.4) throughout this paper w.l.o.g.
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∀i : mi < m∗
0 ⇔ mi < m∗

1, (3.1)

|m∗
0 −m∗

1| ≤ θ, (3.2)

∀d ∈ {0, 1}, ∀i : |m∗
d −mi| ≥ kθ. (3.3)

m∗
0 < m∗

1 (3.4)

Above, (3.1) requires the order preserving property, (3.2) requires the same con-
dition as (X , θ, q)-indistinguishability, and (3.3) requires the distance |m∗

d −mi|
has to be bigger than the given constant kθ for any d and i. (3.3) is required
because without it, an adversary can take (m∗

0,m
∗
1) and m1 such that |m∗

1−m1|
is much larger than |m∗

0 −m1| (when θ is big. Say, take any m∗
0 and set m∗

1 ←
m∗

0 + θ and m1 ← m∗
0 − 1). Then, since OPE reveals information about the

distance between the two plaintexts, an adversary can know b by checking
|EncK(m∗

b)− EncK(m)|.
Sufficient Condition: Using (k, θ)-FTG-O-nCPA, we can give the following
sufficient condition for (X , θ, q)-indistinguishability. Below, λ, E , q = q(λ) are
a security parameter, an OPE scheme on a message space [1..M ], and a poly-
nomial respectively. X1, . . . ,Xq are distributions on [1..M ] such that they are
independent from one another and one can take a sample from Xi in time poly-
nomial in λ. (M and X can depend on λ.) A and Mg denote an adversary and
a message generator for (X , θ, q)-indistinguishability respectively and B denotes
an adversary for (k, θ)-FTG-O-nCPA.

Theorem 5 (Sufficient Condition for (X , θ, q)-indistinguishability). Let
β > 0 be any constant. For k = k(λ) > 0, θ = θ(λ) > 0, if

∀i ∈ [1..q] : H∞(Xi) ≥ β log2 M (3.5)

holds for any λ, then ∀Mg∀A∃B :

Adv.Exp
(X ,θ,q)-indis.
E (Mg,A) ≤ Adv.Exp

(k,θ)-FTG-O-nCPA
E (B) +O

(
qkθ

Mβ

)
. (3.6)

We next give two notes reg. Theorem 5. First, as in Theorem 2, condition (3.5)
means that the ratio of H∞(Xi) to the maximum log2 M has to be more than β.
Second, the right hand side of (3.6) is negligible only when kθ/Mβ is negligible.
We will show that kθ/Mβ is, in fact, negligible (for suitable parameters k and θ
we will choose) in the proof of Theorem 7, which uses the above theorem.

Proof. For Mg and A for (X , θ, q)-indistinguishability, consider an adversary

B for (k, θ)-FTG-O-nCPA which takes (m∗
0,m

∗
1, info) ← Mg(1λ) and m1

$←
X1, . . . ,mq

$← Xq, makes query ((m∗
0,m

∗
1), m1, . . . ,mq), gives info and an an-

swer to the query to A, and produces the output of A.
Let I be the interval (m∗

0−kθ..m∗
1+kθ). The above B will violate constraint

(3.3) if mi ∈ I holds for some i. But the probability that mi ∈ I holds for some
i is

∑
i∈[1..q] Pr[mi ← Xi : mi ∈ I] ≤ (length of I) ·∑i∈[1..q] maxx∈I Pr[mi ←

Xi : mi = x] ≤∑
i∈[1..q]

(2k+1)θ

2H∞(Xi)
≤ O

(
qkθ
Mβ

)
. When mi /∈ I holds, (3.1) is also

satisfied. Moreover (2.1) implies (3.2). Thus, Theorem 5 follows.⊓⊔
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4 Our Scheme

4.1 Our Goal

This section is devoted to constructing our scheme Ēk,θ satisfying the following
theorem: Below, A and B are adversaries for (k, θ)-FTG-O-nCPA and PRF re-
spectively, λ is a security parameter, and neg(·) is some negligible function which
is determined independently of (k, θ,A).

Theorem 6 ((k, θ)-FTG-O-nCPA of Ēk,θ). For k, θ > 0, ∀A∃B :

Adv.Exp
(k,θ)-FTG-O-nCPA

Ēk,θ
(A) ≤ O

(
1√
k

)
+ Adv.ExpPRF(B) + neg(λ) (4.1)

holds when k →∞. (The value θ does not affect the advantage bound.)
Moreover, the computational costs of algorithms of Ēk,θ and the ciphertext

length of it are within polynomial of log k, log θ, logM , and λ, where M is the
size of the message space [1..M ].

Due to Theorem 5, our scheme satisfies the following theorem as well. Below,
M is the size of message space [1..M ] of our scheme Ēk,θ, q = q(λ) is a polynomial,
and X1, . . . ,Xq are distributions on [1..M ] such that they are independent from
one another and one can take a sample from Xi in time polynomial in λ, neg(·) is
some negligible function, A and Mg are an adversary and a message generator for
(X ,M t, q)-indistinguishability, B is an adversary for PRF, and Adv.ExpPRF(B) is
an advantage of B in the experiments of PRF.

Theorem 7 ((X , θ, q)-Indistinguishability of Our Scheme, Formal Ver-
sion of Theorem 2). Let 0 < β ≤ 1 be any constant. Suppose that X =
(X1, . . . ,Xq) satisfies

∀i ∈ [1..q] : H∞(Xi) ≥ β log2 M. (4.2)

Then, for any constant 0 < t < β(≤ 1), our scheme Ēk,θ with suitable (k, θ)
(depending on (M,β, t)) satisfies ∀Mg∀A∃B :

Adv.Exp
(X ,Mt,q)-indis.

Ēk,θ
(Mg,A) ≤ O

(
q

M
β−t
3

)
+ Adv.ExpPRF(B) + neg(λ). (4.3)

Moreover, the computational costs of algorithms of Ēk,θ and the ciphertext
length of it are within polynomial of t, β, logM , and λ.

The right hand sides of (4.3) becomes negligible under the condition that the
message space size M is super-polynomial in λ.

Reduction from Theorem 7 to Theorem 5 and 6: Theorem 7 follows if we
set parameters (k, θ) of our scheme Ēk,θ as

(k, θ) = (M2(β−t)/3,M t) (4.4)

10



because in this case, terms of (3.6) and (4.1) becomeO
(

qkθ
Mβ

)
= O( qM

2(β−t)/3·Mt

Mβ )

= O( q
M(β−t)/3 ) and O( 1√

k
) = O( 1

M(β−t)/3 ). They are negligible when M → ∞
because the constants t and β satisfy the condition 0 < t < β ≤ 1 of Theorem 7.
The computational costs of algorithms in our scheme and the ciphertext length
of it are polynomial in logM even when parameters are set as in (4.4), due to
the latter part of Theorem 6 and the condition 0 < t < β ≤ 1. ⊓⊔

4.2 Scheme Ek,θ with Polysize Message Space

The goal of this section is designing an OPE scheme Ek,θ whose advantage bound
regarding (k, θ)-FTG-O-nCPA is given in Theorem 6. But the message space
size M of Ek,θ must be bounded by some polynomial in the security parameter
λ. (Hence, e.g. the upper bound (4.3) of an advantage for this scheme is not
negligible although the bound itself holds even for this scheme.) We stress that
Ek,θ is not our proposed scheme.

The scheme Ek,θ does not use PRF although Theorem 6 refers to it and the
discussion in this subsection is purely information theoretic ones. The PRF will
be used to design our proposed scheme Ēk,θ in the next subsection.

Ideas behind Construction The scheme Ek,θ is constructed based mainly
on three ideas. Firstly, we write an OPE encryption EncK(m) on a message
space [1..M ] as EncK(m) = R +

∑
i∈[2..m] δi, where R = EncK(1) and δi =

EncK(i)− EncK(i− 1). Then, a design of an OPE encryption can be reduced to
the selections of R and (δi).

Secondly, we take some values j0, j1, . . ., and set δj0 , δj1 , . . . and/or R to
random values which are very large compare to other δi, so as to hide a (smaller)
secret value which the adversary wants to know. A naive way to apply this idea
is that we set R to a large random value, while setting all δi to 1. Then, the
large randomness R seems to hide the secret bit b of a challenge ciphertext
EncK(m∗

b) = R +
∑

i∈[2..m∗

b ]
δi = m∗

b + R − 1. But, in fact, the adversary can

recover b because she can cancel out R by computing EncK(mb)− EncK(m′) =
mb −m′, where m′ and EncK(m′) are her encryption query and its answer.

Therefore, we set some δj0 , δj1 , . . . , to large random values as well and expect
that the set {j0, j1, . . .} of indices of them and queries of the adversary to satisfy
“good relation” in the sense that, for some js, the adversary cannot cancel out δjs
even when she has encryption queries and their answers. (The precise meaning
of this “good relation” will be given later.)

But, the problem is that we cannot know her queries in advance. Therefore,
after we fix j0, j1, . . ., she may choose her queries such that the queries and
{j0, j1, . . .} do not satisfy the good relation. So, thirdly, we solve the above
problem by introducing another key idea: changing the bit length of δi randomly.
Specifically, for each i, we flip a random coin ρi which becomes 0 with small
probability p and then samples δi randomly from some given large set if ρi = 0
and set δi ← 1 otherwise. Then the set I = {j0, j1, . . . , } of indices of large δi
varies randomly and, (due to the definition of nCPA,) we can hide I from the
view of the adversary until she determines her queries. Hence, the adversary

11



Parameters: Message Space = [1..M ], p = 1− (1− 1/
√
k)1/θ, A = −kθ − 1.

Kg(1λ)
11. For i ∈ (A..M ],

12. ρi
$← Binom(1, 1− p).

13. If ρi = 0, then δi
$← Xλ.

14. Else δi ← 1

15. Output K ← (δi)i∈(A..M ].

EncK(m)
21. Parse K as (δi)i∈(A..M ].

22. Output C ←∑

i∈(A..m] δi

DecK(C)
31. Parse K as (δi)i∈(A..M ].
32. For i ∈ [0..M ],

33. If C =
∑

i∈(A..m] δi,

output m.
34. Output ⊥.

✲
−kθ

· · ·

✻
bit length

m

(*) ✲✛ (***)✲✛
(**) ✲✛

· · ·

✲✛
A cannot make Enc.queries

✲✛
kθ

i0

δi0

· · ·

✲✛m0

· · ·

θ

m1

· · ·

✲✛
kθ

i1

δi1

· · · · · ·

M
i

Fig. 1. The Scheme of Section 4.2 (upper) and the Intuition Behind Its Security (lower).
In the lower figure, EncK(m0) − EncK(m), EncK(m1) − EncK(m), and the difference
of them are the sum of δi in (*), (**), and (***) respectively. Since both (*) and (**)
contain a large randomness δi0 , the difference (***), which is smaller, is hidden by
this large randomness. EncK(m0)− EncK(m) and EncK(m1)− EncK(m) are therefore
indistinguishable.

cannot arrange intentionally her queries such that the queries and I do not
satisfy the good relation.

Note that this idea has resemblance to the partitioned technique [24] of Wa-
ters for an identity based encryption, where one takes some parameters (which
determine a “partition”) randomly and secretly and expects that queries of an
adversary fall into some good places.

Scheme Ek,θ: The formal description of our scheme is given in Fig.1. Here k
and θ be the values which we want to show (k, θ)-FTG-nCPA security for, p
is a parameter which we will determine in (4.9), and Binom(n, p) is a binomial
distribution.

We set in Fig.1 EncK(m) =
∑

i∈[A..m] δi where A = −kθ − 1 < 0 is a fixed

value while in the idea described before, we set EncK(m) = R +
∑

i∈[2..m] δi.

(That is, we set R ← ∑
i∈[A..1] δi.) Due to this change, we can simplify the

security proof for the case where an adversary take as a query a small value m,
such as m = 0.
Xλ is a probability distribution such that a random variable taken from it

can hide other values, specifically,

∃ξ : (negligible func.), ∀α, β ∈ [−θ..θ], for δ $← Xλ, SD(α+ δ, β + δ) ≤ ξ(λ),
(4.5)

where SD denotes statistical distance. We can use the uniform distribution on
[1..2λθ] as Xλ for example. But the scheme in Section 4.3 will use another dis-
tribution due to a technical reason.

12



Message Space Size: The message space size M of this scheme has to satisfy
M = poly(λ) because the encryption cost of this scheme is clearly O(M). We
will remove this restriction in Section 4.3.

(k, θ)-FTG-nCPA security of Ek,θ: Let k and θ be the values which we
want to show (k, θ)-FTG-nCPA security for. Then, since intervals [m0− kθ..m0]
and [m1..m1 + kθ] are k times larger than [m0..m1], the probabilities that
[m0 − kθ..m0] and [m1..m1 + kθ] will contain a large δi is much larger than
the probability that [m0..m1] will contain a large δi.

Therefore, if p is taken suitably, we can ensure the three properties below
with high probability. (See Fig.1). Bellow, we call δi large number if it is taken
from [0..2λM ] and we say “δi = EncK(i)− EncK(i− 1) is in interval I” to mean
that both integers i− 1 and i used to define δi are contained in I.2

All δi in [m0..m1] are 1, (4.6)

Some δi0 in [m0 − kθ..m0] is large, (4.7)

Some δi1 in [m1..m1 + kθ] is large. (4.8)

Note that the precise meaning of “good relation” given in “Ideas behind Con-
struction” is that (δi)i∈(A..M ] and queries of an adversary satisfy all of the above
three properties.

Here we exploit constraints (3.3) and (3.4) of (k, θ)-FTG-nCPA. Due to them,
encryption query m has to satisfy m ≤ m0 − kθ or m ≥ m1 + kθ. In the former
case, the difference EncK(mb) − EncK(m) =

∑
i∈(m..mb]

δi =
∑

i∈(m..m0]
δi +∑

i∈(m0..mb]
δi contains the large dominant randomness δi0 as a summand. Since

the term
∑

i∈(m0..mb]
δi depending on b can be hidden by δi0 , an adversary cannot

detect b from EncK(mb)− EncK(m).
In the latter case, similarly, the sum EncK(m) − EncK(mb) =

∑
i∈(mb..m] δi

contains the other large dominant randomness δi1 . An adversary therefore cannot
detect b from EncK(m)− EncK(mb) due to a similar argument as above.

The above discussion shows that the secret bit b is hidden by “barriers”
δi0 and δi1 . Based on the same idea, we can show, more generally, that the
distribution of the secret bit b is independent from the view of an adversary even
when she knows encryption queries and their answers, under the assumption that
(4.6), (4.7), and (4.8) hold. (See the full paper for the formal proof.)

Upper Bound on Advantage: The rest of thing we have to do is to show the
advantage bound of (4.1) by estimating the probabilities that (4.6), (4.7), and
(4.8) hold. To this end, we set the parameter p of the scheme Ek,θ as follows:

p = 1−
(
1− 1√

k

) 1
θ

. (4.9)

2 That is, δi is in I = [a..b] iff i ∈ (a..b]. Seemingly asymmetry of the interval, which
is a “left-open” one (a..b] but is not “right open” one [a..b), comes from how we
number δi. If we set δi not to EncK(i)− EncK(i− 1) but to EncK(i+ 1)− EncK(i),
it becomes a right open one [a..b).
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Then the advantage bound is calculated as follows. Let E1, E2, and E3 be,
respectively, the events that condition (4.6), (4.7), and (4.8) does not hold and
Bad be E1 ∨E2 ∨E3. Then, the previous discussion showed that the advantage
of an adversary for our scheme is less than Pr[Bad] + neg(λ).

Recall that nCPA adversary has to make her challenge query (m0,m1) and
encryption queries at the same time. Hence, she has to determine her chal-
lenge query (m0,m1) without knowing any information about ciphertexts, in
particular, any information about δi. Therefore, the distributions of (δi)i and
(m0,m1) are independent. Since they are independent, E1, E2, E3 are smaller
than 1− (1−p)θ = 1/

√
k, (1−p)kθ = (1−1/

√
k)k, and (1−p)kθ = (1−1/

√
k)k,

respectively. Due to the same reason, it follows that

Pr[Bad] ≤ 1√
k
+ 2

(
1− 1√

k

)k

=
1√
k
+ 2

{(
1− 1√

k

)√
k
}√

k

=
1√
k
+O

(
e−

√
k
)
= O

(
1√
k

)
, (4.10)

which is the bound given in Theorem 6.

About CPA Security: The above proof crucially relies on the independence
of the distributions of challenge query (m∗

0,m
∗
1) and (δi)i, which is ensured in

the nCPA setting. However, a CPA adversary can choose (m∗
0,m

∗
1) in the region

(mi..mi+1] where EncK(mi+1) − EncK(mi) is the smallest, where m1 < . . . <
mq are the encryption queries and (EncK(mi))i are their answers. Then all δi
contained in the sum EncK(mi+1)−EncK(mi) =

∑
i∈(mi..mi+1]

δi must be small

as well. This means that the probabilities that conditions (4.7) and (4.8) hold
must be smaller than those of the case of nCPA. Hence, our proof does not work
well in the CPA setting.

4.3 The Proposed Scheme

By improving the scheme Ek,θ of Section 4.2, we achieve our proposed OPE
scheme Ēk,θ. The encryption and decryption algorithms of it stay polynomial
time in the logarithm in the message space M , which enables M to become a
super-polynomial in the security parameter λ.

Idea of the full paper of [7]: The starting point of our improvement is the
following excellent new “lazy sampling” [6] technique of Section 6 of the full
paper of [7]: They construct a polynomial time algorithm3 Ḡ which takes two
pairs (u,Cu) and (v, Cv) of messages and their encryptions, and outputs a data
whose distribution is the same as that of ciphertext Cw of w, where w is the
“midpoint” ⌈(u+v)/2⌉ of u and v. Using Ḡ, their improved encryption algorithm
Enc(m) computes a ciphertext Cm of m the following binary search recursion:

3 To simplify, here we only consider the case where inputs of Ḡ are (u,Cu) and (v, Cv),
although the full paper of [7] considers more general case due to some technical
reasons.
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It takes some initial values u, v such that m ∈ (u..v] holds and Cu and Cv are
known. (We denote by Init an algorithm which outputs the encryption Cu and
Cv of the initial values.) Enc(m) then computes Cw using Ḡ, replaces interval
(u..v] with (u..w] or (w..v] depending on whether m ≤ w or not, and recursively
executes Enc itself. The computational cost of Enc is O(logM), where M is the
message space size, because the binary search recursion is terminated in time
O(logM). Their decryption algorithm Dec is constructed in a similar fashion.

The Idea Behind Our Scheme: Our efficient encryption and decryption al-
gorithms are constructed based on the above idea, but our innovation is that
our algorithms Ḡ and Init are constructed based not on a ciphertext Cu itself
but on Iu defined below. This is so, since our elaborated scheme of Section 4.2
does not allow construction of Ḡ to be based simply on Cu. Below, ρi, δi, and
A = −kθ − 1 are as defined in the scheme of Section 4.2.

Iu ← (C(0)
u , C(1)

u )←
( ∑

i∈(A..u]
ρi=0

δi,
∑

i∈(A..u]
ρi=1

δi

)
. (4.11)

We will construct Init and Ḡ satisfying the following properties:

Output Init is indistinguishable from (IA, IM ). (4.12)

For any u, v ∈ (A..M ] and any I ′u and I ′v, the distribution of an output
of Ḡ(u, v, I ′u, I

′
v) is the same as the conditional distribution of Iw when

(Iu, Iv) = (I ′u, I
′
v) holds. Here w = ⌈(u+ v)/2⌉.

(4.13)

Then our efficient encryption algorithm can get Im in time logarithm O(logM)
in the message space size M by executing a recursion based on Init and Ḡ. It can

get the ciphertext of m from Im = (C
(0)
m , C

(1)
m ) because an encryption EncK(m)

of Section 4.2 is
∑

i∈(A..u] δi, and therefore satisfies

EncK(m) = C(0)
m + C(1)

m . (4.14)

As in the case of [7], the efficient decryption algorithm is also constructed based
on a similar idea.

Ideas Behind the Construction of Init and Ḡ: The remaining issue to take
care of is the construction of Init and Ḡ(Iu, Iv). To this end, we set Xλ of (4.5)
to a binomial distribution

Xλ = B(2λθ2, 1/2) (4.15)

with suitable parameters. Note that this Xλ, in fact, satisfies (4.5), which is the
property required to ensure the security of the scheme of Section 4.2. Formally,
the following fact holds (See the full paper for the proof):

Proposition 8 (Binomial Satisfies (4.5)) There exists a negligible function
ξ such that for all α, β ∈ [−θ..θ], the statistical distance between the random

variables α+ δ and β + ζ for δ, ζ
$← B(2λθ2, 1/2) is less than ξ(λ).
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(4.15) allows us to write Iu by using two binomial distributions because (4.11)
shows that Iu can be written as sums of δi, step 13 of Fig.1 and (4.15) show
that δi is taken from a binomial distribution, and the sum of binomials is also
binomial. Since IA = (0, 0), this means that our algorithm Init satisfying (4.12)
can be constructed by using two binomial distributions for generating IM .

Moreover, it is also known that the conditional distributions of binomials can
be written as hypergeometric distributions. Hence, our algorithm Ḡ satisfying
(4.13) can be constructed by using hypergeometric distributions. Since the values
which follow the binomial and hypergeometric distributions can be generated in
polynomial time [11], our algorithms Init and Ḡ can terminate in polynomial
time.

The description of our algorithms Ḡ and Init is given in Fig.2. Here Binom(n, p)
and HG(a, b, c) are algorithms whose outputs follow binomial distribution and
hypergeometric distribution. We can show that our algorithms Init and Ḡ in fact
satisfy (4.12) and (4.13); see the full paper for the proof.

Proposition 9 (Init and Ḡ Work Well) For constants A and M be given in
Fig.1, tuples (δi)i∈(A..M ] and (ρi)i∈(A..M ] generated as in Kg(1λ) of Fig.1, and
Iu defined as is (4.11), (4.12) and (4.13) hold.

We denote the encryption function given in the above way by Ẽnc. Then,

from (4.12), (4.13), and the construction of Ẽnc, the following proposition holds.
(See the full paper for the formal proof.)

Proposition 10 Take A, M , Kg, Enc as in Fig.1 and take Kg as in Fig.2. Then

for K̄ ← Kg(1λ) and K ← Kg(1λ), the distributions of (ẼncK̄(i))i∈[A..M ] and
(EncK(i))i∈[A..M ] are perfectly indistinguishable.

Finally, we replace the randomness of Ẽnc with a pseudo-random value output
by a pseudo-random function, so as to make it deterministic, as in [7]. Then our
final encryption algorithm Enc is obtained.

Formal Description of Our Scheme: It is given in Fig.2. Here k and θ are
the values which we want to show (k, θ)-FTG-O-nCPA security for, M is the
value such that the message space is [1..M ], and p and A are the same values
used in the scheme of Section 1. Cph, in turn, is an algorithm which computes a
ciphertext Cu from Iu based on (4.14). The notation Ḡ(u, v, Iu, Iv; cc) means that
we compute Ḡ(u, v, Iu, Iv) using cc as the random tape. PRF is a pseudo-random
function.

(k, θ)-FTG-O-nCPA: Theorem 6 follows from Proposition 8, 9, and 10, and
the security of the scheme of Section 4.2. See the full paper for the formal proof
of Proposition 8, 9, and 10 and Theorem 6.

Efficiency: The algorithms of our scheme can terminate within polynomial time
in logM , log k, log θ, and security parameter λ due to our binary recursion search
and polynomial time algorithms [11] of binomial and hypergeometric distribu-
tions. The ciphertext bit length is not more than λ+2 log2 θ+ log2(M + kθ+1)
because, due to Proposition 10, a ciphertext can be written as

∑
i∈[A..m) δi
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Parameters:
· Message Space = [1..M ],
· p = 1− (1− 1/

√
k)1/θ,

· A = −kθ − 1.

Kg(1λ)
41. Randomly take λ bit string K′.
42. (IA, IM )← Init.
43. Return K̄ ← (K′, A,M, IA, IM ).

Cph(I)
71. Parse I as (C(0), C(1)).
72. Output C(0) + C(1).

Init

81. C
(1)
M ← Binom(M −A, 1− p),

82. C
(0)
M ← Binom(2λθ2(M −A− C

(1)
M ), 1/2),

83. IA ← (0, 0), IM ← (C
(0)
M , C

(1)
M ).

84. Output (IA, IM ).

EncK̄(m)
51. Parse K̄ as (K′, u, v, Iu, Iv).
52. If m = v holds,

return Cph(Iv).
53. w ← ⌈(u+ v)/2⌉.
54. cc← PRFK′(u, v)
55. Iw ← Ḡ(u, v, Iu, Iv; cc)

56. K̄ ←
{

(K′, u, w, Iu, Iw) if m ≤ w

(K′, w, v, Iw, Iv) otherwise

57. Return EncK̄(m).

DecK̄(C)
61. Parse K̄ as (K′, u, v, Iu, Iv).
62. If C = Cph(Iv) or u = v holds,

return v or ⊥ respectively.
63. w ← ⌈(u+ v)/2⌉.
64. cc← PRFK′(u, v)
65. Iw ← Ḡ(u, v, Iu, Iv; cc)

66. K̄ ←
{

(K′, u, w, Iu, Iw) if C ≤ Cph(Iw)

(K′, w, v, Iw, Iv) otherwise

67. Return DecK̄(C)

Ḡ(u, v, Iu, Iv)

91. Parse Iu and Iv as (C
(0)
u , C

(1)
u ) and (C

(0)
v , C

(1)
v ). w ← ⌈(u+ v)/2⌉.

92. C
(1)
w ← C

(1)
u + HG(v − u,C

(1)
v − C

(1)
u , w − u),

93. C
(0)
w ← C

(0)
u

+HG(2λθ2((v − u)− (C
(1)
v − C

(1)
u )), C

(0)
v − C

(0)
u , 2λθ2((w − u)− (C

(1)
w − C

(1)
u ))),

94. Output Iw ← (C
(0)
w , C

(1)
w ).

Fig. 2. The Schemes of Section 4.3, its Parameters, and its Subroutines.

for some m ∈ [1..M ] and each δi is not more than 2λθ2 due to (4.15). When
we set (k, θ) = (M2(β−t)/3,M t) as in (4.4), the ciphertext bit length becomes
λ+ 3 log2 M + (lower terms) due to 0 < t < β < 1.

On the other hand, the known scheme [7] can ensure (1, q + 1)-WOW if the
ciphertext length is more than (log2 M) + 1 when M is super-polynomial of λ.

5 Stronger Window-OneWayness of Our Scheme

Finally, we study a stronger variant of (r, q)-WOW notion, called (r, q)-WOWM
(studied in [8] intuitively as well). Our definition of WOWM is based on the
simpler definition of WOW given in Appendix B of the full paper of [8] which
can be reduced to the original WOW given in Section 3 of that paper and vise
versa.

Definition 11 ((r, q)-WOWM) An OPE scheme E on the message space [1..M ]
is said to be (r, q)-WOWM (Window One-Way viewing Messages) if for any poly-

nomial time adversary A, Succ.Exp
(r,q)-WOWM
E (A) = Pr[Exp

(r,q)-WOWM
E (A) = 1]

is negligible for the message space size M . Here, experiment Exp
(r,q)-WOWM
E (A)
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is defined as follows. Below, Combq(M) be the set of q-element subset of [1..M ].

K ← Kg(1λ),m
$← Combq(M),m∗

$←m,

(mL,mR)← A(EncK(m∗), (m,EncK(m))m∈m\{m∗}),

Return 1 iff m∗ ∈ S(mL,mR),

where S(mL,mR) =

{
[mL..mR] if mL ≤ mR

[1..mR] ∪ [mL..M ] otherwise.,

“m∗
$← m” means that “choose a message m∗ from the tuple m uniformly at

random”. The output (mL,mR) of A has to satisfy #S(mL,mR) ≤ r.

The following property holds for WOWM and WOW of Appendix B of the full
paper of [8] because they are the same except that A can view m \ {m∗}.

∀A : Adv.Exp
(r,q)-WOW
E (A) ≤ Adv.Exp

(r,q)-WOWM
E (A). (5.1)

Lemma 12 (Relationship between (Uq, θ, q)-indis. and WOWM) Let q =
q(λ) be a polynomial of security parameter λ, E be an OPE scheme with a mes-
sage space [1..M ], Uq be the tuple of q uniform distributions on [1..M ], and
0 < t < 1 be a constant. Suppose that E is (Uq,M t, q)-indistinguishable. Then
for any constant ρ satisfying

0 ≤ ρ < t(< 1), (5.2)

E is (Mρ, q + 1)-WOWM when M is super-polynomial of λ. Specifically,

∀A∃Mg∃B : Succ.Exp
(Mρ,q+1)-WOWM
E (A)

≤ Adv.Exp
(Uq,Mt,q)-indis
E (Mg,B) +O

( 1

M t−ρ

)
+O

( 1

M1−t

)
+O

( q

M

)
. (5.3)

The right hand side of (5.3) is negligible when M is super-polynomial to λ
because of (5.2). See the full paper for the formal proof of the above lemma.
Lemma 12 and Theorem 7 show the following theorem.

Theorem 13 (WOWM of Our Scheme). For a polynomial q = q(λ) and for
any constant

0 ≤ ρ < 1, (5.4)

our scheme Ēk,θ with suitable parameter (depending on (M,ρ)) is (Mρ, q + 1)-
WOWM under security of PRF (although the advantage bound decreases slower
when ρ becomes closer to 1). Specifically,

∀A∃B : Succ.Exp
(Mρ,q+1)-WOWM

Ēk,θ
(A) ≤ O

(
q

M
1−ρ
4

)
+ Adv.ExpPRF(B) + neg(λ).

(5.5)
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It achieve better ρ than [8]. See Section 1.3 for details.

Proof (Theorem 13). Take any ρ satisfying (5.4) and set

(β, t) = (1, (3ρ+ 1)/4). (5.6)

Let U be the tuple uniform distributions on the message space [1..M ] and let
X = Uq. Then two conditions of Theorem 7, (4.2) and β > t, are satisfied due to
H∞(U) = log2 M , (5.6), and (5.4). Hence, our scheme Ēk,θ with suitable param-
eter (k, θ) is (Uq,M t, q)-indistinguishable and satisfies (4.3). (Due to (4.4), the
parameters are (k, θ) = (M2(β−t)/3,M t) = (M (1−ρ)/2,M (3ρ+1)/4)). The condi-
tion (5.2) of Lemma 12 follows from (5.6) and (5.4). Hence, our scheme with
the above parameters is (Mρ, q + 1)-WOWM and satisfies (5.3). The bound
(5.5) comes from (5.4) and (5.6) because in (4.3) and (5.3), O( q

M(β−t)/3 ) =

O( q

M
1
3
·(1−(3ρ+1)/4)

) = O( q
M(1−ρ)/4 ), O( 1

Mt−ρ ) = O( 1
M(1−ρ)/4 ) ≤ O( q

M(1−ρ)/4 ),

O( 1
M1−t ) = O( 1

M3(1−ρ)/4 ) ≤ O( 1
M(1−ρ)/4 ), and O( q

M ) ≤ O( q
M(1−ρ)/4 ).⊓⊔
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