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Abstract. Structure-preserving signatures are a quite recent but im-
portant building block for many cryptographic protocols. In this paper,
we introduce a new type of structure-preserving signatures, which allows
to sign group element vectors and to consistently randomize signatures
and messages without knowledge of any secret. More precisely, we con-
sider messages to be (representatives of) equivalence classes on vectors
of group elements (coming from a single prime order group), which are
determined by the mutual ratios of the discrete logarithms of the repre-
sentative’s vector components. By multiplying each component with the
same scalar, a different representative of the same equivalence class is
obtained. We propose a definition of such a signature scheme, a security
model and give an efficient construction, which is secure in the SXDH
setting, where EUF-CMA security holds against generic forgers in the
generic group model and the so called class hiding property holds under
the DDH assumption.
As a second contribution, we use the proposed signature scheme to build
an efficient multi-show attribute-based anonymous credential (ABC) sys-
tem that allows to encode an arbitrary number of attributes. This is
– to the best of our knowledge – the first ABC system that provides
constant-size credentials and constant-size showings. To allow an efficient
construction in combination with the proposed signature scheme, we also
introduce a new, efficient, randomizable polynomial commitment scheme.
Aside from these two building blocks, the credential system requires a
very short and constant-size proof of knowledge to provide freshness in
the showing protocol.

1 Introduction

Digital signatures are an important cryptographic primitive to provide a means
for integrity protection, non-repudiation as well as authenticity of messages in
a publicly verifiable way. In most signature schemes, the message space consists
of integers in Zord(G) for some group G or consists of arbitrary strings encoded
either to integers in Zord(G) or to elements of a group G using a suitable hash
function. In the latter case, the hash function is usually required to be mod-
eled as a random oracle (thus, one signs random group elements). In contrast,



structure-preserving signatures [33,6,1,2,21,5,4] can handle messages which are
elements of two groups G1 and G2 equipped with a bilinear map, without re-
quiring any prior encoding. Basically, in a structure-preserving signature scheme
the public key, the messages and the signatures consist only of group elements
and the verification algorithm evaluates a signature by deciding group member-
ship of elements in the signature and by evaluating pairing product equations.
Such signature schemes typically allow to sign vectors of group elements (from
one of the two groups G1 and G2, or mixed) and also support some types of
randomization (inner, sequential, etc., cf. [1,5]).

Randomization is one interesting feature of signatures, as a given signature
can be randomized to another unlinkable version of the signature for the same
message. Besides randomizable structure-preserving signatures, there are various
other constructions of such signature schemes [24,25,18,43]. We emphasize that
although these schemes are randomizable, they are still secure digital signatures
in the standard sense (EUF-CMA security).

We are interested in constructions of structure-preserving signature schemes
that do not only allow randomization of the signature, but also allow to random-
ize the signed message in particular ways. Such signature schemes are particu-
larly interesting for applications in privacy-enhancing cryptographic protocols.

1.1 Contribution

This paper has three contributions: A novel type of structure-preserving sig-
natures defined on equivalence classes on group element vectors, a novel ran-
domizable polynomial commitment scheme, which allows to open factors of the
polynomial committed to, and a new construction (type) of multi-show attribute-
based anonymous credentials (ABCs), which is instantiated from the first two
contributions.

Structure-Preserving Signature Scheme on Equivalence Classes: In-
spired by randomizable signatures, we introduce a novel variant of structure-
preserving signatures. Instead of signing particular message vectors as in other
schemes, the scheme produces signatures on classes of an equivalence relation
R defined on (G∗1)` with ` > 1 (where we use G∗1 to denote G1 \ {0G1

}). More
precisely, we consider messages to be (representatives of) equivalence classes on
(G∗1)`, which are determined by the mutual ratios of the discrete logarithms of
the representative’s vector components. By multiplying each component with the
same scalar, a different representative of the same equivalence class is obtained.
Initially, an equivalence class is signed by signing an arbitrary representative.
Later, one can obtain a valid signature for every other representative of this
class, without having access to the secret key. Furthermore, we require two rep-
resentatives of the same class with corresponding signatures to be unlinkable,
which we call class hiding. We present a definition of such a signature scheme
along with game based notions of security and present an efficient construction,
which produces short and constant-size signatures that are independent of the
message vector length `. In the full version [37], we prove the security of our



construction in the generic group model against generic forgers and the DDH
assumption, respectively.

Polynomial Commitments with Factor Openings: We propose a new, effi-
cient, randomizable polynomial commitment scheme. It is computationally bind-
ing, unconditionally hiding, allows to commit to monic, reducible polynomials
and is represented by an element of a bilinear group. It allows to open factors of
committed polynomials and re-randomization (i.e., multiplication with a scalar)
does not change the polynomial committed to, but requires only a consistent
randomization of the witnesses involved in the factor openings. We present a
definition as well as a construction of such a polynomial commitment scheme.
In the full version [37], we give a security model in which we also prove the
construction secure.

A Multi-Show Attribute-Based Anonymous Credential (ABC) Sys-
tem: We describe a new way to build multi-show ABCs (henceforth, we will only
write ABCs) as an application of the first two contributions. From another per-
spective, the signature scheme allows to consistently randomize a vector of group
elements and its signature. So, it seems natural to use this property to achieve
unlinkability during the showings of an ABC system. To enable a compact at-
tribute representation, which is compatible with the randomization property of
the signature scheme, we encode the attributes to polynomials and commit to
them using the introduced polynomial commitment scheme. During the issuing,
the obtainer is, then, given a set of attributes and the credential, which is a
message (vector) consisting of the polynomial commitment and the generator
of the group plus the corresponding signature. During a showing, a subset of
the issued attributes can be shown by opening the corresponding factors of the
committed polynomial. The unlinkability of showings is achieved through the in-
herent re-randomization properties of the signature scheme and the polynomial
commitment scheme, which are compatible to each other. Furthermore, to pro-
vide freshness during a showing, we require a very small, constant-size proof of
knowledge. We emphasize that our approach to construct ABCs is very different
from existing approaches, as we use neither zero-knowledge proofs for prov-
ing the possession of a signature nor for selectively disclosing attributes during
showings. Recall that existing approaches rely on signature schemes that allow
to sign vectors of attributes and use efficient zero-knowledge proofs to show pos-
session of a signature and to prove relations about the signed attributes during
a showing.

Interestingly, in our construction the size of credentials as well as the size
of the showings are independent of the number of attributes in the ABC system,
i.e., a small, constant number of group elements. This is, to the best of our
knowledge, the first ABC system with this feature. The proposed ABC system
is secure in a security model adapted from [23,8,26,27], where we refer the reader
to the full version [37] for the proofs and the security model. Finally, we compare
our system to other existing multi- and one-show ABC approaches. Although we
are only dealing with multi-show credentials, for the sake of completeness, we



also compare our approach to the one-show (i.e., linkable) anonymous credentials
of Brands [20] (and, thus, also its provably secure generalization [12]).

1.2 Related Work

In [16], Blazy et al. present signatures on randomizable ciphertexts (based on
linear encryption [18]) using a variant of Waters’ signature scheme [43]. Basi-
cally, anyone given a signature on a ciphertext can randomize the ciphertext
and adapt the signature accordingly, while maintaining public verifiability and
neither knowing the signing key nor the encrypted message. However, as these
signatures only allow to randomize the ciphertexts and not the underlying plain-
texts, this approach is not useful for our purposes.

Another somewhat related approach is the proofless variant of the Chaum-
Pedersen signature [31] which is used to build self-blindable certificates by Ver-
heul in [42]. The resulting so called certificate as well as the initial message can
be randomized using the same scalar, preserving the validity of the certificate.
This approach works for the construction in [42], but it does not represent a se-
cure signature scheme (as also observed in [42]) due to its homomorphic property
and the possibility of efficient existential forgeries.

Homomorphic signatures for network coding [19] allow to sign any subspace
of a vector space by producing a signature for every basis vector with respect to
the same (file) identifier. Consequently, the message space consists of identifiers
and vectors. These signatures are homomorphic, meaning that given a sequence
of scalar and signature pairs (βi, σi)

`
i=1 for vectors vi, one can publicly compute

a signature for the vector v =
∑`
i=1 βivi (this is called derive). If one was using

a unique identifier per signed vector v, then such linearly homomorphic signa-
tures would support a functionality similar to the one provided by our scheme,
i.e., publicly compute signatures for vectors v′ = βv (although they are not
structure-preserving). It is also known that various existing constructions, e.g.,
[19,10] are strong context hiding, meaning that original and derived signatures
are unlinkable. Nevertheless, this does not help in our context, which is due
to the following argument: If we do not restrict every single signed vector to a
unique identifier, the signature schemes are homomorphic, which is not compat-
ible with our unforgeability goal. If we apply this restriction, however, then we
are not able to achieve class hiding as all signatures can be linked to the initial
signature by the unique identifier. We note that the same arguments also apply
to structure-preserving linearly homomorphic signatures [40].

The aforementioned context hiding property is also of interest in more gen-
eral classes of homomorphic (also called malleable) signature schemes (defined
in [7] and refined in [9]). In [29], the authors discuss malleable signatures that
allow to derive a signature σ′ on a message m′ = T (m) for an ”allowable” trans-
formation T , when given a signature σ for a message m. This can be considered
as a generalization of signature schemes, such as quotable [10] or redactable sig-
natures [38] with the additional property of being context hiding. The authors
note that for messages being pseudonyms and transformations that transfer one
pseudonym into another pseudonym, such malleable signatures can be used to



construct anonymous credential systems. They also demonstrate how to build
delegatable anonymous credential systems [15,14]. The general construction in
[29] relies on malleable-ZKPs [28] and is not really efficient, even when instanti-
ated with Groth-Sahai proofs [35]. Although it is conceptually totally different
from our approach, we note that by viewing our scheme in a different way, our
scheme fits into their definition of malleable signatures (such that their SigEval
algorithm takes only a single message vector with corresponding signature and
a single allowable transformation). However, firstly, our construction is far more
efficient than their approach (and in particular really practical) and, secondly,
[29] only focuses on transformations of single messages (pseudonyms) and does
not consider multi-show attribute-based anonymous credentials at all (which is
the main focus of our construction).

Signatures providing randomization features [24,25,18] along with efficient
proofs of knowledge of committed values can be used to generically construct
ABC systems. The most prominent approaches based on Σ-protocols are CL
credentials [24,25]. With the advent of Groth-Sahai proofs, which allow (effi-
cient) non-interactive proofs in the CRS model without random oracles, various
constructions of so called delegatable (hierarchical) anonymous credentials have
been proposed [15,14]. These provide per definition a non-interactive showing
protocol, i.e., the show and verify algorithms do not interact when demon-
strating the possession of a credential. In [34], Fuchsbauer presented the first
delegatable anonymous credential system that also provides a non-interactive
delegation protocol based on so called commuting signatures and verifiable en-
cryption. We note that although such credential systems with non-interactive
protocols extend the scope of applications of anonymous credentials, the most
common use-case (i.e., authentication and authorization), essentially relies on
interaction (to provide freshness/liveness). We emphasize that our goal is not to
construct non-interactive anonymous credentials. Nevertheless, one could gener-
ically convert our proposed system to a non-interactive one: in the ROM using
Fiat-Shamir or by replacing our single Σ-proof for freshness with a Groth-Sahai
proof without random oracles, which is, however, out of scope of this paper.

2 Preliminaries

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P ′

generate G1 and G2, respectively. We call e : G1 × G2 → GT bilinear map or
pairing if it is efficiently computable and the following conditions hold:

Bilinearity: e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′) ∀a, b ∈ Zp
Non-degeneracy: e(P, P ′) 6= 1GT , i.e., e(P, P ′) generates GT .

If G1 = G2, then e is called symmetric (Type-1) and asymmetric (Type-2 or
Type-3) otherwise. For Type-2 pairings there is an efficiently computable iso-
morphism Ψ : G2 → G1, whereas for Type-3 pairings no such efficient isomor-
phism is assumed to exist. Note that Type-3 pairings are currently the optimal
choice [30], with respect to efficiency and security trade-off.



Definition 2 (Decisional Diffie Hellman Assumption (DDH)). Let p be
a prime of bitlength κ, G be a group of prime order p generated by P and
let (P, aP, bP, cP ) ∈ G4, where a, b, c ∈R Z∗p. Then, for every PPT adversary
A distinguishing between (P, aP, bP, abP ) ∈ G4 and (P, aP, bP, cP ) ∈ G4 is
infeasible, i.e., there is a negligible function ε(·) such that

|Pr [true← A(P, aP, bP, abP )]− Pr [true← A(P, aP, bP, cP )] | ≤ ε(κ).

Definition 3 (Symmetric External DH Assumption (SXDH) [13]). Let
G1, G2 and GT be three distinct cyclic groups of prime order p and e : G1×G2 →
GT be a pairing. Then, the SXDH assumption states that in both groups G1

and G2 the DDH assumption holds.

Note that the SXDH assumption formalizes Type-3 pairings, i.e., the absence of
an efficiently computable isomorphism between G1 and G2 as well as between
G2 and G1.

Definition 4 (Bilinear Group Generator). Let BGGen be a PPT algo-
rithm which takes a security parameter κ and generates a bilinear group BG =
(p,G1, G2, GT , e, P, P

′) in the SXDH setting, where the common group order p
of the groups G1, G2 and GT is a prime of bitlength κ, e is a pairing and P as
well as P ′ are generators of G1 and G2, respectively.

Definition 5 (t-Strong DH Assumption (t-SDH) [17]). Let p be a prime
of bitlength κ, G be a group of prime order p generated by P ∈ G, α ∈R Z∗p and

let (αiP )ti=0 ∈ Gt+1 for some t > 0. Then, for every PPT adversary A there is
a negligible function ε(·) such that

Pr

[(
c,

1

α+ c
P
)
← A((αiP )ti=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.

This assumption turns out to be very useful in bilinear groups (Type-1 or Type-2
setting). However, in a Type-3 setting (SXDH assumption), where the groups
G1 and G2 are strictly separated, the presence of a pairing does not give any
additional benefit. This is due to the fact that the problem instance is given
either in G1 or in G2. As our constructions rely on the SXDH assumption, we
introduce the following modified assumption, which can be seen as the natural
counterpart for a Type-3 setting [30]:

Definition 6 (co-t-Strong DH Assumption (co-t-SDH∗i )). Let G1 and G2

be two groups of prime order p (which has bitlength κ) generated by P1 ∈ G1 and
P2 ∈ G2, respectively. Let α ∈R Z∗p and let (αjP1)tj=0 ∈ G

t+1
1 and (αjP2)tj=0 ∈

Gt+1
2 for some t > 0. Then, for every PPT adversary A there is a negligible

function ε(·) such that

Pr

[(
c,

1

α+ c
Pi
)
← A((αjP1)tj=0, (α

jP2)tj=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.



Note that for a compact representation, we make a slight abuse of notation,
where it should be interpreted as P1 = P and P2 = P ′. Obviously, we have co-t-
SDH∗i ≤p t-SDH in group Gi. The t-SDH assumption was originally proven to be
secure in the generic group model in [17, Theorem 5.1] and further studied in [32].
The proof is done in a Type-2 pairing setting, where an efficiently computable
isomorphism Ψ : G2 → G1 exists. In the proof, the adversary is given the
problem instance in group G2 and is allowed to obtain encodings of elements
in G1 through isomorphism queries. As we are in a Type-3 setting, there is no
such efficiently computable isomorphism. Thus, the problem instance given to
the adversary must contain all corresponding elements in both groupsG1 andG2.
Then, the generic group model proof for the co-t-SDH∗i assumption can be done
analogously to the proof in [17, proof of Theorem 5.1]. The main difference is
that instead of querying the isomorphism, the adversary must compute the same
sequence of computations performed in one group in the other group, in order
to obtain an element containing the same discrete logarithm, which, however,
preserves the asymptotic number of queries.

3 Structure-preserving Signatures on Equivalence Classes

We are looking for an efficient, randomizable structure-preserving signature
scheme for vectors with arbitrary numbers of group elements that allows to
randomize messages and signatures consistently in the public. It seems natural
to consider such messages as representatives of certain equivalence classes and
to perform randomization via a change of representatives. Before we can intro-
duce such a signature scheme and give an efficient construction, we detail these
equivalence classes.

All elements of a vector (Mi)
`
i=1 ∈ (G∗1)` (for some prime order group G1,

where we write G∗1 for G1 \ {0G1
}) share different mutual ratios. These ra-

tios depend on their discrete logarithms and are invariant under the operation
γ : Z∗p × (G∗1)` → (G∗1)` with (s, (Mi)

`
i=1) 7→ s(Mi)

`
i=1. Thus, we can use this

invariance to partition the set (G∗1)` into classes using the following equivalence
relation:

R = {(M,N) ∈ (G∗1)` × (G∗1)` : ∃s ∈ Z∗p such that N = s ·M} ⊆ (G∗1)2`.

It is easy to verify that R is indeed an equivalence relation given that G1 has
prime order. When signing an equivalence class [M ]R with our scheme, one actu-
ally signs an arbitrary representative (Mi)

`
i=1 of class [M ]R. The scheme, then,

allows to choose different representatives and to update corresponding signatures
in the public, i.e., without any secret key. Thereby, one of our goals is to guar-
antee that two message-signature pairs on the same equivalence class cannot be
linked. Note that such an approach only seems to work for structure-preserving
signature schemes, where we have no direct access to scalars. Otherwise, if we
wanted to sign vectors of elements of Z∗p, the direct access to the scalars would
allow us to decide class membership efficiently. This is also the reason, why we



subsequently define the class hiding property with respect to a random-message
instead of a chosen-message attack.

3.1 Defining the Signature Scheme

Now, we formally define a signature scheme for the above equivalence relation
and its required security properties.

Definition 7 (Structure-Preserving Signature Scheme for Equivalence
Relation R (SPS-EQ-R)). An SPS-EQ-R scheme consists of the following
polynomial time algorithms:

BGGenR(κ): Is a probabilistic bilinear group generation algorithm, which on
input a security parameter κ outputs a bilinear group BG.

KeyGenR(BG, `): Is a probabilistic algorithm, which on input a bilinear group
BG and a vector length ` > 1, outputs a key pair (sk, pk).

SignR(M, sk): Is a probabilistic algorithm, which on input a representative M
of an equivalence class [M ]R and a secret key sk, outputs a signature σ for
the equivalence class [M ]R (using randomness y).

ChgRepR(M,σ, ρ, pk): Is a probabilistic algorithm, which on input a representa-
tive M of an equivalence class [M ]R, the corresponding signature σ, a scalar
ρ and a public key pk, returns an updated message-signature pair (M̂, σ̂)
(using randomness ŷ). Here, M̂ is the new representative ρ ·M and σ̂ its
updated signature.

VerifyR(M,σ, pk): Is a deterministic algorithm, which given a representative M ,
a signature σ and a public key pk, outputs true if σ is a valid signature for
the equivalence class [M ]R under pk and false otherwise.

When one does not care about which new representative is chosen, ChgRepR
can be seen as consistent randomization of a signature and its message using
randomizer ρ without invalidating the signature on the equivalence class. The
goal is that the signature resulting from ChgRepR is indistinguishable from a
newly issued signature for the new representative of the same class.

For security, we require the usual correctness property for signature schemes,
but instead of single messages we consider the respective equivalence class and
the correctness of ChgRepR. More formally, we require:

Definition 8 (Correctness). An SPS-EQ-R scheme is called correct, if for all
security parameters κ ∈ N, for all ` > 1, for all bilinear groups BG← BGGenR(κ),
all key pairs (sk, pk)← KeyGenR(BG, `) and for all M ∈ (G∗1)` it holds that

VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = true ∀ρ ∈ Z∗p.

Furthermore, we require a notion of EUF-CMA security. In contrast to the stan-
dard definition of EUF-CMA security, we consider a natural adaption, i.e., out-
putting a valid message-signature pair, corresponding to an unqueried equiva-
lence class, is considered to be a forgery.



Definition 9 (EUF-CMA). An SPS-EQ-R scheme is called existentially un-
forgeable under adaptively chosen-message attacks, if for all PPT algorithms A
having access to a signing oracle O(sk,M), there is a negligible function ε(·) such
that:

Pr

 BG← BGGenR(κ), (sk, pk)← KeyGenR(BG, `)
(M∗, σ∗)← AO(sk,·)(pk) :

[M∗]R 6= [M ]R ∀M ∈ Q ∧ VerifyR(M∗, σ∗, pk) = true

 ≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O.

Subsequently, we let Q be a list for keeping track of queried messages M and
make use of the following oracles:

ORM (`): A random-message oracle, which on input a message vector length `,

picks a message M
R← (G∗1)`, appends M to Q and returns it.

ORoR(sk, pk, b,M): A real-or-random oracle taking input a bit b and a message

M . If M 6∈ Q, it returns ⊥. On the first valid call, it chooses R
R← (G∗1)`,

computes M ←
(
(M, SignR(M, sk)), (R,SignR(R, sk))

)
and returns M[b].

Any next call for M ′ 6= M will return ⊥ and ChgRepR(M[b], ρ, pk) otherwise,

where ρ
R← Z∗p.

Definition 10 (Class Hiding). An SPS-EQ-R scheme on (G∗1)` is called class
hiding, if for every PPT adversary A with oracle access to ORM and ORoR, there
is a negligible function ε(·) such that

Pr

BG← BGGenR(κ), b
R← {0, 1}, (state, sk, pk)← A(BG, `),

O ← {ORM (`),ORoR(sk, pk, b, ·)}, b∗ ← AO(state, sk, pk) :
b∗ = b

− 1

2
≤ ε(κ).

Here, the adversary is in the role of a signer, who issues signatures on random
messages (in the sense of a random message attack) and can derive signatures for
arbitrary representatives of queried classes. Observe that, if the adversary was
able to pick messages on its own, e.g., knows the discrete logarithms of the group
elements or puts identical group elements on different positions of the message
vectors, it would trivially be able to distinguish the classes. Consequently, we
define class hiding in a random message attack game and the random sampling
of messages makes the probability of identical message elements at different
positions negligible.

Definition 11 (Security). An SPS-EQ-R scheme is secure, if it is correct,
EUF-CMA secure and class hiding.

3.2 Our Construction

In our construction, we sign vectors of ` > 1 elements of G∗1, where the public key
only consists of elements in G2 and we require the SXDH assumption to hold.



The signature consists of four group elements, where three elements are from G1

and one element is from G2. Two signature elements (Z1, Z2) are aggregates of
the message vector under ` elements of the private key. In order to prevent an
additive homomorphism on the signatures, we introduce a randomizer y ∈ Z∗p,
multiply one aggregate with it and introduce two additional values Y = yP and
Y ′ = yP ′. The latter elements (besides eliminating the homomorphic property)
prevent simple forgeries, where Y ′ contains an aggregation of the public keys
X ′, X ′1, . . . , X

′
` in G2. This is achieved by verifying whether Y and Y ′ contain the

same unknown discrete logarithms during verification. Our construction lets us
switch to another representative M̂ = ρM of M by multiplying M and (Z1, Z2)
with the respective scalar ρ. Furthermore, a consistent re-randomization of ρZ2,
Y and Y ′ with a scalar ŷ yields a signature σ̂ for M̂ that is unlinkable to the
signature σ of M . In Scheme 1, we present the detailed construction of the
SPS-EQ-R scheme.

BGGenR(κ): Given a security parameter κ, output BG← BGGen(κ).

KeyGenR(BG, `): Given a bilinear group description BG and vector length ` > 1, choose x
R← Z∗p

and (xi)
`
i=1

R← (Z∗p)
`, set the secret key as sk ← (x, (xi)

`
i=1), compute the public key pk ←

(X′, (X′i)
`
i=1) = (xP ′, (xixP

′)`i=1) and output (sk, pk).

SignR(M, sk): On input a representativeM = (Mi)
`
i=1 ∈ (G∗1)

` of equivalence class [M ]R and secret

key sk = (x, (xi)
`
i=1), choose y

R← Z∗p and compute

Z1 ← x
∑̀
i=1

xiMi, Z2 ← y
∑̀
i=1

xiMi and (Y, Y
′
)← y · (P, P ′).

Then, output σ = (Z1, Z2, Y, Y
′) as signature for the equivalence class [M ]R.

ChgRepR(M,σ, ρ, pk): On input a representative M = (Mi)
`
i=1 ∈ (G∗1)

` of equivalence class [M ]R,
the corresponding signature σ = (Z1, Z2, Y, Y

′), ρ ∈ Z∗p and public key pk, this algorithm picks

ŷ
R← Z∗p and returns (M̂, σ̂), where σ̂ ← (ρZ1, ŷρZ2, ŷY, ŷY

′) is the update of signature σ for

the new representative M̂ ← ρ · (Mi)
`
i=1.

VerifyR(M,σ, pk): Given a representative M = (Mi)
`
i=1 ∈ (G∗1)

` of equivalence class [M ]R, a signa-

ture σ = (Z1, Z2, Y, Y
′) and public key pk = (X′, (X′i)

`
i=1), check whether

∏̀
i=1

e(Mi, X
′
i)

?
= e(Z1, P

′
) ∧ e(Z1, Y

′
)

?
= e(Z2, X

′
) ∧ e(P, Y

′
)

?
= e(Y, P

′
)

and if this holds output true and false otherwise.

Scheme 1: A Construction of an SPS-EQ-R Scheme

Note that a signature resulting from ChgRepR is indistinguishable from a new
signature on the same class using the new representative (it can be viewed as
issuing a signature with randomness y · ŷ).

3.3 Security of Our Construction

In our construction, message vectors are elements of (G∗1)`, public keys are only
available in G2 and signatures are elements of G1 and G2. Furthermore, we rely



on the SXDH assumption, and it seems very hard (to impossible) to analyze the
EUF-CMA security of the scheme via a reductionist proof using accepted non-
interactive assumptions. Abe et al. [3] show that for optimally short structure-
preserving signatures, i.e., three-element signatures, such reductions using non-
interactive assumptions cannot exist. But right now, it is not entirely clear how
structure-preserving signatures for equivalence relation R fit into these results
and if the lower bounds from [2] also apply. Independently of this, it appears
that a reduction to a (non-interactive) assumption is not possible, since due
to the class hiding property the winning condition cannot be checked efficiently
(without substantially weakening the unforgeability notion). Therefore, we chose
to prove the EUF-CMA security of our construction using a direct proof in the
generic group model such as for instance the proof of Abe et al. [2, Lemma 1]
(cf. [37] for the proof).

Now, we state the security of the signature scheme. The corresponding proofs
can be found in the full version [37].

Theorem 1. The SPS-EQ-R scheme in Scheme 1 is correct.

Theorem 2. In the generic group model for SXDH groups, Scheme 1 is an
EUF-CMA secure SPS-EQ-R scheme.

Theorem 3. If the DDH assumption holds in G1, Scheme 1 is a class hiding
SPS-EQ-R scheme.

Taking everything together, we obtain the following corollary:

Corollary 1. The SPS-EQ-R scheme in Scheme 1 is secure.

4 Polynomial Commitments with Factor Openings

In [39], Kate et al. introduced the notion of constant-size polynomial commit-
ments. The authors present two distinct commitment schemes, where one is
computationally hiding (PolyCommitDL) and the other one is unconditionally
hiding (PolyCommitPed). These constructions are very generic, as they allow to
construct witnesses for opening arbitrary evaluations of committed polynomials.

Yet, we emphasize that in practical scenarios (and especially in our construc-
tions) it is often sufficient to consider the roots of polynomials for encodings and
to open factors of the polynomial instead of arbitrary evaluations. Moreover, we
need a polynomial commitment scheme that is easily randomizable. Therefore,
we introduce the subsequent commitment scheme for monic, reducible polyno-
mials. Instead of opening evaluations, it allows to open factors of committed
polynomials. Hence, we call this type of commitment polynomial commitment
with factor openings. Our construction is unconditionally hiding, computation-
ally binding and more efficient than the Pedersen polynomial commitment con-
struction PolyCommitPed of [39]. Now, we briefly present this construction, which
we denote by PolyCommitFO.



SetupPC(κ, t): It takes input a security parameter κ ∈ N and a maximum poly-

nomial degree t ∈ N. It runs BG ← BGGen(κ), picks α
R← Z∗p and outputs

sk← α as well as pp← (BG, (αiP )ti=1, (α
iP ′)ti=1).

CommitPC(pp, f(X)): It takes input the public parameters pp and a monic, re-

ducible polynomial f(X) ∈ Zp[X] with deg f ≤ t. It picks ρ
R← Z∗p, computes

the commitment C ← ρ · f(α)P ∈ G1 and outputs (C, O) with opening
information O ← (ρ, f(X)). 1

OpenPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial
commitment C, the randomizer ρ used for C and the committed polynomial
f(X) and outputs (ρ, f(X)).

VerifyPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial
commitment C, the randomizer ρ used for C and the committed polynomial

f(X). It verifies whether ρ
?

6= 0 ∧ C ?
= ρ · f(α)P holds and outputs true

on success and false otherwise.
FactorOpenPC(pp, C, f(X), g(X), ρ): It takes input the public parameters pp, a

polynomial commitment C, the committed polynomial f(X), a factor g(X)

of f(X) and the randomizer ρ used for C. It computes h(X) ← f(X)
g(X) , the

witness Ch ← ρ · h(α)P and outputs (g(X), Ch).
VerifyFactorPC(pp, C, g(X), Ch): It takes input the public parameters pp, a poly-

nomial commitment C to a polynomial f(X), a polynomial g(X) of positive
degree and a corresponding witness Ch. It verifies that g(X) is a factor of

f(X) by checking whether Ch
?

6= 0G1
∧ e(Ch, g(α)P ′)

?
= e(C, P ′) holds. It

outputs true on success and false otherwise.

In analogy to the security notion in [39], a polynomial commitment scheme
with factor openings is secure if it is correct, polynomial binding, factor binding,
factor sound, witness sound and hiding. The above scheme can be proven secure
under the co-t-SDH∗1 assumption. For the security model and the formal proofs
of security, we refer the reader to the full version [37]. Note that one can also
define a scheme based on the co-t-SDH∗2 assumption with C ∈ G1 and Ch ∈ G2.
Although this would improve the performance of VerifyFactorPC, we define it
differently to reduce the computational complexity of the prover in the ABC
system in Section 5.3. Also note that we use the co-t-SDH∗1 assumption in a
static way, as t is a system parameter and fixed a priori. Finally, observe that
sk = α must remain unknown to the committer (and, thus, the setup has to be
run by a TTP), since it is a trapdoor commitment scheme otherwise.

5 Building an ABC System

In this section, we present an application of the signature scheme and the poly-
nomial commitment scheme introduced in the two previous sections, by using

1 Subsequently, we use f(α)P as short-hand notation for
∑deg f

i=0 fi · αiP even if α is
unknown.



them as basic building blocks for an ABC system. ABC systems are usually con-
structed in one of the following two ways. Firstly, they can be built from blind
signatures: A user obtains a blind signature from some issuer on (commitments
to) attributes and, then, shows the signature, provides the shown attributes and
proves the knowledge of all unrevealed attributes [20,12]. The drawback of such
a blind signature approach is that such credentials can only be shown once in
an unlinkable fashion (one-show). Secondly, anonymous credentials supporting
an arbitrary number of unlinkable showings (multi-show) can be obtained in a
similar vein using different types of signatures: A user obtains a signature on
(commitments to) attributes, then randomizes the signature (such that the re-
sulting signature is unlinkable to the issued one) and proves in zero-knowledge
the possession of a signature and the correspondence of this signature with the
shown attributes as well as the undisclosed attributes [24,25]. Our approach also
achieves multi-show ABCs, but differs from the latter significantly: We random-
ize the signature and the message and, thus, do not require costly zero-knowledge
proofs (which are, otherwise, at least linear in the number of shown/encoded at-
tributes) for the showing of a credential.

Subsequently, we start by discussing the model of ABCs. Then, we provide
an intuition for our construction in Section 5.2 and present the scheme in Sec-
tion 5.3. In Section 5.4, we discuss the security of the construction. Finally, we
give a performance comparison with other existing approaches in Section 5.5.

5.1 Abstract Model of ABCs

In an ABC system there are different organizations issuing credentials to different
users. Users can then anonymously demonstrate possession of these credentials to
verifiers. Such a system is called multi-show ABC system when transactions (is-
suing and showings) carried out by the same user cannot be linked. A credential
credi for user i is issued by an organization j for a set A = {(attrk, attrVk)}nk=1

of attribute labels attrk and values attrVk. By #A we mean the size of A,
which is defined to be the sum of cardinalities of all second components attrVk
of the tuples in A. Moreover, we denote by A′ v A a subset of the creden-
tial’s attributes. In particular, for every k, 1 ≤ k ≤ n, we have that either
(attrk, attrVk) is missing or (attrk, attrV

′
k) with attrV′k ⊆ attrVk is present.

A showing with respect to A′ only proves that a valid credential for A′ has been
issued, but reveals nothing beyond (selective disclosure).

We note that in some ABC system constructions, the entire key generation is
executed by the Setup algorithm. However, we split these algorithms into three
algorithms to make the presentation more flexible and convenient.

Definition 12 (Attribute-Based Anonymous Credential System). An
attribute-based anonymous credential (ABC) system consists of the following
polynomial time algorithms:

Setup: A probabilistic algorithm that gets a security parameter κ, an upper
bound t for the size of attribute sets and returns the public parameters pp.



OrgKeyGen: A probabilistic algorithm that takes input the public parameters pp
and j ∈ N, produces and outputs a key pair (oskj , opkj) for organization j.

UserKeyGen: A probabilistic algorithm that takes input the public parameters
pp and i ∈ N, produces and outputs a key pair (uski, upki) for user i.

(Obtain, Issue): These (probabilistic) algorithms are run by user i and organiza-
tion j, who interact during execution. Obtain takes input the public param-
eters pp, the user’s secret key uski, an organization’s public key opkj and an
attribute set A of size #A ≤ t. Issue takes input the public parameters pp,
the user’s public key upki, an organization’s secret key oskj and an attribute
set A of size #A ≤ t. At the end of this protocol, Obtain outputs a credential
credi for A for user i.

(Show, Verify): These (probabilistic) algorithms are run by user i and a verifier,
who interact during execution. Show takes input public parameters pp, the
user’s secret key uski, the organization’s public key opkj , a credential credi
for set A of size #A ≤ t and a second set A′ v A. Verify takes input pp, the
public key opkj and a set A′. At the end of the protocol, Verify outputs true
or false indicating whether the credential showing was accepted or not.

An ABC system is called secure if it is correct, unforgeable and anonymous (for
formal definitions, we refer the reader to the full version [37]).

5.2 Intuition of Our Construction

Our construction of ABCs is based on the proposed signature scheme, on poly-
nomial commitments with factor openings and on a single constant-size proof of
knowledge (PoK) for guaranteeing freshness. In contrast to this, the number of
proofs of knowledge in other ABC systems, like [23,20] and related approaches, is
linear in the number of shown attributes. Nevertheless, aside from selective dis-
closure of attributes, they allow to prove statements about non-revealed attribute
values, such as AND, OR and NOT, interval proofs, as well as conjunctions and
disjunctions of the aforementioned. The expressiveness that we achieve with our
construction, can be compared to existing alternative constructions of ABCs
[26,27]. Namely, our construction supports selective disclosure as well as AND
statements about attributes. Thereby, a user can either open some attributes
and their corresponding values or solely prove that some attributes are encoded
in the respective credential without revealing their concrete values. Furthermore,
one may associate sets of values to attributes, such that one is not required to
reveal the full attribute value, but only pre-defined ”statements” about the at-
tribute value such as {”01.01.1980”, ” > 16”, ” > 18”} for attribute birthdate.
This allows us to emulate proving properties about attribute values and, thus,
enhances the expressiveness of the system.

Credential Representation: In our construction, a credential credi of user i
is a vector of two group elements (C1, P ) together with a signature under the
proposed signature scheme (see Section 3.2). During a showing, the credential
gets randomized, which is easily achieved by changing the representative. The
meaning of its values will be discussed subsequently.



Attribute Representation: We use PolyCommitFO (cf. Section 4) to commit
to a polynomial, which encodes a set of attributes A = {(attrk, attrVk)}nk=1

(where the encoding is inspired from [36]). This commitment is represented by
the credential value C1.

Now, we show how we use polynomials to encode this set of attributes and
values. Thereby, we use a collision-resistant hash function H : {0, 1}∗ → Z∗p and
the following encoding function to generate the polynomials:

enc : A 7→
n∏
k=1

∏
M∈attrVk

(
X −H(attrk‖M)

)
.

This function is used to encode the set A in the issued credential, the shown
attributes A′ as well as its complement:

A′ = {(attr, attrV \ attrV′) : (attr, attrV) ∈ A, (attr, attrV′) ∈ A′}∪
{(attr′, attrV) ∈ A : (attr′, ·) 6∈ A′}

in every showing. The idea is that the credential includes a commitment to the
encoding of A and that showings include a witness of the encoding of A′ (with-
out opening it) as well as A′ in plain for which the encoding is then recomputed
by the verifier. To compute these values, we use the PolyCommitFO public pa-
rameters pp, which allow an evaluation of these polynomials in G1 and G2 at
α ∈ Z∗p (without knowing the trapdoor α). Then, the verifier checks whether the

multiplicative relationship enc(A) = enc(A′) ·enc(A′) between the polynomials is
satisfied by checking the multiplicative relationship between the corresponding
commitments and witnesses via a pairing equation. More precisely, the commit-
ment to the encoding of A is computed as C1 = ri · enc(A)(α)P with ri being
the secret key of user i. We note that since no entity knows α, we must compute

C1 ← ri · enc(A)(α)P = ri ·
t∑
i=0

eiα
iP, with enc(A) =

t∑
i=0

eiX
i ∈ Zp[X].

The verification of a credential, when showing A′, requires checking whether the
following holds:

VerifyFactorPC(pp, C1, enc(A′), CA′)
?
= true,

where CA′ = ri · enc(A′)(α)P is part of the showing. A showing, then, sim-
ply amounts to randomizing C1, opening a product of factors of the commit-
ted polynomial (representing the selective disclosure), providing a consistently
randomized witness of the complementary polynomial and performing a small,
constant-size PoK of the randomizer for freshness, as we will see soon.

Example: For the reader’s convenience, we include an example of a set A. We
are given a user with the following set of attributes and values:

A = {(birthdate, {”01.01.1980”, ” > 18”}), (drivinglicense, {#, car})}.



Note that # indicates an attribute value that allows to prove the possession of
the attribute without revealing any concrete value. A showing could, for instance,
involve the following attributes A′ and its hidden complement A′:

A′ = {(drivinglicense, {#})}
A′ = {(birthdate, {”01.01.1980”, ” > 18”}), (drivinglicense, {car})}.

Freshness: We have to guarantee that no valid showing transcript can be re-
played by someone not in possession of the credential and the user’s secret key. To
do so, we require the user to conduct a proof of knowledge PoK{γ : C2 = γP} of
the discrete logarithm of the second component C2 = ρP of a credential, i.e., the
value ρ, in the showing protocol. This guarantees that we have a fresh challenge
for every showing.

In order to prove the anonymity of the ABC system, we need a little trick.
We modify the aforementioned PoK and require that the user delivers a proof
of knowledge PoK{γ : Q = γP ∨ C2 = γP}, where Q is an additional value in
the public parameters pp with unknown discrete logarithm q. Consequently, the
user needs to conduct the second part of the proof honestly, while simulating the
one for Q. In the proof of anonymity, this allows us to let the challenger know q
and simulate showings without knowledge of the discrete logarithm of C2, which
is required for our reduction to work. Due to the nature of the OR proof, this
cannot be detected by the adversary.

5.3 The Construction of the ABC System

Now, we present our ABC system in Scheme 2, where we use the notation X ←
f(X) to indicate that the value of X is overwritten by the result of the evaluation
of f(X). Note that if a check does not yield true, the respective algorithm
terminates with a failure and the algorithm Verify accepts only if VerifyFactorPC

and VerifyR return true as well as PoK is valid. Also note that the first move
in the showing protocol can be combined with the first move of the proof of
knowledge. Therefore, the showing protocol consists of a total of three moves.

5.4 Security

In the full version [37], we introduce a security model for attribute-based anony-
mous credentials and we provide formal proofs for the following:

Theorem 4. Scheme 2 is correct.

Theorem 5. If PolyCommitFO is factor-sound, H is a collision-resistant hash
function, Scheme 1 is secure and the DLP is hard in G1, then Scheme 2 is
unforgeable.

Theorem 6. If Scheme 1 is class hiding, then Scheme 2 is anonymous.

Taking everything together, we obtain the following corollary:



Setup: Given (κ, t), run pp′ = (BG, (αiP )ti=1, (α
iP ′)ti=1) ← SetupPC(κ, t) and let H : {0, 1}∗ → Z∗p

be a collision-resistant hash function used inside enc(·). Finally, choose Q
R← G1 and output

pp← (H, enc, Q, pp′).
OrgKeyGen: Given pp and j ∈ N, return (oskj , opkj)← KeyGenR(BG, 2).

UserKeyGen: Given pp and i ∈ N, pick ri
R← Z∗p, set Ri ← riP and return (uski, upki)← (ri, Ri).

(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, upki, oskj ,A) Obtain(pp, uski, opkj ,A)

e(C1, P
′)

?
= e(Ri, enc(A)(α)P ′) C1←−− C1 ← ri · enc(A)(α)P

σ ← SignR((C1, P ), oskj)
σ−→ VerifyR((C1, P ), σ, opkj)

?
= true

credi ← ((C1, P ), σ)

(Show,Verify): Show and Verify interact in the following way:

Verify(pp, opkj ,A
′) Show(pp, uski, opkj , (A,A

′), credi)

ρ
R← Z∗p

cred′i ← ChgRepR(credi, ρ, opkj)[
VerifyFactorPC(pp′, C1, enc(A′), CA′ ) ∧

cred′i,CA′←−−−−−− CA′ ← (ρ · uski) · enc(A′)(α)P

VerifyR(cred′i, opkj)
]

?
= true

PoK{γ:Q=γP∨C2=γP}
←−−−−−−−−−−−−−−−→

where cred′i = ((C1, C2), σ).

Scheme 2: A Multi-Show ABC System

Corollary 2. Scheme 2 is a secure ABC system.

Note that in the proof of Theorem 5, we can distinguish whether a forgery goes
back to a signature forgery of Scheme 1 or not. The reason for this is that
the knowledge extractor of the PoK gives us the possibility to extract the used
credential, which allows us to determine whether a showing is based on a queried
credential (and, in further consequence, on a queried signature) or not. Hence,
we are able to efficiently check the winning condition of the EUF-CMA game.

5.5 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches and for complete-
ness also include the most popular one-show approach. As other candidates for
multi-show ABCs, we take the Camenisch-Lysyanskaya schemes [23,24,25] as
well as schemes from BBS+ signatures [18,11] which cover a broad class of ABC
schemes from randomizable signature schemes with efficient proofs of knowledge.
Furthermore, we take two alternative multi-show ABC constructions [26,27] as
well as Brands’ approach [20] (also covering the provable secure version [12]) for
the sake of completeness, although latter only provides one-show ABCs. We omit
other approaches such as [8] that only allow a single attribute per credential. We
also omit approaches that achieve more efficient showings for existing ABC sys-
tems only in very special cases such as for attribute values that come from a
very small set (and are, thus, hard to compare). For instance, the approach in
[22] for CL credentials in the strong RSA setting (encoding attributes as prime



numbers) or in a pairing-based setting using BBS+ credentials [41] (encoding
attributes using accumulators), where the latter additionally requires very large
public parameters (one BB signature [15] for every possible attribute value).

Table 1 gives an overview of these systems. Thereby, Type-1 and Type-2
refer to bilinear group settings with Type-1 and Type-2 pairings, respectively.
In a stronger sense, XDH as well as SXDH stand for bilinear group settings,
where the former requires the external Diffie-Hellman assumption and the latter
requires the SXDH assumption to hold. Furthermore, Gq denotes a group of
prime order q (e.g., a prime order subgroup of Z∗p or of an elliptic curve group).
By |G|, we mean the bitlength of the representation of an element from group G
and the value c is a constant specified to be approximately 510 bits in [26]. We
emphasize that, in contrast to other approaches, such as [25,27], our construction
only requires a small and constant number of pairing evaluations in all protocol
steps. Note that in the issuing step we always assume a computation of O(L)
for the user, as we assume that the user checks the validity of the obtained
credential on issuing (most of the approaches, including ours, have cost O(1) if
this verification is omitted).

Table 1. Comparison of various approaches to ABC systems.

Parameter Size (L attributes) Issuing Showing (k-of-L attributes)
Setting pp Credential Size Issuer User Com Verifier User Com

[23,24] sRSA O(L) O(1) 3|ZN | O(L) O(L) O(L) O(L) O(L) O(L− k)
[25] Type-1 O(L) O(L) (2L+ 2)|G1| O(L) O(L) O(L) O(L) O(L) O(L)
[18] Type-2 O(L) O(1) |G1|+ 22|Zq| O(L) O(L) O(1) O(L) O(L) O(L)
[26] Type-2 O(1) O(L) L|G1|+ c+ |G2| O(L) O(L) O(L) O(L) O(1) O(1)
[27] XDH O(L) O(L) (2L+ 2)(|G1|+ |Zp|) O(L) O(L) O(L) O(k) O(k) O(k)
[20] Gq O(L) O(1) 2|Gq|+ 2|Zq| O(L) O(L) O(1) O(k) O(k) O(L− k)
Our SXDH O(L) O(1) 4|G1|+ |G2| O(L) O(L) O(1) O(k) O(L− k) O(1)

6 Future Work

The proposed signature scheme seems to be powerful and there might be other
applications that could benefit, like blind signatures or verifiably-encrypted sig-
natures. We leave a detailed study and the analysis of such applications as future
work. Future work also includes constructing revocable and delegatable anony-
mous credentials from this new approach to ABCs. Furthermore, it is an interest-
ing question whether the proposed construction is already optimal, whether such
signatures can be built for other interesting relations and whether it is possible
to construct such signature schemes whose unforgeability can be proven under
possible non-interactive assumptions or even to show that this is impossible.
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