
Secret-Sharing for NP

Ilan Komargodski?, Moni Naor?, and Eylon Yogev?

Weizmann Institute of Science
{ilan.komargodski,moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. A computational secret-sharing scheme is a method that en-
ables a dealer, that has a secret, to distribute this secret among a set
of parties such that a “qualified” subset of parties can efficiently re-
construct the secret while any “unqualified” subset of parties cannot
efficiently learn anything about the secret. The collection of “qualified”
subsets is defined by a monotone Boolean function.
It has been a major open problem to understand which (monotone)
functions can be realized by a computational secret-sharing scheme.
Yao suggested a method for secret-sharing for any function that has
a polynomial-size monotone circuit (a class which is strictly smaller than
the class of monotone functions in P). Around 1990 Rudich raised the
possibility of obtaining secret-sharing for all monotone functions in NP:
In order to reconstruct the secret a set of parties must be “qualified” and
provide a witness attesting to this fact.
Recently, Garg et al. [14] put forward the concept of witness encryption,
where the goal is to encrypt a message relative to a statement x ∈ L for a
language L ∈ NP such that anyone holding a witness to the statement can
decrypt the message, however, if x /∈ L, then it is computationally hard
to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.
One can show that computational secret-sharing implies witness encryp-
tion for the same language. Our main result is the converse: we give
a construction of a computational secret-sharing scheme for any mono-
tone function in NP assuming witness encryption for NP and one-way
functions. As a consequence we get a completeness theorem for secret-
sharing: computational secret-sharing scheme for any single monotone
NP-complete function implies a computational secret-sharing scheme for
every monotone function in NP.

1 Introduction

A secret-sharing scheme is a method that enables a dealer, that has a secret piece
of information, to distribute this secret among n parties such that a “qualified”
subset of parties has enough information to reconstruct the secret while any
“unqualified” subset of parties learns nothing about the secret. A monotone
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collection of “qualified” subsets (i.e., subsets of parties that can reconstruct
the secret) is known as an access structure, and is usually identified with its
characteristic monotone function.1 Besides being interesting in their own right,
secret-sharing schemes are an important building block in many cryptographic
protocols, especially those involving some notion of “qualified” sets (e.g., multi-
party computation, threshold cryptography and Byzantine agreement). For more
information we refer to the extensive survey of Beimel on secret-sharing schemes
and their applications [4].

A significant goal in constructing secret-sharing schemes is to minimize the
amount of information distributed to the parties. We say that a secret-sharing
scheme is efficient if the size of all shares is polynomial in the number of parties
and the size of the secret.

Secret-sharing schemes were introduced in the late 1970s by Blakley [8] and
Shamir [32] for the threshold access structure, i.e., where the subsets that can re-
construct the secret are all the sets whose cardinality is at least a certain thresh-
old. Their constructions were fairly efficient both in the size of the shares and in
the computation required for sharing and reconstruction. Ito, Saito and Nishizeki
[21] considered general access structures and showed that every monotone ac-
cess structure has a (possibly inefficient) secret-sharing scheme that realizes it.
In their scheme the size of the shares is proportional to the DNF (resp. CNF)
formula size of the corresponding function. Benaloh and Leichter [7] proved that
if an access structure can be described by a polynomial-size monotone formula,
then it has an efficient secret-sharing scheme. The most general class for which
secret-sharing is known was suggested by Karchmer and Wigderson [22] who
showed that if the access structure can be described by a polynomial-size mono-
tone span program (for instance, undirected connectivity in a graph), then it has
an efficient secret-sharing scheme. Beimel and Ishai [5] proposed a secret-sharing
scheme for an access structure which is conjectured to lie outside NC. On the
other hand, there are no known lower bounds that show that there exists an
access structure that requires only inefficient secret-sharing schemes.2

Computational Secret-Sharing. In the secret-sharing schemes considered above
the security is guaranteed information theoretically, that is, even if the par-
ties are computationally unbounded. These secret-sharing schemes are known as
perfect secret-sharing schemes. A natural variant, known as computational secret-
sharing schemes, is to allow only computationally limited dealers and parties, i.e.,
they are probabilistic algorithms that run in polynomial-time. More precisely, a

1 It is most sensible to consider only monotone sets of “qualified” subsets of parties. A
set M of subsets is called monotone if A ∈M and A ⊆ A′, then A′ ∈M . It is hard
to imagine a meaningful method for sharing a secret to a set of “qualified” subsets
that does not satisfy this property.

2 Moreover, there are not even non-constructive lower bounds for secret-sharing
schemes. The usual counting arguments (e.g., arguments that show that most func-
tions require large circuits) do not work here since one needs to enumerate over
the sharing and reconstruction algorithms whose complexity may be larger than the
share size.
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computational secret-sharing scheme is a secret-sharing scheme in which there
exists an efficient dealer that generates the shares such that a “qualified” sub-
set of parties can efficiently reconstruct the secret, however, an “unqualified”
subset that pulls its shares together but has only limited (i.e., polynomial) com-
putational power and attempts to reconstruct the secret should fail (with high
probability). Krawczyk [25] presented a computational secret-sharing scheme
for threshold access structures that is more efficient (in terms of the size of the
shares) than the perfect secret-sharing schemes given by Blakley and Shamir [8,
32]. In an unpublished work (mentioned in [4], see also Vinod et al. [33]), Yao
showed an efficient computational secret-sharing scheme for access structures
whose characteristic function can be computed by a polynomial-size monotone
circuit (as opposed to the perfect secret-sharing of Benaloch and Leichter [7]
for polynomial-size monotone formulas). Yao’s construction assumes the exis-
tence of pseudorandom generators, which can be constructed from any one-way
function [19]. There are access structures which are known to have an efficient
computational secret-sharing schemes but are not known to have efficient per-
fect secret-sharing schemes, e.g., directed connectivity.3 Yao’s scheme does not
include all monotone access structures with an efficient algorithm to determine
eligibility. One notable example where no efficient secret-sharing is known is
matching in a graph.4 Thus, a major open problem is to answer the following
question:

Which access structures have efficient computational secret-sharing schemes,
and what cryptographic assumptions are required for that?

Secret-Sharing for NP. Around 1990 Steven Rudich raised the possibility of ob-
taining secret-sharing schemes for an even more general class of access structures
than P: monotone functions in NP, also known as mNP.5 An access structure that
is defined by a function in mNP is called an mNP access structure. Intuitively,
a secret-sharing scheme for an mNP access structure is defined (in the natural
way) as following: for the “qualified” subsets there is a witness attesting to this
fact and given the witness it should be possible to reconstruct the secret. On the
other hand, for the “unqualified” subsets there is no witness, and so it should
not be possible to reconstruct the secret. For example, consider the Hamiltonian
access structure. In this access structure the parties correspond to edges of the
complete undirected graph, and a set of parties X is said to be “qualified” if and

3 In the access structure for directed connectivity, the parties correspond to edge slots
in the complete directed graph and the “qualified” subsets are those edges that
connect two distinguished nodes s and t.

4 In the access structure for matching the parties correspond to edge slots in the
complete graph and the “qualified” subsets are those edges that contain a perfect
matching. Even though matching is in P, it is known that there is no monotone
circuit that computes it [30].

5 Rudich raised it in private communication with the second author around 1990 and
was not written to the best of our knowledge; some of Rudich’s results can be found
in Beimel’s survey [4] and in Naor’s presentation [28].
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only if the corresponding set of edges contains a Hamiltonian cycle and the set
of parties knows a witness attesting to this fact.

Rudich observed that if NP 6= coNP, then there is no perfect secret-sharing
scheme for the Hamiltonian access structure in which the sharing of the secret
can be done efficiently (i.e., in polynomial-time).6 This (conditional) impossi-
bility result motivates looking for computational secret-sharing schemes for the
Hamiltonian access structure and other mNP access structures. Furthermore,
Rudich showed that the construction of a computational secret-sharing schemes
for the Hamiltonian access structure gives rise to a protocol for oblivious trans-
fer. More precisely, Rudich showed that if one-way functions exist and there is a
computational secret-sharing scheme for the Hamiltonian access structure (i.e.,
with efficient sharing and reconstruction), then efficient protocols for oblivious
transfer exist.7 In particular, constructing a computational secret-sharing scheme
for the Hamiltonian access structure assuming one-way functions will resolve a
major open problem in cryptography and prove that Minicrypt=Cryptomania,
to use Impagliazzo’s terminology [20].

In the decades since Rudich raised the possibility of access structures beyond
P not much has happened. This changed with the work on witness encryption by
Garg et al. [14], where the goal is to encrypt a message relative to a statement
x ∈ L for a language L ∈ NP such that: Anyone holding a witness to the
statement can decrypt the message, however, if x /∈ L, then it is computationally
hard to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.

A by-product of the proposed construction of Garg et al. was a construction of
a computational secret-sharing scheme for a specific monotone NP-complete lan-
guage. However, understanding whether one can use a secret-sharing scheme for
any single (monotone) NP-complete language in order to achieve secret-sharing
schemes for any language in mNP was an open problem. One of our main results
is a positive answer to this question. Details follow.

Our Results. In this paper, we construct a secret-sharing scheme for every mNP
access structure assuming witness encryption for NP and one-way functions. In
addition, we give two variants of a formal definition for secret-sharing for mNP
access structures (indistinguishability and semantic security) and prove their
equivalence.

Theorem 1. Assuming witness encryption for NP and one-way functions, there
is an efficient computational secret-sharing scheme for every mNP access struc-
ture.

We remark that if we relax the requirement of computational secret-sharing
such that a “qualified” subset of parties can reconstruct the secret with very

6 Moreover, it is possible to show that if NP 6⊆ coAM, then there is no statistical
secret-sharing scheme for the Hamiltonian access structure in which the sharing of
the secret can be done efficiently [28].

7 The resulting reduction is non-black-box. Also, note that the results of Rudich apply
for any other monotone NP-complete problem as well.
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high probability (say, negligibly close to 1), then our scheme from Theorem 1
actually gives a secret-sharing scheme for every monotone functions in MA.

As a corollary, using the fact that a secret-sharing scheme for a language im-
plies witness encryption for that language and using the completeness of witness
encryption,8 we obtain a completeness theorem for secret-sharing.

Corollary 1 (Completeness of Secret-Sharing). Let L be a monotone lan-
guage that is NP-complete (under Karp/Levin reductions) and assume that one-
way functions exist. If there exists a computational secret-sharing scheme for
the access structure defined by L, then there are computational secret-sharing
schemes for every mNP access structure.

1.1 On Witness Encryption and Its Relation to Obfuscation

Witness encryption was introduced by Garg et al. [14]. They gave a formal
definition and showed how witness encryption can be combined with other
cryptographic primitives to construct public-key encryption (with efficient key
generation), identity-based encryption and attribute-based encryption. Lastly,
Garg et al. presented a candidate construction of a witness encryption scheme
which they assumed to be secure. In a more recent work, a new construction of
a witness encryption scheme was proposed by Gentry, Lewko and Waters [16].

Shortly after the paper of Garg et al. [14] a candidate construction of indistin-
guishability obfuscation was proposed by Garg et al. [13]. An indistinguishability
obfuscator is an algorithm that guarantees that if two circuits compute the same
function, then their obfuscations are computationally indistinguishable. The no-
tion of indistinguishability obfuscation was originally proposed in the seminal
work of Barak et al. [2, 3].

Recently, there have been two significant developments regarding indistin-
guishability obfuscation: first, candidate constructions for obfuscators for all
polynomial-time programs were proposed [13, 11, 1, 29, 15] and second, intrigu-
ing applications of indistinguishability obfuscation when combined with other
cryptographic primitives9 have been demonstrated (see, e.g., [13, 31, 9]).

As shown by Garg et al. [13], indistinguishability obfuscation implies witness
encryption for all NP, which, as we show in Theorem 1, implies secret-sharing for
all mNP. In fact, using the completeness of witness encryption (see Footnote 8),
even an indistinguishability obfuscator for 3CNF formulas (for which there is a
simple candidate construction [10]) implies witness encryption for all NP. Under-
standing whether witness encryption is strictly weaker than indistinguishability
obfuscation is an important open problem.

8 Using standard Karp/Levin reductions between NP-complete languages, one can
transform a witness encryption scheme for a single NP-complete language to a wit-
ness encryption scheme for any other language in NP.

9 See [23] for a thorough discussion of the need in additional hardness assumptions on
top of iO.
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1.2 Other Related Work

A different model of secret-sharing for mNP access structures was suggested by
Vinod et al. [33]. Specifically, they relaxed the requirements of secret-sharing
by introducing a semi-trusted third party T who is allowed to interact with the
dealer and the parties. They require that T does not learn anything about the
secret and the participating parties. In this model, they constructed an efficient
secret-sharing scheme for any mNP access structures (that is also efficient in
terms of the round complexity of the parties with T ) assuming the existence of
efficient oblivious transfer protocols.

1.3 Main Idea

Let Com be a perfectly-binding commitment scheme. Let M ∈ mNP be an access
structure on n parties P = {p1, . . . , pn}. Define M ′ to be the NP language that
consists of sets of n strings c1, . . . , cn as follows. M ′(c1, . . . , cn) = 1 if and only
if there exist r1, . . . , rn such that M(x) = 1, where x = x1 . . . xn is such that

∀i ∈ [n] : xi =

{
1 if ri 6= ⊥ and Com(i, ri) = ci,

0 otherwise.

For the language M ′ denote by (EncryptM ′ ,DecryptM ′) the witness encryp-
tion scheme for M ′. A secret-sharing scheme for the access structure M con-
sists of a setup phase in which the dealer distributes secret shares to the par-
ties. First, the dealer samples uniformly at random n openings r1, . . . , rn. Then,
the dealer computes a witness encryption ct of the message S with respect to
the instance (c1 = Com(1, r1), . . . , cn = Com(n, rn)) of the language M ′, namely
ct = EncryptM ′((c1, . . . , cn), S). Finally, the share of party pi is set to be 〈r1, ct〉.

Clearly, if EncryptM ′ and Com are efficient, then the generation of the shares
is efficient. Moreover, the reconstruction procedure is the natural one: Given a
subset of parties X ⊆ P such that M(X) = 1 and a valid witness w, decrypt
ct using the shares of the parties X and w. By the completeness of the witness
encryption scheme, given a valid subset of parties X and a valid witness w the
decryption will output the secret S.

As for the security of this scheme, we want to show that it is impossible to
extract (or even learn anything about) the secret having a subset of parties X for
which M(X) = 0 (i.e., an “unqualified” subset of parties). Let X be such that
M(X) = 0 and let D be an algorithm that extracts the secret given the shares of
parties corresponding to X. Roughly speaking, we will use the ability to extract
the secret in order to solve the following task: we are given a list of n unopened
string commitments c1, . . . , cn and a promise that it either corresponds to the
values A0 = {1, . . . , n} or it corresponds to the values A1 = {n+ 1, . . . , 2n} and
we need to decide which is the case. Succeeding in this task would break the
security guarantee of the commitment scheme.

We sample n openings r1, . . . , rn uniformly at random and create a new wit-
ness encryption ct′ such that ct′ = EncryptM ′((c′1, . . . , c

′
n), S) as above, where we

6



replace the commitments corresponding to parties not in X with commitments
from the input as follows:

∀i ∈ [n] : c′i =

{
Com(i, ri) if pi ∈ X
ci otherwise.

For i ∈ [n] we set the share of party pi to be 〈ri, ct′〉. We run D with this new
set of shares. If we are in the case where c1, . . . , cn corresponds to A0, then D
is unable to distinguish between ct and ct′ and, hence, will be able to extract
the secret. On the other hand, if c1, . . . , cn corresponds to A1, then there is no
valid witness to decrypt ct′ (since the commitment scheme is perfectly-binding).
Therefore, by the security of the witness encryption scheme, it is computationally
hard to learn anything about the secret S from ct′. Hence, if D is able to extract
the secret S, then we deduce that c1, . . . , cn correspond to A0 and, otherwise we
conclude that c1, . . . , cn correspond to A1.

The above gives intuition for proving security in the non-uniform setting. To
see this, we assume that there exists an X such that M(X) = 0 and the distin-
guisher D can extract the secret from the shares of X. Our security definition
(see Section 3) is uniform and requires the distinguisher D to find such an X
and extract the secret with noticeable probability. In the uniform case, we first
run D to get X and must make sure that M(X) = 0. Otherwise, if M(X) = 1,
in both cases (that c1, . . . , cn correspond to A0 or to A1) it is easy to extract
the secret and thus we might be completely fooled. The problem is that M is a
language in mNP and, in general, it could be hard to test whether M(X) = 0.
We overcome this by sampling many subsets X and use D to estimate which
one to use. For more information we refer to Section 4.1.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers
{1, 2, . . . , n}. Throughout the paper we use n as our security parameter. We
denote by Un the uniform distribution on n bits. For a distribution or random
variable R we write r ← R to denote the operation of sampling a random element

r according to R. For a set S, we write s
R←S to denote the operation of sampling

an s uniformly at random from the set S. We denote by neg : N→ R a function
such that for every positive integer c there exists an integer Nc such that for all
n > Nc, neg(n) < 1/nc.

2.1 Monotone NP

A function f : 2[n] → {0, 1} is said to be monotone if for every X ⊆ [n] such that
f(X) = 1 it also holds that ∀Y ⊆ [n] such that X ⊆ Y it holds that f(Y ) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates
(without negations). A non-deterministic circuit is a Boolean circuit whose in-
puts are divided into two parts: standard inputs and non-deterministic inputs.
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A non-deterministic circuit accepts a standard input if and only if there is some
setting of the non-deterministic input that causes the circuit to evaluate to 1. A
monotone non-deterministic circuit is a non-deterministic circuit where the mono-
tonicity requirement applies only to the standard inputs, that is, every path from
a standard input wire to the output wire does not have a negation gate.

Definition 1 ([18]). We say that a function L is in mNP if there exists a uni-
form family of polynomial-size monotone non-deterministic circuit that computes
L.

Lemma 1 ([18, Theorem 2.2]). mNP = NP∩mono, where mono is the set of
all monotone functions.

2.2 Computational Indistinguishability

Definition 2. Two sequences of random variables X = {Xn}n∈N and Y =
{Yn}n∈N are computationally indistinguishable if for every probabilistic polynomial-
time algorithm A there exists an integer N such that for all n ≥ N ,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| ≤ neg(n).

where the probabilities are over Xn, Yn and the internal randomness of A.

2.3 Secret-Sharing

A perfect (resp., computational) secret-sharing scheme involves a dealer who has
a secret, a set of n parties, and a collection A of “qualified” subsets of parties
called the access structure. A secret-sharing scheme for A is a method by which
the dealer (resp., efficiently) distributes shares to the parties such that (1) any
subset in A can (resp., efficiently) reconstruct the secret from its shares, and (2)
any subset not in A cannot (resp., efficiently) reveal any partial information on
the secret. For more information on secret-sharing schemes we refer to [4] and
references therein.

Throughout this paper we deal with secret-sharing schemes for access struc-
tures over n parties P = Pn = {p1, . . . , pn}.

Definition 3 (Access structure). An access structure M on P is a monotone
set of subsets of P. That is, for all X ∈ M it holds that X ⊆ P and for all
X ∈M and X ′ such that X ⊆ X ′ ⊆ P it holds that X ′ ∈M .

We may think of M as a characteristic function M : 2P → {0, 1} that outputs 1
given as input X ⊆ P if and only if X is in the access structure.

Many different definitions for secret-sharing schemes appeared in the litera-
ture. Some of the definitions were not stated formally and in some cases rigorous
security proofs were not given. Bellare and Rogaway [6] survey many of these
different definitions and recast them in the tradition of provable-security cryp-
tography. They also provide some proofs for well-known secret-sharing schemes
that were previously unanalyzed. We refer to [6] for more information.
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2.4 Witness Encryption

Definition 4 (Witness encryption [16]). A witness encryption scheme for an
NP language L (with a corresponding relation R) consists of the following two
polynomial-time algorithms:

Encrypt(1λ, x,M): Takes as input a security parameter 1λ, an unbounded-
length string x and an message M of polynomial length in λ, and outputs a
ciphertext ct.
Decrypt(ct, w): Takes as input a ciphertext ct and an unbounded-length string
w, and outputs a message M or the symbol ⊥.

These algorithms satisfy the following two conditions:

1. Completeness (Correctness): For any security parameter λ, any M ∈
{0, 1}poly(λ) and any x ∈ L such that R(x,w) holds, we have that

Pr[Decrypt(Encrypt(1λ, x,M), w) = M ] = 1.

2. Soundness (Security): For any probabilistic polynomial-time adversary
A, there exists a negligible function neg(·), such that for any x /∈ L and
equal-length messages M1 and M2 we have that∣∣Pr[A(Encrypt(1λ, x,M1) = 1]− Pr[A(Encrypt(1λ, x,M2) = 1]

∣∣ ≤ neg(λ).

Remark. Our definition of Rudich secret-sharing (that is given in Section 3) is
uniform. The most common definition of witness encryption in the literature
is a non-uniform one (both in the instance and in the messages). To achieve
our notion of security for Rudich secret-sharing it is enough to use a witness
encryption scheme in which the messages are chosen uniformly.

2.5 Commitment Schemes

In our construction we need a non-interactive commitment scheme such that
commitments of different strings has disjoint support. Since the dealer in the
setup phase of a secret-sharing scheme is not controlled by an adversary (i.e.,
it is honest), we can relax the foregoing requirement and use non-interactive
commitment schemes that work in the CRS (common random string) model,
Moreover, since the domain of input strings is small (it is of size 2n) issues of
non-uniformity can be ignored. Thus, we use the following definition:

Definition 5 (Commitment scheme in the CRS model). A polynomial-
time computable function Com : {0, 1}` × {0, 1}n × {0, 1}m → {0, 1}∗, where `
is the length of the string to commit, n is the length of the randomness, m is
the length of the CRS. We say that Com is a (non-interactive perfectly binding)
commitment scheme in the CRS model if for any two inputs x1, x2 ∈ {0, 1}` such
that x1 6= x2 it holds that:
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1. Computational Hiding: Let crs ← {0, 1}m be chosen uniformly at random.
The random variables Com(x1,Un, crs) and Com(x2,Un, crs) are computa-
tionally indistinguishable (given crs).

2. Perfect Binding: With all but negligible probability over the CRS, the supports
of the above random variables are disjoint.

Commitment schemes that satisfy the above definition, in the CRS model, can
be constructed based on any pseudorandom generator [26] (which can be based
on any one-way functions [19]). For simplicity, throghout the paper we ignore
the CRS and simply write Com(·, ·). We say that Com(x, r) is the commitment
of the value x with the opening r.

3 The Definition of Rudich Secret-Sharing

In this section we formally define computational secret-sharing for access struc-
tures realizing monotone functions in NP, which we call Rudich secret-sharing.
Even though secret-sharing for functions in NP were considered in the past [33,
4, 14], no formal definition was given.

Our definition consists of two requirements: completeness and security. The
completeness requirement assures that a “qualified” subset of parties that wishes
to reconstruct the secret and knows the witness will be successful. The security
requirement guarantees that as long as the parties form an “unqualified” subset,
they are unable to learn the secret.

Note that the security requirement stated above is possibly hard to check
efficiently: For some access structures in mNP (e.g., monotone NP-complete
problems) it might be computationally hard to verify that the parties form an
“unqualified” subset. Next, in Definition 6 we give a uniform definition of secret-
sharing for NP. In Section 3.1 we give an alternative definition and show their
equivalence.

Definition 6 (Rudich secret-sharing). Let M : 2P → {0, 1} be an access
structure corresponding to a language L ∈ mNP and let VM be a verifier for L.
A secret-sharing scheme S for M consists of a setup procedure SETUP and a
reconstruction procedure RECON that satisfy the following requirements:

1. SETUP(1n, S) gets as input a secret S and distributes a share for each party.
For i ∈ [n] denote by Π(S, i) the random variable that corresponds to the
share of party pi. Furthermore, for X ⊆ P we denote by Π(S,X) the random
variable that corresponds to the set of shares of parties in X.

2. Completeness:
If RECON(1n, Π(S,X), w) gets as input the shares of a “qualified” subset
of parties and a valid witness, and outputs the shared secret. Namely, for
X ⊆ P if M(X) = 1, then for any valid witness w such that VM (X,w) = 1,
it holds that:

Pr [RECON(1n, Π(S,X), w) = S] = 1,
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where the probability is over the internal randomness of the scheme and of
RECON.

3. Indistinguishability of the Secret:
For every pair of probabilistic polynomial-time algorithms (Samp, D) where
Samp(1n) defines a distribution over pairs of secrets S0, S1, a subset of par-
ties X and auxiliary information σ, it holds that

|Pr [M(X) = 0 ∧ D(1n, S0, S1, Π(S0, X), σ) = 1]−
Pr [M(X) = 0 ∧ D(1n, S0, S1, Π(S1, X), σ) = 1] | ≤ neg(n),

where the probability is over the internal randomness of the scheme, the
internal randomness of D and the distribution (S0, S1, X, σ)← Samp(1n).
That is, for every pair of probabilistic polynomial-time algorithms (Samp, D)
such that Samp chooses two secrets S0, S1 and a subset of parties X ⊆ P, if
M(X) = 0 then D is unable to distinguish (with noticeable probability) be-
tween the shares of X generated by SETUP(S0) and the shares of X generated
by SETUP(S1).

Notation. For ease of notation, 1n and σ are omitted when they are clear from
the context.

3.1 An Alternative Definition: Semantic Security

The security requirement (i.e., the third requirement) of a Rudich secret-sharing
scheme that is given in Definition 6 is phrased in the spirit of computational
indistinguishability. A different approach is to define the security of a Rudich
secret-sharing in the spirit of semantic security. As in many cases (e.g., encryp-
tion [17]), it turns out that the two definitions are equivalent.

Definition 7 (Rudich secret-sharing - semantic security version).
Let M : 2P → {0, 1} be an mNP access structure with verifier VM . A secret-

sharing scheme S for M consists of a setup procedure SETUP and a reconstruc-
tion procedure RECON as in Definition 6 and has the following property instead
of the indistinguishability of the secret property:

3 Unlearnability of the Secret:
For every pair of probabilistic polynomial-time algorithms (Samp, D) where
Samp(1n) defines a distribution over a secret S, a subset of parties X and
auxiliary information σ, and for every efficiently computable function f :
{0, 1}∗ → {0, 1}∗ it holds that there exists a probabilistic polynomial-time
algorithm D′ (called a simulator) such that

|Pr [M(X) = 0 ∧ D(1n, Π(S,X), σ) = f(S)]−
Pr [M(X) = 0 ∧ D′(1n, X, σ) = f(S)] | ≤ neg(n),

where the probability is over the internal randomness of the scheme, the in-
ternal randomness of D and D′, and the distribution (S,X, σ)← Samp(1n).
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That is, for every pair of probabilistic polynomial-time algorithms (Samp, D)
such that Samp chooses a secret S and a subset of parties X ⊆ P, if M(X) =
0 then D is unable to learn anything about S that it could not learn without
access to the secret shares of X.

Theorem 2. Definition 7 and Definition 6 are equivalent.

We defer the proof of Theorem 2 to the full version of the paper [24].

3.2 Definition of Adaptive Security

Our definition of Rudich secret-sharing only guarantees security against static
adversaries. That is, the adversary chooses a subset of parties before it sees any
of the shares. In other words, the selection is done independently of the sharing
process and hence, we may think of it as if the sharing process is done after
Samp chooses X.

A stronger security guarantee would be to require that even an adversary
that chooses its set of parties in an adaptive manner based on the shares it has
seen so far is unable to learn the secret (or any partial information about it).
Namely, the adversary chooses the parties one by one depending on the secret
shares of the previously chosen parties.

The security proof of our scheme (which is given in Section 4) does not hold
under this stronger requirement. It would be interesting to strengthen it to the
adaptive case as well. One problem that immediately arises in an analysis of
our scheme against adaptive adversaries is that of selective decommitment (cf.
[12]), that is when an adversary sees a collection of commitments and can select
a subset of them and receive their openings. The usual proofs of security of
commitment schemes are not known to hold in this case.

4 Rudich Secret-Sharing from Witness Encryption

In this section we prove the main theorem of this paper. We show how to con-
struct a Rudich secret-sharing scheme for any mNP access structure assuming
witness encryption for NP and one-way functions.

Theorem 3. [Theorem 1 Restated] Assuming witness encryption for NP and
one-way functions, there is an efficient computational secret-sharing scheme for
every mNP access structure.

Let P = {p1, . . . , pn} be a set of n parties and let M : 2P → {0, 1} be an
mNP access structure. We view M either as a function or as a language. For a
language L in NP let (EncryptL,DecryptL) be a witness encryption scheme and
let Com : [2n] × {0, 1}n → {0, 1}q(n) be a commitment scheme, where q(·) is a
polynomial.
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The Scheme. We define a language M ′ that is related to M as follows. The lan-
guageM ′ consists of sets of n strings {ci}i∈[n] ∈ {0, 1}q(n) as follows.M ′(c1, . . . , cn) =
1 if and only if there exist {ri}i∈[n] such that M(x) = 1, where x ∈ {0, 1}n is
such that

∀i ∈ [n] : xi =

{
1 if ri 6= ⊥ and Com(i, ri) = ci,

0 otherwise.

For every i ∈ [n], the share of party pi is composed of 2 components: (1)
ri ∈ {0, 1}n - an opening of a commitment to the value i, and (2) a witness
encryption ct. The witness encryption encrypts the secret S with respect to the
commitments of all parties {ci = Com(i, ri)}i∈[n]. To reconstruct the secret given
a subset of parties X, we simply decrypt ct given the corresponding openings
of X and the witness w that indeed M(X) = 1. The secret-sharing scheme is
formally described in Figure 1.

The Rudich Secret-Sharing Scheme S for M

The SETUP Procedure:

Input : A secret S.

Let M ′ be the language as described above, and let (EncryptM′ ,DecryptM′) be a
witness encryption for M ′ (see Definition 4).

1. For i ∈ [n]:
(a) Sample uniformly at random an opening ri ∈ {0, 1}n.
(b) Compute the commitment ci = Com(i, ri).

2. Compute ct← EncryptM′((c1, . . . , cn), S).
3. Set the share of party pi to be Π(S, i) = 〈ri, ct〉.

The RECON Procedure:

Input : A non-empty subset of parties X ⊆ P together with their shares and a witness
w of X for M .

1. Let ct be the witness encryption in the shares of X.

2. For any i ∈ [n] let r′i =

{
ri if pi ∈ X
⊥ otherwise.

3. Output DecryptM′(ct, (r′1, . . . , r
′
n, w)).

Fig. 1. Rudich secret-sharing scheme for NP.

Observe that if the witness encryption scheme and Com are both efficient,
then the scheme is efficient (i.e., SETUP and RECON are probabilistic polynomial-
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time algorithms). SETUP generates n commitments and a witness encryption of
polynomial size. RECON only decrypts this witness encryption.

Completeness. The next lemma states that the scheme is complete. That is,
whenever the scheme is given a qualified X ⊆ P and a valid witness w of X, it
is possible to successfully reconstruct the secret.

Lemma 2. Let M ∈ NP be an mNP access structure. Let S = SM be the scheme
from Figure 1 instantiated with M . For every subset of parties X ⊆ P such that
M(X) = 1 and any valid witness w it holds that

Pr [RECON(Π(S,X), w) = S] = 1.

Proof. Recall the definition of the algorithm RECON from Figure 1: RECON gets
as input the shares of a subset of parties X = {pi1 , . . . , pik} for k, i1, . . . , ik ∈ [n]
and a valid witness w. Recall that the shares of the parties in X consist of
k openings for the corresponding commitments and a witness encryption ct.
RECON decrypts ct given the openings of parties in X and the witness w.

By the completeness of the witness encryption scheme, the output of the
decryption procedure on ct, given a valid X and a valid witness, is S (with
probability 1).

Indistinguishability of the Secret. We show that our scheme is secure. More
precisely, we show that given an “unqualified” set of parties X ⊆ P as input
(i.e., M(X) = 0), with overwhelming probability, any probabilistic polynomial-
time algorithm cannot distinguish the shared secret from another.

To this end, we assume towards a contradiction that such an algorithm exists
and use it to efficiently solve the following task: given two lists of n commitments
and a promise that one of them corresponds to the values {1, . . . , n} and the other
corresponds to the values {n+ 1, . . . , 2n}, identify which one corresponds to the
values {1, . . . , n}. The following lemma shows that solving this task efficiently
can be used to break the hiding property of the commitment scheme.

Lemma 3. Let Com : [2n]×{0, 1}n → {0, 1}q(n) be a commitment scheme where
q(·) is a polynomial. If there exist ε = ε(n) > 0 and a probabilistic polynomial-
time algorithm D for which

|Pr[D(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D(Com(n,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε,

then there exist a probabilistic polynomial-time algorithm D′ and x, y ∈ [2n] such
that

|Pr[D′(Com(x,Un)) = 1]− Pr[D′(Com(y,Un)) = 1]| ≥ ε/n.

The proof of the lemma follows from a standard hybrid argument. See details in
the full version of the paper [24].

At this point we are ready to prove the security of our scheme. That is, we
show that the ability to break the security of our scheme translates to the ability
to break the commitment scheme (using Lemma 3).
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Lemma 4. Let P = {p1, . . . , pn} be a set of n parties. Let M : 2P → {0, 1} be
an mNP access structure. If there exist a non-negligible ε = ε(n) and a pair of
probabilistic polynomial-time algorithms (Samp, D) such that for (S0, S1, X) ←
Samp(1n) it holds that

Pr [M(X) = 0 ∧ D(S0, S1, Π(S0, X)) = 1]

− Pr [M(X) = 0 ∧ D(S0, S1, Π(S1, X)) = 1] ≥ ε,

then there exists a probabilistic algorithm D′ that runs in polynomial-time in n/ε
such that for sufficiently large n

|Pr[D′(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D′(Com(n+ 1,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε/10− neg(n).

The proof of Lemma 4 appears in Section 4.1.
Using Lemma 4 we can prove Theorem 3, the main theorem of this section.

The completeness requirement (Item 2 in Definition 6) follows directly from
Lemma 2. The indistinguishability of the secret requirement (Item 3 in Defini-
tion 6) follows by combining Lemmas 3 and 4 together with the hiding property
of the commitment scheme. Section 4.1 is devoted to the proof of Lemma 4.

4.1 Main Proof of Security

Let M be an mNP access structure, (Samp, D) be a pair of algorithms and ε > 0
be a function of n, as in the Lemma 4. We are given a list of (unopened) string
commitments c1, . . . , cn ∈ {Com(zi, r)}r∈{0,1}n , where for Z = {z1, . . . , zn} ei-

ther Z = {1, . . . , n} , A0 or Z = {n+ 1, . . . , 2n} , A1. Our goal is to construct
an algorithm D′ that distinguishes between the two cases (using Samp and D)
with non-negligible probability (that is related to ε). Recall that Samp chooses
two secrets S0, S1 and X ⊆ P and then D gets as input the secret shares of
parties in X for one of the secrets. By assumption, for (S0, S1, X) ← Samp(1n)
we have that

|Pr [M(X) = 0 ∧ D(S0, S1, Π(S0, X)) = 1]−
Pr [M(X) = 0 ∧ D(S0, S1, Π(S1, X)) = 1] | ≥ ε. (1)

Roughly speaking, the algorithm D′ that we define creates a new set of shares
using c1, . . . , cn such that: If c1, . . . , cn are commitments to Z = A0 then D is
able to recover the secret; otherwise, (if Z = A1) it is computationally hard to
recover the secret. Thus, D′ can distinguish between the two cases by running
D on the new set of shares and acting according to its output.

We begin by describing a useful subroutine we call Dver. The inputs to
Dver are n string commitments c1, . . . , cn, two secrets S0, S1 and a subset of
k ∈ [n] parties X. Assume for ease of notations that X = {p1, . . . , pk}. Dver

first chooses b uniformly at random from the set {0, 1} and samples uniformly
at random n openings r1, . . . , rn from the distribution Un. Then, Dver com-
putes the witness encryption ct′b of the message Sb with respect to the instance
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Com(1, r1), . . . ,Com(k, rk), ck+1, . . . , cn of M ′ (see Figure 1) and sets for every
i ∈ [n] the share of party pi to be Π ′(Sb, i) = 〈ri, ct′b〉. Finally, Dver emulates
the execution of D on the set of shares of X (Π ′(Sb, X)). If the output of D
equals to b, then Dver outputs 1 (meaning the input commitments correspond to
Z = A0); otherwise, Dver outputs 0 (meaning the input commitments correspond
to Z = A1).

The näıve implementation of D′ is to run Samp to generate S0, S1 and X, run
Dver with the given string commitments, S0, S1 and X, and output accordingly.
This, however, does not work. To see this, recall that the assumption (eq. (1))
only guarantees that D is able to distinguish between the two secrets when
M(X) = 0. However, it is possible that with high probability (yet smaller than
1 − 1/poly(n)) over Samp it holds that M(X) = 1, in which we do not have
any guarantee on D. Hence, simply running Samp and Dver might fool us in
outputting the wrong answer.

The first step to solve this is to observe that, by the assumption in eq. (1),
Samp generates an X such that M(X) = 0 with (non-negligible) probability at
least ε. By this observation, notice that by running Samp for Θ(n/ε) iterations
we are assured that with very high probability (specifically, 1 − neg(n)) there
exists an iteration in which M(X) = 0. All we are left to do is to recognize in
which iteration M(X) = 0 and only in that iteration we run Dver and output
accordingly.

However, in general it might be computationally difficult to test for a given
X whether M(X) = 0 or not. To overcome this, we observe that we need some-
thing much simpler than testing if M(X) = 0 or not. All we actually need is
a procedure that we call B that checks if Dver is a good distinguisher (between
commitments to A0 and commitments to A1) for a given X. On the one hand,
by the assumption, we are assured that this is indeed the case if M(X) = 0. On
the other hand, if M(X) = 1 and Dver is biased, then simply running Dver and
outputting accordingly is enough.

Thus, our goal is to estimate the bias of Dver. The latter is implemented
efficiently by running Dver independently Θ(n/ε) times on both inputs (i.e., with
Z = A0 and with Z = A1) and counting the number of “correct” answers.

Recapping, our construction of D′ is as follows: D′ runs for Θ(n/ε) iterations
such that in each iteration it runs Samp(1n) and gets two secrets S0, S1 and a
subset of parties X. Then, it estimates the bias of Dver for that specific X
(independently of the input). If the bias is large enough, D′ evaluates Dver with
the input of D′, the two secrets S0, S1 and the subset of parties X and outputs
its output. The formal description of D′ is given in Figure 2.

Analysis of D′. We defer the detailed analysis of D′ to the full version of the
paper [24].
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The algorithm D′

Input : A sequence of commitments c1, . . . , cn where ∀i ∈ [n] : ci ∈
{Com(zi, r)}r∈{0,1}n and for Z = {z1, . . . , zn} either Z = {1, . . . , n} , A0 or

Z = {n+ 1, . . . , 2n} , A1.

1. Do the following for T = n/ε times:
(a) S0, S1, X ← Samp(1n).
(b) Run bias← B(S0, S1, X).
(c) If bias = 1:

i. Run resD← Dver(c1, . . . , cn, S0, S1, X).
ii. Output resD (and HALT).

2. Output 0.

The sub-procedure B

Input : Two secrets S0, S1 and a subset of parties X ⊆ P.

1. Set q0, q1 ← 0. Run TB = 4n/ε times:
(a) q0 ← q0 + Dver(Com(1,Un), . . . ,Com(n,Un), S0, S1, X).
(b) q1 ← q1 + Dver(Com(n+ 1,Un), . . . ,Com(2n,Un), S0, S1, X).

2. If |q0 − q1| > n, output 1.
3. Output 0.

The sub-procedure Dver

Input : A sequence of commitments c1, . . . , cn, two secrets S0, S1 and a subset of
parties X ⊆ P.

1. Choose b ∈ {0, 1} uniformly at random.

2. For i ∈ [n]: Sample ri
R←Un and let c′i =

{
Com(i, ri) if pi ∈ X
ci otherwise.

3. Compute ct′b ← EncryptM′((c′1, . . . , c
′
n), Sb).

4. For i ∈ [n] let the new share of party pi be Π ′(Sb, i) = 〈ri, ct′b〉.
5. Return 1 if D(S0, S1, Π

′(Sb, X)) = b and 0 otherwise.

Fig. 2. The description of the algorithm D′.

5 Conclusions and Open Problems

We have shown a construction of a secret-sharing scheme for any mNP access
structure. In fact, our construction yields the first candidate computational
secret-sharing scheme for all monotone functions in P (recall that not every
monotone function in P can be computed by a polynomial-size monotone cir-
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cuit, see e.g., Razborov’s lower bound for matching [30]). Our construction only
requires witness encryption scheme for NP.

We conclude with several open problems:

– Is there a secret-sharing scheme for mNP that relies only on standard hard-
ness assumptions, or at least falsifiable ones [27]?

– Is there a way to use secret-sharing for monotone P to achieve secret-sharing
for monotone NP (in a black-box manner)?

– Construct a Rudich secret-sharing scheme for every access structure in mNP
that is secure against adaptive adversaries (see Section 3.2 for a discussion).
Under a stronger assumption, i.e., extractable witness encryption (in which
if an algorithm is able to decrypt a ciphertext, then it is possible to extract
a witness), Zvika Brakerski observed that our construction is secure against
adaptive adversaries as well.

– Show a completeness theorem (similarly to Corollary 1) for secret-sharing
schemes that are also secure against adaptive adversaries, as defined in Sec-
tion 3.2.
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