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Abstract. Delegating difficult computations to remote large computa-
tion facilities, with appropriate security guarantees, is a possible solution
for the ever-growing needs of personal computing power. For delegated
computation protocols to be usable in a larger context— or simply to
securely run two protocols in parallel— the security definitions need to
be composable. Here, we define composable security for delegated quan-
tum computation. We distinguish between protocols which provide only
blindness—the computation is hidden from the server— and those that
are also verifiable — the client can check that it has received the cor-
rect result. We show that the composable security definition capturing
both these notions can be reduced to a combination of several distinct
“trace-distance-type” criteria—which are, individually, non-composable
security definitions.
Additionally, we study the security of some known delegated quantum
computation protocols, including Broadbent, Fitzsimons and Kashefi’s
Universal Blind Quantum Computation protocol. Even though these pro-
tocols were originally proposed with insufficient security criteria, they
turn out to still be secure given the stronger composable definitions.

1 Introduction

1.1 Background

It is unknown in what form quantum computers will be built. One possibil-
ity is that large quantum servers may take a role similar to that occupied by
massive superclusters today. They would be available as important components
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in large information processing clouds, remotely accessed by clients using their
home-based simple devices. The issue of the security and the privacy of the
computation is paramount in such a setting.

Childs [16] proposed the first such delegated quantum computation (DQC)
protocol, which hides the computation from the server, i.e., the computation is
blind. This was followed by Arrighi and Salvail [2], who introduced a notion of
verifiability — checking that the server does what is expected — but only for a
restricted class of public functions. In recent years, this problem has gained a
lot of interest, with many papers proposing new protocols, e.g., [1,11,15,19–21,
28, 31–36,41], and even small-scale experimental realizations [7, 8].

However, with the exception of recent work by Broadbent, Gutoski and Ste-
bila [12], none of the previous DQC papers consider the composability of the
protocol. They prove security by showing that the states held by the client and
server fulfill some local condition: the server’s state must not contain any infor-
mation about the input and the client’s final state must either be the correct
outcome or an error flag. Even though this means that the server cannot— from
the information leaked during a single execution of the protocol in an isolated
environment — learn the computation or produce a wrong output without be-
ing detected, it does not guarantee any kind of security in any realistic setting.
In particular, if a server treats two requests simultaneously or if the delegated
computation is used as part of a larger protocol (such as the quantum coins of
Mosca and Stebila [37]), these works on DQC cannot be used to infer security.
A composable security framework must be used for a protocol to be secure in an
arbitrary environment. In the following, we use the expression local to denote
the non-composable security conditions previously used for DQC. This term is
chosen, because these criteria consider the state of a (local) subsystem, instead
of the global system as seen by a distinguisher in composable security.7

In fact, exactly these local properties have been proven to be insufficient to
define secure communication. There exist protocols which are shown to both en-
crypt and authenticate messages by fulfilling local criteria equivalent to the ones
used in DQC— the scheme is secure if the eavesdropper obtains no information
about the message from the ciphertext and authentic if the receiver either gets
the original message or an error flag. But if the eavesdropper learns whether the
message was transmitted faithfully or not, she learns some information about
this message [9,27,30]. Since any secure communication protocol can be seen as
delegated computation for the identity operation— Eve is required to apply the
identity operation to the message, but may cheat and try to learn or modify it—
there is a strict gap between security of DQC and previously used local criteria.8

7 Standard terms for various forms of non-composable security, e.g., stand-alone or
sequential, have precise definitions which do not apply to these security criteria.

8 An alternative example of this gap is as follows. The task is to compute a witness
for a positive instance of an NP problem, and we do so with the following protocol:
the server simply picks a witness at random and sends it to the client. Although
the protocol does not achieve completeness, it appears to be sound: the protocol
obviously does not leak any information about the input, since no information is sent



Composable frameworks have the further advantage that they require the
interaction between different entities to be modeled explicitly, and often make
hidden assumptions apparent. For example, it came as a surprise when Barrett
et al. [6] showed that device independent quantum key distribution (DIQKD) is
insecure if untrusted devices (with internal memory) are used more than once.
It is however immediate when one models the security of DIQKD in a compos-
able framework, that existing security proofs make the assumption that devices
are used only once. Another example, the security definitions of zero-knowledge
protocols [22] and coin expansion [26] make the assumption that the dishonest
party executes his protocol without interaction with the environment.9 By ex-
plicitly modeling this restriction,10 these proofs can be lifted to a composable
framework. This has been used by, e.g., Unruh [44], who explicitly limits the
number of parallel executions of a protocol to achieve security in the bounded
storage model.

Correctly defining the security of a cryptographic task is fundamental for a
protocol and proof to have any usefulness or even meaning. In this paper we solve
this problem for DQC, which has been open since the first version of Childs’s
work [16] was made available in 2001.

1.2 Scope and Security of DQC

A common feature of all DQC protocols is that the client, while not being capa-
ble of full-blown quantum computation, has access to limited quantum-enriched
technology, which she needs to interact with the server. One of the key points
upon which the different DQC protocols vary, is the complexity and the techni-
cal feasibility of the aforementioned quantum-enriched technology. In particular,
in the proposal of Childs [16], the client has quantum memory, and the capac-
ity to perform local Pauli operations. The protocol of Arrighi and Salvail [2]
requires the client to have the ability to generate relatively involved superposi-
tions of multi-qubit states, and perform a family of multi-qubit measurements.
Aharonov, Ben-Or and Eban [1], for the purposes of studying quantum prover
interactive proof systems, considered a DQC protocol in which the client has a
constant-sized quantum computer. The blind DQC protocol proposed by Broad-
bent, Fitzsimons and Kashefi [11] has arguably the lowest requirements on the

from the client to the server. The client can also verify that the solution received
is correct, and never accepts a wrong answer. But if the server ever learns whether
the witness was accepted— e.g., it is composed with another protocol which makes
this information public—he learns something about the input. If there are only two
choices for the input with distinct witnesses, he learns exactly which one was used.

9 The security definitions for these two problems are instances of what is generally
known as stand-alone security [23].

10 This can be done by introducing a resource— e.g., a trusted third party— that
runs whatever circuits Alice and Bob give it in an isolated system, then returns the
transcript of the protocol to both players.



client. In particular, she does not need any quantum memory,11 and is only
required to prepare single qubits in separable states randomly chosen from a
small finite set analogous to the BB84 states.12 Alternatively, Morimae and Fu-
jii [32,35] propose a DQC protocol in which the client only needs to measure the
qubits she receives from the server to perform the computation.

A second important distinction between these protocols is in the types of
problems the protocol empowers the client to solve. Most protocols, e.g., [1, 11,
16,20,32,35], allow a client to perform universal quantum computation, whereas
in [2] the client is restricted to the evaluation of random-verifiable13 functions.

Finally, an important characteristic of these protocols is the flavor of security
guaranteed to the client. Here, one is predominantly interested in two distinct
features: privacy of computation (generally referred to as blindness) and veri-
fiability of computation. Blindness characterizes the degree to which the com-
putational input and output, and the computation itself, remain hidden from
the server. This is the main security concern of, e.g., [11, 16, 35]. Verifiability
ensures that the client has means of confirming that the final output of the com-
putation is correct. In addition to blindness, some form of verifiability is given
by, e.g., [1, 2, 20, 32]. These works do however not concern themselves with the
cryptographic soundness of their security notions. In particular, none of them
consider the issue of composability of DQC. A notable exception is the recent
work of Broadbent, Gutoski and Stebila [12], who, independently from our work,
prove that a variant of the DQC protocol of Aharonov, Ben-Or and Eban [1]
provides composable security.14

1.3 Composable Security

The first frameworks for defining composable security were proposed indepen-
dently by Canetti [13,14] and by Backes, Pfitzmann and Waidner [3,4,39], who
dubbed them Universally Composable (UC) security and Reactive Simulatability,
respectively. These security notions have been extended to the quantum setting
by Ben-Or and Mayers [10] and Unruh [42, 43].

More recently, Maurer and Renner proposed a new composable framework,
Abstract Cryptography (AC) [29]. Unlike its predecessors that use a bottom-up
approach to defining models of computation, algorithms, complexity, efficiency,
and then security of cryptographic schemes, the AC approach is top-down and

11 This holds in the case of classical input and output. If quantum inputs and/or
outputs are considered, then the client has to be able to apply a quantum one-time
pad to the input state, and also decrypt a quantum one-time pad of the output state.

12 The states needed by the protocol of [11] are {(|0〉 + eikπ/4|1〉)/
√
2}k for k ∈

{0, . . . , 7}.
13 Roughly speaking, a function f is random-verifiable if pairs of instances and solutions

(x, f(x)) can be generated efficiently, where x is sampled according to the uniform
distribution from the function’s domain.

14 The work of Broadbent et al. [12] is on one-time programs. Their result on the com-
posability of DQC is obtained by modifying their main one-time program protocol
and security proof so that it corresponds to a variant of the DQC protocol from [1].



axiomatic, where lower abstraction levels inherit the definitions and theorems
(e.g., a composition theorem) from the higher level, but the definition or con-
cretization of low levels is not required for proving theorems at the higher levels.
In particular, it is not hard-coded in the security notions of AC whether the
underlying computation model is classical or quantum, and this framework can
be used equally for both.

Even though these frameworks differ considerably in their approach, they all
share the common notion that composable security is defined by the distance
between the real world setting and an ideal setting in which the cryptographic
task is accomplished in some perfect way. We use AC in this work, because
it simplifies the security definitions by removing many notions which are not
necessary at that level of abstraction. But the same results could have been
proven using another framework, e.g., a quantum version of UC security [43].

1.4 Results

In this paper, we define a composable framework for analyzing the security of
delegated quantum computing, using the aforementioned AC framework [29].
We model DQC in a generic way, which is independent of the computing re-
quirements or universality of the protocol, and encompasses to the best of our
knowledge all previous work on DQC. We then define composable blindness
and composable verifiability in this framework. The security definitions are thus
applicable to any DQC protocol fitting in our model.

We study the relations between local security criteria used in previous works
[1,2,11,16,20,32,35] and composable security of DQC. We show that by strength-
ening the existing notion of local-verifiability, we can close the gap between these
local criteria and composable security of DQC. To do this we introduce the no-
tion of independent local-verifiability. Intuitively, this captures the idea that the
acceptance probability of the client should not depend on the input or computa-
tion performed, but rather only on the activities of the (dishonest) server. Our
main theorem is as follows.

Theorem 1. If a DQC protocol implementing a unitary15 transformation pro-
vides εbl-local-blindness and εind-independent εver-local-verifiability for all inputs
ψACAQ

, where AC is classical and AQ is quantum, then it is δN2-secure, where
δ = 4

√
2εver + 2εbl + 2εind and N = dimHAQ

.

Note that by choosing the parameters such that δ is exponentially small in
the size of the quantum input (logN) negates the factor N2 blow-up in the
overall error (see also Remark 13).

Proving that a DQC protocol is secure then reduces to proving that these
local criteria are satisfied.16 For instance, the protocols of Morimae [32] and

15 Any quantum operation can be written as a unitary on a larger system, effectively
allowing this theorem to apply to all quantum operations, see Remark 12.

16 This is similar in nature to the result on the composable security of quantum key
distribution (QKD) [40], which shows that a QKD protocol that satisfies definitions



Fitzsimons and Kashefi [20] are shown to satisfy definitions of local-correctness,
local-blindness and local-verifiability, equivalent to the ones considered here. To
prove that these protocols are secure, it only remains to show that they also
satisfy the stronger notion of independent local-verifiability introduced in this
work, which we sketch in Sect. 6.1.

Finally, we analyze the security of two protocols — Broadbent, Fitzsimons
and Kashefi [11] and Morimae and Fujii [35]— that do not provide any form of
verifiability, so the generic reduction cannot be used. Instead we directly prove
that both these protocols satisfy the definition of composable blindness, without
verifiability (Theorems 14 and 15).

Interestingly— and somewhat unexpectedly— even though the local security
definitions used in previous works are insufficient to guarantee composable se-
curity, the previously proposed protocols studied in this work are all still secure
given the stronger security notions.

1.5 Structure of this Paper

In Sect. 2 we introduce two-party protocols and distance measures that we use
in this work.17 In Sect. 3 we explain delegated quantum computation, and model
composable security for such protocols. In Sect. 4 we show that composable veri-
fiability (which encompasses blindness) is equivalent to the distance between the
real protocol and some ideal map that simultaneously provides both local-blind-
ness and local-verifiability. This map is however still more elaborate than local
criteria used in previous works. In Sect. 5 we break this map down into individ-
ual notions of local-blindness and independent local-verifiability, and prove that
these are sufficient to achieve security. Finally, in Sect. 6 we look at the security
of some existing protocols. We first discuss how our results can be applied to
protocols that already provide local-verifiability. Then we prove that the DQC
protocols of Broadbent, Kashefi and Fitzsimons [11] and Morimae and Fujii [35]
are composably blind.

2 Quantum Systems

2.1 Two-Party Protocols

A two-party protocol can in be modeled by a sequence of CPTP maps πA =
{Ei : L(HAC) → L(HAC)}i and πB = {Fi : L(HCB) → L(HCB)}i, where A and

of robustness, correctness and secrecy is secure in a composable sense. These individ-
ual notions are all expressed with trace-distance-type criteria, e.g., a QKD protocol
is ε-secret if (1 − pabort)‖ρKE − τK ⊗ ρE‖tr ≤ ε, where pabort is the probability of
aborting, ρKE the joint state of the final key and the eavesdropper’s system and τK
is the fully mixed state. To prove that a QKD protocol is secure, it is thus sufficient
to prove that it satisfies these individual notions.

17 These are an instantiation of the abstract systems defined in AC. We refer to the
full version of this work [18, Sections 2] for an introduction to the AC framework,
that is essential to understand the details of the current paper.



B are Alice and Bob’s registers, and C represents a communication channel.
Initially Alice and Bob place their inputs in their registers, and the channel C is
in some fixed state |0〉. The players then apply successively their maps to their
respective registers and the channel. For example, in the first round Alice applies
E1 to the joint system AC, and sends C to Bob, who applies F1 to CB, and
returns C to Alice. Then she applies E2, etc.

Such a sequence of maps, {Ei : L(HAC) → L(HAC)}i, has been called a
quantum strategy by Gutoski and Watrous [24, 25] and a quantum N -comb by
Chiribella, D’Ariano and Perinotti [17]. In particular, these authors derived in-
dependently a concise representation of combs/strategies in terms of the Choi-
Jamio lkowski isomorphism. They also define the appropriate distance measure
between two combs/strategies, corresponding to the optimal distinguishing ad-
vantage, which we sketch in the next section.

2.2 Distance Measures

The trace distance between two states ρ and σ is given by D(ρ, σ) = 1

2
‖ρ−σ‖tr,

where ‖ · ‖tr denotes the trace norm and is defined as ‖A‖tr := tr
√
A†A. If

D(ρ, σ) ≤ ε, we say that the two states are ε-close and often write ρ ≈ε σ. This
corresponds to the distinguishing advantage between two resources R and S,
which take no input and produce ρ and σ, respectively, as output: the probability
of a distinguisher guessing correctly whether he holds R or S is exactly 1

2
+

1

2
D(ρ, σ).

Another common metric which corresponds to the distinguishing advantage
between resources of a certain type is the diamond norm. If the resources R

and S take an input ρ ∈ S(HA) and produce an output σ ∈ S(HB), the dis-
tinguishing advantage between these resources is the diamond distance between
the correspond maps E ,F : L(HA) → L(HB). A distinguisher can generate a
state ρAR, input the A part to the resource, and try to distinguish between the
resulting states E(ρAR) and F(ρAR). We have d(R, S) = ⋄(E ,F) = 1

2
‖E − F‖⋄,

where
‖Φ‖⋄ := max{‖(Φ⊗ idR)(ρ)‖

tr
: ρ ∈ S(HAR)}

is the diamond norm. Note that the maximum of the diamond norm can always
be achieved for a system R with dimHR = dimHA. Here too, we sometimes
write E ≈ε F if two maps are ε-close.

If the resources considered are halves of two player protocols, say πi or πj , the
above reasoning can be generalized for obtaining the distinguishing advantage.
The distinguisher can first generate an initial state ρ ∈ S(HAR) — which for
convenience we define as a map on no input ρ := D0()— and input the A part of
the state into the resource. It receives some output ρCR from the resource, can
apply some arbitrary map D1 : L(HCR) → L(HCR) to the state, and input the C
part of the new state in the resource. Let it repeat this procedure with different
maps Di until the end of the protocol, after which it holds one of two states:
ϕAR if it had access to πi and ψAR if it had access to πj . The trace distance
D(ϕAR, ψAR) defines the advantage the distinguisher has of correctly guessing



whether it was interacting with πi or πj , and by maximizing this over all possible
initial inputs ρAR = D0(), and all subsequent maps {Di : L(HCR) → L(HCR)}i,
the distinguishing advantage between these resources becomes

d(πi, πj) = max
{Di}i

D(ϕAR, ψAR). (1)

This has been studied by both Gutoski [24] and Chiribella et al. [17], and we
refer to their work for more details.

3 Delegated Quantum Computation

In the (two-party) delegated quantum computation (DQC) model, Alice asks a
server, Bob, to execute some quantum computation for her. Intuitively, Alice
plays the role of a client, and Bob the part of a computationally more pow-
erful server. Alice has several security concerns. She wants the protocol to be
blind, that is, she wants the server to execute the quantum computation without
learning anything about the input other than what is unavoidable, e.g., an upper
bound on its size, and possibly whether the output is classical or quantum. She
may also want to know if the result sent to her by Bob is correct, which we refer
to as verifiability.

In Sect. 3.1 we model the ideal resource that a DQC protocol constructs and
the structure of a generic DQC protocol. And in Sect. 3.2 we give the correspond-
ing security definitions. This section uses the AC cryptography nomenclature,
which is explained in detail in the full version [18].

3.1 DQC Model

Ideal Resource. To model the security (and correctness) of a delegated quan-
tum computation protocol, we need to model the ideal delegated computation
resource S that we wish to build. We start with an ideal resource that provides
blindness, and denote it Sblind.

The task Alice wants to be executed is provided as an input to the resource
Sblind at the A-interface. It could be modeled as having two parts, some quantum
state ψA1

and a classical description ΦA2
of some quantum operation that she

wants to apply to ψ, i.e., she wishes to compute Φ(ψ). This can alternatively
be seen as applying a universal computation U to the input ψA1

⊗ |Φ〉〈Φ|A2
.

We adopt this view in the remainder of this paper, and model the resource as
performing some fixed computation U on an input ψA that may be part quantum
and part classical.18

18 Alternatively, the input can be modeled as entirely quantum, and both Alice and
the ideal resource first measure the part of the input that should be classical, before
executing πA and the universal computation U , respectively. This corresponds to
plugging an extra measurement converter into the A-interfaces of both the real and
ideal systems (that converts the quantum input into a classical-quantum input),
which can only decrease the distance between the real and ideal systems, i.e., increase
the security.



Any DQC protocol must reveal to the server an upper bound on the size
of the computation it is required to execute. Other information might also be
made intentionally available, such as whether the output of the computation
is classical or quantum. Although one could imagine a generic DQC model in
which these “permitted leaks” are entangled with the rest of the input, we restrict
our considerations to classical information, i.e., a subsystem of the input ψA is
classical18 and contains a string ℓψA ∈ {0, 1}∗ that is copied and provided to
the server Bob at the start of the protocol, so that he may set up the required
resources and programs for the computation. Alternatively, this string can be
taken to be some fixed publicly available information, not modeled explicitly.
We do so in the following sections to simplify the notation, but prefer make it
explicit in this section so as not to hide the fact that some information about
the input is always given to the server.

The ideal resource Sblind thus takes this input ψA at its A-interface, and, if
Bob does not activate his filtered functionalities — which can be modeled by a
bit b, set to 0 by default, and which a simulator σB can flip to 1 to signify that
it is activating the cheating interface— Sblind outputs U(ψA). This ensures both
correctness and universality (in the case where U is a universal computation).
Alternatively, S

blind can be restricted to work for inputs corresponding to a
certain class of computational problems, if we desire a construction only designed
for such a class.

If the cheating B-interface is activated, the ideal resource outputs a copy
of the string ℓψA at this interface. Bob also has another filtered functionality,
one which allows him to tamper with the final output. The most general op-
eration he could perform is to give Sblind a quantum state ψB — which could
be entangled with Alice’s input ψA — along with the description of some map
E : L(HAB) → L(HA), and ask it to output E(ψAB) at Alice’s interface. Since
Sblind only captures blindness, but says nothing about Bob’s ability to manip-
ulate the final output, we define it to perform this operation and output any
E(ψAB) at Bob’s request. This is depicted in Fig. 1 with the filtered functional-
ities in gray.

Definition 2. The ideal DQC resource Sblind which provides both correctness
and blindness takes an input ψA at Alice’s interface, but no honest input at
Bob’s interface. Bob’s filtered interface has a control bit b, set by default to 0,
which he can flip to activate the other filtered functionalities. The resource Sblind

then outputs the permitted leak ℓψA at Bob’s interface, and accepts two further
inputs, a state ψB and map description |E〉〈E|. If b = 0, it outputs the correct
result U(ψA) at Alice’s interface; otherwise it outputs Bob’s choice, E(ψAB).

A DQC protocol is verifiable if it provides Alice with a mechanism to detect
a cheating Bob and output an error flag err instead of some incorrect compu-
tation. This is modeled by weakening Bob’s filtered functionality: an ideal DQC
resource with verifiability, Sblind

verif
, only allows Bob to input one classical bit c,

which specifies whether the output should be U(ψA) or some error state |err〉,
which by construction is orthogonal to the space of valid outputs. The ideal
resource thus never outputs a wrong computation. This is illustrated in Fig. 2.



Blind DQC resource S
blind

ρA =

{

U(ψA) if b = 0,

E(ψAB) if b = 1.

ψA

ρA

b

ℓψA

E , ψB

Fig. 1. An ideal DQC resources. The client Alice has access to the left interface, and
the server Bob to the right interface. The double-lined input flips a bit set by default
to 0. The functionalities provided at Bob’s interface are grayed to signify that they
are accessible only to a cheating server. If Bob is honest, this interface is obstructed
by a filter, which we denote by ⊥B in the following. Sblind provides blindness— it only
leaks the permitted information at Bob’s interface— but allows Bob to choose Alice’s
output.

Secure DQC resource S
blind

verif

ρA =

{

U(ψA) if c = 0,

|err〉〈err| if c = 1.

ψA

ρA

b

ℓψA

c

Fig. 2. Another ideal DQC resources. Sblind

verif provides both blindness and verifiability—
in addition to leaking only the permitted information, it never outputs an erroneous
computation result.

Definition 3. The ideal DQC resource Sblindverif which provides correctness, blind-
ness and verifiability takes an input ψA at Alice’s interface, and two filtered
control bits b and c (set by default to 0). If b = 0, it simply outputs U(ψA) at
Alice’s interface. If b = 1, it outputs the permitted leak ℓψA at Bob’s interface,
then reads the bit c, and conditioned on its value, it either outputs U(ψA) or
|err〉 at Alice’s interface.

Concrete Setting. In the concrete (or real) setting, the only resource that
Alice and Bob need is a (two-way) communication channel R. Alice’s protocol
πA receives ψA as an input on its outside interface. It then communicates through
R with Bob’s protocol πB , and produces some final output ρA. For the sake of
generality we assume that the operations performed by πA and πB, and the
communication between them, are all quantum. Of course, a protocol is only
useful if Alice has very few quantum operations to perform, and most of the
communication is classical. However, to model security, it is more convenient to
consider the most general case possible, so that it applies to all possible protocols.

As described in Sect. 2.1, their protocols can be modeled by a sequence of
CPTP maps {Ei : L(HAC) → L(HAC)}Ni=1 and {Fi : L(HCB) → L(HCB)}N−1

i=1 .
We illustrate a run of such a protocol in Fig. 3. The entire system consisting of
the protocol (πA, πB) and the channel R is a map which transforms ψA into ρA.



If both players played honestly and the protocol is correct, this should result in
ρA = U(ψA).

E1

E2

E3

...

EN

πA

F1

F2

...

FN−1

πB

...

R

ψA

ρA

Fig. 3. A generic run of a DQC protocol. Alice has access to the left interface and Bob
to the right interface. The entire system builds one CPTP operation which maps ψA
to ρA.

In the following, when we refer to a DQC protocol, we simply mean any
protocol satisfying the model of Fig. 3. Whether the protocol actually performs
delegated quantum computation depends on whether it satisfies the correctness
condition, which we define in Sect. 3.2.

3.2 Security of DQC

Applying the AC security definition (see the full version, [18, Definition 2.1]) to
the DQC model from the previous section, we get that a protocol π constructs
a blind quantum computation resource Sblind from a communication channel R
within ε if there exists a simulator σB such that

πARπB ≈ε Sblind⊥B and πAR ≈ε SblindσB, (2)

where ⊥B is a filter which obstructs Bob’s cheating interface.19 The fist condi-
tion in (2) captures the correctness of the protocol, and we say that a protocol
provides ε-correctness if this condition is fulfilled. The second condition, which
we illustrate in Fig. 4, measures the security. If it is fulfilled, we have ε-blindness.
If ε = 0 we say that we have perfect blindness.

19 These equations are to be interpreted graphically: πA is plugged into the left interface
of R, and πB is plugged into the right interface, see the illustrations in Figs. 3 and
4 or the full version [18] for further explanations.



≈ε

πA
ψA

ρA

R S
ψA

ρA

σB

Fig. 4. An illustration of the second terms of (2) and (3). If a distinguisher cannot
guess with advantage greater than ε whether it is interacting with the real construct
on the left or the ideal construct on the right, the two are ε-close and the protocol
ε-secure against a cheating Bob.

Likewise in the case of verifiability, the ideal resource Sblindverif is constructed
by π from R if there exists a simulator σB such that,

πARπB ≈ε Sblindverif ⊥B and πAR ≈ε Sblindverif σB. (3)

The first condition from (3) is identical to the first condition of (2), and captures
ε-correctness. The second condition in (3) (also illustrated by Fig. 4) guarantees
both blindness and verifiability, and if it is satisfied we say that the we have
ε-blind-verifiability.

Note that the exact metrics used to distinguish between the resources from
(2) and (3) are defined in Sect. 2.2. πARπB and S⊥B — as can be seen from
their depictions in Figs. 3 and 2 (with a filter blocking the cheating interface
of the latter) — are resources which implement a single map, so the diamond
distance corresponds to the distinguishing advantage. πAR and SσB are half of
two-party protocols, so the distinguishing metric corresponds to the distance
between quantum strategies/combs introduced by Gutoski and Watrous [24,25]
and Chiribella et al. [17], and described in Sect. 2.2.

4 Blind and Verifiable DQC

Finding a simulator to prove the security of a protocol can be challenging. In
this section we reduce the task of proving that a DQC protocol constructs the
ideal resource Sblind

verif
to proving that the map implemented by the protocol is

close to some ideal map that intuitively provides some form of local-blindness-
and-verifiability. The converse also holds: any protocol which constructs Sblind

verif

must be close to this ideal map.
A malicious server Bob will not apply the CPTP maps assigned to him by

the protocol, but his own set of cheating maps {Fi : L(HCB) → L(HCB)}N−1
i=1 .

Furthermore, he might hold (the B part of) a purification of Alice’s input, ψABR.
Intuitively, a protocol provides local-blindness20 if the final state held by Bob

20 We provide formal definitions of local-blindness and local-verifiability in Sect. 5.



could have been generated by a local map on his system — say, F — indepen-
dently from Alice’s input, but which naturally depends on his behavior given by
the maps {Fi}i. It provides local-verifiability20 if the final state held by Alice is
either the correct outcome or some error flag. Combining the two gives an ideal
map of the from U ⊗ Fok + Eerr ⊗ Ferr, where Fok and Ferr break F down in
two maps which result in the correct outcome and an error flag, respectively.

Definition 4 (local-blind-verifiability). We say that a DQC protocol pro-
vides ε-local-blind-verifiability, if, for all adversarial behaviors {Fi}i, there exist
two completely positive, trace non-increasing maps Fok

B and Ferr
B , such that

PAB ≈ε UA ⊗Fok
B + Eerr

A ⊗Ferr
B , (4)

where PAB : L(HAB) → L(HAB) is the map corresponding to a protocol run
with Alice behaving honestly and Bob using his cheating operations {Fi}i, and
Eerr
A discards the A system and produces an error flag |err〉〈err| orthogonal to all

possible valid outputs. We say that the protocol provides ε-local-blind-verifiability
for a set of initial states B, if (4) holds when applied to these states, i.e., for all
ψABR ∈ B,

PAB(ψABR) ≈ε
(

UA ⊗Fok
B + Eerr

A ⊗Ferr
B

)

(ψABR).

Remark 5. For simplicity, this definition assumes the allowed leaks (e.g., input
size, computation size) to be fixed, and applies to all protocols PAB tailored for
inputs with an identical leak (e.g., identical size). These leaks could be explicitly
modeled by allowing the maps Fok

B and Ferr
B to depend on them.

We now state the main theorem of this section, namely that it is both nec-
essary and sufficient for a DQC protocol to satisfy Definition 4 to be blind-
verifiable, i.e., to satisfy the second condition of Equation (3). A proof is is given
in the full version [18]. In order to construct S

blind
verif , a DQC protocol also needs

to be ε-correct, that is, satisfy the first condition from Equation (3). We show
in Appendix A that this is fulfilled, if, when Bob behaves honestly, Equation (4)
is satisfied for Fok

B = idB and Ferr
B = 0.

Theorem 6. Any DQC protocol which provides ε-local-blind-verifiability is 2ε-
blind-verifiable. And any DQC protocol which is ε-blind-verifiable provides ε-lo-
cal-blind-verifiability.

5 Reduction to Local Criteria

Although the notion of local-blind-verifiability defined in the previous section
captures the security of DQC in a single equation, it is still more elaborate than
existing definitions found in the literature, that treat blindness and verifiability
separately.

In this section we provide separate definitions for these local notions, and
strengthen local-verifiability by requiring that the server Bob be able to infer



on his own whether the client Alice will reject his response — learning whether
Alice did reject will then not provide him with any information that he could not
obtain on his own. We then show that in the case where Bob does not hold a state
entangled with the input (e.g., when the input is entirely classical), these notions
are sufficient to obtain local-blind-verifiability with a similar error parameter.
In the case where Bob’s system is entangled to Alice’s input, we show that the

same holds, albeit with an error increased by a factor
(

dimHAQ

)2
, where AQ is

the subsystem of Alice’s input which is quantum.
This can be used to show that the protocol of Fitzsimons and Kashefi [20]

and Morimae [32], which have already been analyzed using (insufficient) local
criteria, are secure. We provide a proof sketch of the missing steps for both these
protocols in the full version of this paper [18].

Local-blindness can be seen as a simplification of local-blind-verifiability, in
which we ignore Alice’s outcome and only check that Bob’s system could have
been generated locally, i.e., is independent from Alice’s input (and output).

Definition 7 (Local-blindness). A DQC protocol provides ε-local-blindness,
if, for all adversarial behaviors {Fi}i, there exists a CPTP map F : L(HB) →
L(HB) such that

trA ◦PAB ≈ε F ◦ trA, (5)

where ◦ is the composition of maps, trA the operator that trace out the A-system,
and PAB : L(HAB) → L(HAB) is the map corresponding to a protocol run with
Alice behaving honestly and Bob using his cheating operations {Fi}i. We say
that the protocol provides ε-local-blindness for a set of initial states B, if (5)
holds when applied to these states, i.e., for all ψABR ∈ B,

trA ◦PAB(ψABR) ≈ε F ◦ trA(ψABR).

Likewise, local-verifiability can also be seen as a simplification of local-blind-
verifiability, in which we ignore Bob’s system and only check that Alice holds
either the correct outcome or an error flag |err〉, which by construction is orthog-
onal to any possible valid output. In the following we define local-verifiability
only for the case where Bob’s system is not entangled to Alice’s input, since oth-
erwise the correct outcome depends on Bob’s actions, and cannot be modeled
by describing Alice’s system alone.21

Definition 8 (Local-verifiability). A DQC protocol provides ε-local-verifia-
bility, if, for all adversarial behaviors {Fi}i and all initial states ψAR1

⊗ ψR2B,
there exists a 0 ≤ pψ ≤ 1 such that

ρ
ψ
AR1

≈ε pψ(U ⊗ idR1
)(ψAR1

) + (1 − pψ)|err〉〈err| ⊗ ψR1
, (6)

where ρψAR1
is the final state of Alice and the first part of the reference system.

We say that the protocol provides ε-local-verifiability for a set B of initial states
in product form, if (6) holds for all ψAR1

⊗ ψR2B ∈ B.
21 The resulting definition is equivalent to that of [20] and non-composable authenti-

cation definitions [5], which bound the probability of projecting the outcome on the
space of invalid results.



As mentioned in Sect. 1, local-blindness and local-verifiability together do
not provide the security guarantees one expects from DQC. This seems to be
because the verification procedure can depend on the input (as in the example
from Footnote 8), and thus if Bob learns the result of this measurement, he
learns something about the input. This motivates us to define a stronger notion,
in which Bob can reconstruct on his own whether the output will be accepted—
the outcome of Alice’s verification procedure must thus be independent of her
input. To do this, we introduce a new qubit in a system B̄, which contains a
copy of the information whether Alice accepts or rejects, i.e., for a final state

ρ
ψ
ARB = φokARB + |err〉〈err| ⊗ φerrRB , (7)

we define

ρ
ψ

ARBB̄
:= φokARB ⊗ |ok〉〈ok| + |err〉〈err| ⊗ φerrRB ⊗ |err〉〈err|. (8)

Note that (8) can be generated from (7) by introducing a system B̄ in the state
|ok〉 and changing its value to |err〉 conditioned on A being in the state |err〉.
Let QAB̄ : L(HA) → L(HAB̄) be such an operation, i.e., ρψ

ARBB̄
= QAB̄(ρψARB).

Equation (7) can then be recovered from (8) by tracing out the system B̄.
The notion of verifiability is strengthened by additionally requiring that leak-

ing this system B̄ to the adversary does not provide him with more information
about the input, i.e., Bob could (using alternative maps) generate the system B̄

on his own.

Definition 9. A DQC protocol provides ε̄-independent ε-local-verifiability, if,
in addition to providing ε-local-verifiability, for all adversarial behaviors {Fi :
L(HCB) → L(HCB)}i there exist alternative maps {F ′

i : L(HCBB̄) → L(HCBB̄)}i
(for an initially empty system B̄), such that

trA ◦QAB̄ ◦ PAB ≈ε̄ trA ◦P ′
ABB̄

, (9)

where ◦ is the composition of maps, PAB : L(HAB) → L(HAB) and P ′
ABB̄

:
L(HAB) → L(HABB̄) are the maps corresponding to runs of the protocol with
Alice being honest and Bob using maps {Fi}i and {F ′

i}i respectively, and QAB̄ :
L(HA) → L(HAB̄) is a map which generates from A a system B̄ holding a
copy of the information whether Alice accepts or rejects. We say that a protocol
provides ε̄-independent ε-local-verifiability for a set of initial states B, if the same
conditions hold for all states in B, i.e., if we have ε-local-verifiability for B, and
if for all ψABR ∈ B,

trA ◦QAB̄ ◦ PAB(ψABR) ≈ε̄ trA ◦P ′
ABB̄

(ψABR).

Remark 10. By the triangle inequality, if a protocol provides both ε-local-blind-
ness and ε̄-independent ε′-local-verifiability, then there exists a map F ′ : L(HB) →
L(HBB̄) such that

trA ◦QAB̄ ◦ PAB ≈ε+ε̄ F ′ ◦ trA . (10)



We are now ready to state the main theorem, namely that the above local
definitions are sufficient to achieve composable security.

Theorem 11 (Theorem 1 restated). If a DQC protocol implementing a uni-
tary transformation provides εbl-local-blindness and εind-independent εver-local-
verifiability for all inputs ψACAQ

, where AC is classical and AQ is quantum, then
it is δN2-blind-verifiable, where δ = 4

√
2εver+2εbl +2εind and N = dimHAQ

. If
additionally it provides εcor-local-correctness,

22 it constructs Sblindverif from a com-

munication channel within ε = max{δN2, εcor}.

Independent local-verifiability makes a statement about Alice’s system at
the end of the protocol — it is either in the correct state or contains an error
flag. Local-blindness makes a statement about Bob’s system at the end of the
protocol — it contains no information about the input. To prove Theorem 11,
we need to combine these two definitions to make a statement about the joint
system of Alice and Bob at the end of the protocol, equivalent to local-blind-
verifiability (Definition 4). The result then follows from Theorem 6.

The main idea of the proof is to show that, in the case of an input in product
form between Alice and Bob, Uhlmann’s theorem can be used to extend the
statement about Alice’s system being close to ideal to a joint AB system. We
then show that if the input is entangled between Alice and Bob, the error can
increase at most by a multiplicative factor of N2. A complete proof is given in
the full version [18].

Remark 12. This theorem only hold for protocols that construct a DQC resource
for which the implemented operation U is unitary. Since any quantum operation
can be written as a unitary on a larger system [38], this effectively allows the
theorems to apply to any CPTP operation E as long as the necessary qubits for
the unitary implementation are appended to the in- and outputs. For example,
instead of defining universal computation as a unitary, most papers — e.g., [11,
20, 32, 35] — describe how to perform any (arbitrary) unitary operation Ux on
any arbitrary input ρin. By appending the description x of the unitary Ux to
the input and output, this is equivalent to applying the unitary transformation
U :=

∑

x Ux ⊗ |x〉〈x| to the input ρin ⊗ |x〉〈x|.

Remark 13. If the input is entirely classical (e.g., the client wants to factor a
number), the failure ε is polynomial in the error parameters of the different
local criteria, and the reduction is tight. If the input is quantum, the failure is
multiplied by the dimension squared of the quantum (sub)system, and the errors
of the local criteria need to be exponentially small in the size of the quantum
input to compensate.

22 See Definition 16 in Appendix A.



6 Existing Protocols

6.1 Applying the Security Reduction

The definitions of local-blindness and local-verifiability used in this work are
equivalent to those used to prove local-security for most protocols in the litera-
ture, e.g., by Fitzsimons and Kashefi [20] and Morimae [32]. To prove that such
protocols are secure, it remains to show that they satisfy the stronger definition
of independent local-verifiability introduced in this work. We sketch in this sec-
tion that this is the case for [20] and [32], and refer to the full version [18] for a
longer discussion.

Both these works achieve local-verifiability by introducing randomly posi-
tioned trap qubits in the protocol: these are states which are independent of
Alice’s input, and for which she knows the outcome of the operation that the
server, Bob, should perform. If the server does not trigger any of the traps, then
with high probability he is running the correct program [20,32].

This technique used to achieve local-verifiability also provides independent
local-verifiability, because the position of the traps and whether they get trigged
are independent of the input. Thus, Bob could run the protocol on his own —
without knowing Alice’s input and choosing himself the position of the trap
qubits— and would end up holding exactly the same bit as Alice that decides if
the output is accepted or rejected.

6.2 Blindness

We present in this section the security results for two different DQC protocols
proposed in the literature: we show that they construct the ideal blind quantum
computation resource Sblind defined in Definition 2. The protocols and proofs
appear in the full version [18], we only give a brief overview here. Note that since
these protocols do not provide verifiability, we cannot use the generic results from
Sect. 5 to prove that they are blind.

In the DQC protocol of Broadbent, Fitzsimons and Kashefi [11], Alice hides
the computation by encrypting all the communication with a one-time pad. The
main idea of the security proof is for the simulator to replace the encrypted
states sent to the distinguisher by halves of EPR pairs. It then forwards the
other halves to the ideal DQC resource, which gate teleports the real inputs.
The distinguisher is then oblivious to whether it is interacting with the real
protocol or the ideal resource and simulator.

Theorem 14. The DQC protocol of Broadbent, Fitzsimons and Kashefi [11]
provides perfect blindness.

Morimae and Fujii [34] proposed a DQC protocol with one-way communica-
tion from Bob to Alice, in which Alice simply measures each qubit she receives,
one at a time. We show that the general class of protocols with one-way com-
munication is perfectly blind.

Theorem 15. Any DQC protocol π with one-way communication from Bob to
Alice provides perfect blindness.



A Correctness

Intuitively, a protocol is correct if, when Bob behaves honestly, Alice ends up
with the correct output. This must also hold with respect to a purification of
the input.

Definition 16. A DQC protocol provides ε-local-correctness, if, when both par-
ties behave honestly, for all initial states ψAR, the map implemented by the pro-
tocol on Alice’s input, PA : L(HA) → L(HA) is

PA ≈ε U . (11)

It is straightforward, that this is equivalent to the composable notion defined
in Equations (2) and (3) in Sect. 3.2.

Lemma 17. A DQC protocol which provides ε-local-correctness is also ε-correct.

A proof is given in the full version [18].
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