
Automatic Security Evaluation and
(Related-key) Differential Characteristic Search:

Application to SIMON, PRESENT, LBlock,
DES(L) and Other Bit-oriented Block Ciphers?

Siwei Sun1,2, Lei Hu1,2, Peng Wang1,2, Kexin Qiao1,2, Xiaoshuang Ma1,2, Ling
Song1,2

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2Data Assurance and Communication Security Research Center, Chinese Academy of
Sciences, Beijing 100093, China

{sunsiwei,hulei,wpeng,qiaokexin,maxiaoshuang,songling}@iie.ac.cn

Abstract. We propose two systematic methods to describe the differen-
tial property of an S-box with linear inequalities based on logical condi-
tion modelling and computational geometry respectively. In one method,
inequalities are generated according to some conditional differential prop-
erties of the S-box; in the other method, inequalities are extracted from
the H-representation of the convex hull of all possible differential patterns
of the S-box. For the second method, we develop a greedy algorithm for
selecting a given number of inequalities from the convex hull. Using these
inequalities combined with Mixed-integer Linear Programming (MILP)
technique, we propose an automatic method for evaluating the security
of bit-oriented block ciphers against the (related-key) differential attack
with several techniques for obtaining tighter security bounds, and a new
tool for finding (related-key) differential characteristics automatically for
bit-oriented block ciphers.
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1 Introduction

Differential cryptanalysis [7] is one of the most well-known attacks on modern
block ciphers, based on which many cryptanalytic techniques have been devel-
oped, such as truncated differential attack [34], impossible differential attack [9],
and boomerang attack [51]. Providing a security evaluation with respect to the
differential attack has become a basic requirement for a newly designed practical
block cipher to be accepted by the cryptographic community.

? An extended version of this paper containing more applications and the source code
is available at http://eprint.iacr.org/2013/676.
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Contrary to the single-key model, where methodologies for constructing block
ciphers provably resistant to differential attacks are readily available, the under-
standing of the security of block ciphers with regard to related-key differential
attacks is relatively limited. This limited understanding of the security concern-
ing related-key differential attacks has been greatly improved in recent years for
AES-like byte- or word-oriented SPN block ciphers. Along this line of research,
two representative papers [10, 25] were published in Eurocrypt 2010 and Crypto
2013. In the former paper [10], an efficient search tool for finding differential
characteristics both in the state and in the key was presented, and the best
differential characteristics were obtained for some byte-oriented block ciphers
such as AES, byte-Camellia, and Khazad. In the latter paper [25], Pierre-Alain
Fouque et al. showed that the full-round AES-128 can not be proven secure a-
gainst differential attacks in the related-key model unless the exact coefficients
of the MDS matrix and the S-Box differential properties are taken into account.
Moreover, a variant of Dijkstra’s shortest path algorithm for finding the most
efficient related-key attacks on SPN ciphers was developed in [25]. In [27], Ivica
Nikolic presented a tweak for the key schedule of AES and the new cipher called
xAES is resistant against the related-key differential attacks found in AES.

For bit-oriented block ciphers such as PRESENT-80 and DES, Sareh Emami
et al. proved that no related-key differential characteristic exists with probabil-
ity higher than 2−64 for the full-round PRESENT-80, and therefore argue that
PRESENT-80 is secure against basic related-key differential attacks [22]. In [48],
Sun et al. obtained tighter security bounds for PRESENT-80 with respect to
the related-key differential attacks using the Mixed-integer Linear Programming
(MILP) technique. Alex Biryukov and Ivica Nikolić proposed two methods [11]
based on Matsui’s tool [42] for finding related-key differential characteristics for
DES-like ciphers. For their methods, they stated that “... our approaches can be
used as well to search for high probability related-key differential characteristics
in any bit-oriented ciphers with linear key schedule.”

Sareh Emami et al. [22] and Sun et al.’s method [48] can not be used to
search for actual (related-key) differential characteristics, and Alex Biryukov et
al.’s method [11] is only applicable to ciphers with linear key schedule.

In this paper, we provide a method based on MILP which can not only
evaluate the security (obtain security bound) of a block cipher with respect to
the (related-key) differential attacks, but is also able to search for actual (related-
key) differential characteristics even if the key schedule algorithm of the block
cipher is nonlinear.

The problem of MILP is a class of optimization problems derived from Lin-
ear Programming in which the aim is to optimize an objective function under
certain constraints. Despite its intimate relationship with discrete optimization
problems, such as the set covering problem, 0-1 knapsack problem, and travel-
ing salesman problem, it is only in recent years that MILP has been explicitly
applied in cryptographic research [1, 17, 18, 36, 46, 52, 57].

In this paper, we are mainly concerned with the application of MILP method
in the (related-key) differential cryptanalysis. A practical approach to evaluate
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the security of a cipher against differential attack is to determine the lower
bound of the number of active S-boxes throughout the cipher. This strategy has
been employed in many designs [4, 8, 15, 16, 19]. MILP was applied in automat-
ically determining the lower bounds of the numbers of active S-boxes for some
word-oriented symmetric-key ciphers, and therefore used to prove their securi-
ty against differential cryptanalysis [14, 44, 54] . Laura Winnen [53] and Sun et
al. [48] extended this method by making it applicable to ciphers involving bit-
oriented operations. We notice that such MILP tools [14, 44, 48, 54] for counting
the minimum number of active S-boxes are also applied or mentioned in the
design and analysis of some authenticated encryption schemes [8, 20, 21, 29–31,
55, 58].

Our Contributions. We find that the constraints presented in [48] are too
coarse to accurately describe the differential properties of a specific cipher, since
there are a large number of invalid differential patterns of the cipher satisfying
all these constraints, which yields a feasible region of the MILP problem much
larger than the set of all valid differential characteristics.

In this paper, we propose two methods to tighten the feasible region by
cutting off some impossible differential patterns of a specific S-box with linear
inequalities: one method is based on logical condition modeling, and the other
is a more general approach based on convex hull computation — a fundamental
algorithmic problem in computational geometry.

However, the second approach produces too many inequalities so that adding
all of them to an MILP problem will make the solving process impractical.
Therefore, we develop a greedy algorithm for selecting a given number of linear
inequalities from the convex hull.

By adding all or a part of the constraints generated by these methods, we
provide MILP based methods for evaluating the security of a block cipher with
respect to the (related-key) differential attack, and searching for actual (related-
key) differential characteristics. Using these methods, we obtain the following
results.

1. The probability of the best related-key differential characteristic of the 24-
round PRESENT-80 is upper bounded by 2−64, which is the tightest security
bound obtained so far for PRESENT-80.

2. The probability of the best related-key differential characteristic for the full-
round LBlock is at most 2−60.

3. We obtain a single-key differential characteristic and a single-key differential
for the 15-round SIMON48 (a lightweight block cipher designed by the U.S.
National Security Agency) with probability 2−46 and 2−41.96 respectively,
which are the best results published so far for SIMON48.

4. We obtain a 14-round related-key differential characteristic of LBlock with
probability 2−49 in no more than 4 hours on a PC. Note that the probabilities
of the best previously published related-key characteristics covering the 13-
and 14-round LBlock are 2−53 and 2−65 [56], respectively.

5. We obtain an 8-round related-key differential characteristic of DESL with
probability 2−34.78 in 10 minutes on a PC. To the best of our knowledge, no
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related-key differential characteristic covering more than 7 rounds of DESL
has been published before.

6. We obtain a 7-round related-key characteristic for PRESENT-128 with prob-
ability 2−11 and 0 active S-box in its key schedule algorithm, based on
which an improved related-key boomerang distinguisher for the 14-round
PRESENT-128 and a key-recovery attack on the 17-round PRESENT-128
can be constructed by using exactly the same method presented in [47].

The method presented in this paper is generic, automatic, and applicable to
other lightweight ciphers with bit-oriented operations. Due to the page limit, the
concrete results concerning the related-key or single-key differential characteris-
tics for LBlock, PRESENT-128, and DES(L) are put into an extended version
of this paper available at http://eprint.iacr.org/2013/676.

Organization of the paper. In Sect. 2, we introduce Mouha et al.’s frame-
work and its extension for counting the number of active S-boxes of bit-oriented
ciphers automatically with the MILP technique. In Sect. 3, we introduce the
concept of valid cutting-off inequalities for tightening the feasible region of an
MILP problem, and explore how to generate and select valid cutting-off inequal-
ities. We present the methods for automatic security evaluation with respect to
the (related-key) differential attack, and searching for (related-key) differential
characteristics in Sect. 4 and Sect. 5. In Sect. 6 we conclude the paper and pro-
pose some research directions for bit-oriented ciphers and the application of the
MILP technique in cryptography. The application of the methods presented in
this paper to PRESENT, LBlock, and SIMON is given in Appendices.

2 Mouha et al.’s Framework and Its Extension

2.1 Mouha et al.’s Framework for Word-oriented Block Ciphers

Assume a cipher is composed of the following three word-oriented operations,
where ω is the word size:

- XOR, ⊕ : Fω2 × Fω2 → Fω2 ;
- Linear transformation L : Fm2ω → Fm2ω with branch number BL;
- S-box, S : Fω2 → Fω2 .

Mouha et al.’s framework uses 0-1 variables, which are subjected to certain
constraints imposed by the above operations, to denote the word level differences
propagating through the cipher (1 for nonzero difference and 0 otherwise).

Firstly, we should include the constraints imposed by the operations of the
cipher.

Constraints Imposed by XOR Operations: Suppose a ⊕ b = c, where
a, b, c ∈ Fω2 are the input and output differences of the XOR operation, the
following constraints will make sure that when a, b, and c are not all zero, then
there are at least two of them are nonzero:{

a+ b+ c ≥ 2d⊕
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

(1)



5

where d⊕ is a dummy variable taking values from {0, 1}. If each one of a, b, and
c represents one bit, we should also add the inequality a+ b+ c ≤ 2.

Constraints Imposed by Linear Transformation: Let xik and yjk , k ∈
{0, 1, . . . ,m − 1}, be 0-1 variables denoting the word-level input and output
differences of the linear transformation L respectively. Since for nonzero input
differences, there are totally at least BL nonzero ω-bit words in the input and
output differences, we include the following constraints:

m−1∑
k=0

(xik + yjk) ≥ BLdL
dL ≥ xik , dL ≥ yjk , k ∈ {0, . . . ,m− 1}

(2)

where dL is a dummy variable taking values in {0, 1} and BL is the branch
number of the linear transformation.

Then, we set up the objective function to be the sum of all variables
representing the input words of the S-boxes.

2.2 Extension of Mouha et al.’s Framework for Bit-oriented Ciphers

For bit-oriented ciphers, bit-level representations and additional constraints are
needed [48]. For every input and output bit-level difference, a new 0-1 variable xi
is introduced such that xi = 1 if and only if the difference at this bit is nonzero.

For every S-box in the schematic diagram, including the encryption process
and the key schedule algorithm, we introduce a new 0-1 variable Aj such that
Aj = 1 if the input word of the Sbox is nonzero and Aj = 0 otherwise.

At this point, it is natural to choose the objective function f , which will be
minimized, as

∑
Aj for the goal of determining a lower bound of the number of

active S-boxes.
For bit-oriented ciphers, we need to include two sets of constraints. The first

one is the set of constraints imposed by XOR operations, and the other is due
to the S-box operation. After changing the representations to bit-level, the set
of constraints imposed by XOR operations for bit-oriented ciphers are the same
as that presented in (1). The S-box operation is more tricky.

Constraints Describing the S-box Operation: Suppose (xi0 , . . . , xiω−1
)

and (yj0 , . . . , yjν−1) are the input and output bit-level differences of an ω × ν S-
box marked by At. Firstly, to ensure that At = 1 holds if and only if xi0 , . . . , xiω−1

are not all zero, we require that:{
At − xik ≥ 0, k ∈ {0, . . . , ω − 1}
xi0 + xi1 + · · ·+ xiω−1

−At ≥ 0
(3)

For bijective S-boxes, nonzero input difference must result in nonzero output
difference and vice versa:{

ωyj0 + ωyj1 + · · ·+ ωyjν−1 − (xi0 + xi1 + · · ·+ xiω−1) ≥ 0
νxi0 + νxi1 + · · ·+ νxiω−1

− (yj0 + yj1 + · · ·+ yjν−1
) ≥ 0

(4)
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Note that the above constraints should not be used for non-bijective S-box such
as the S-box of DES(L) [37].

Finally, the Hamming weight of the (ω+ ν)-bit word xi0 · · ·xiω−1yj0 · · · yjν−1

is lower bounded by the branch number BS of the S-box for nonzero input
difference xi0 · · ·xiω−1

, where dS is a dummy variable:
ω−1∑
k=0

xik +
ν−1∑
k=0

yjk ≥ BSdS
dS ≥ xik , dS ≥ yjt , k ∈ {0, . . . , ω − 1}, t ∈ {0, . . . , ν − 1}

(5)

where the branch number BS of an S-box S, is defined as BS = mina6=b{wt((a⊕
b)||(S(a) ⊕ S(b)) : a, b ∈ Fω2 }, and wt(·) is the standard Hamming weight of an
(ω+ ν)-bit word. We point out that constraint (5) is redundant for an invertible
S-box with branch number BS = 2, since in this particular case, all differential
patterns not satisfying (5) violate (4).

0-1 Variables: The MILP model proposed above is indeed a Pure Integer
Programming Problem since all variables appearing are 0-1 variables. However,
in practice we only need to explicitly restrict a part of all variables to be 0-1,
while all other variables can be allowed to be any real numbers, which leads to
an MILP problem. Following this approach, the MILP solving process may be
accelerated as suggested in [17].

3 Tighten the Feasible Region with Valid Cutting-off
Inequalities

The feasible region of an MILP problem is defined as the set of all variable
assignments satisfying all constraints in the MILP problem. The modelling pro-
cess presented in the previous sections indicates that every differential path
corresponds to a solution in the feasible region of the MILP problem. How-
ever, a feasible solution of the MILP model is not guaranteed to be a valid
differential path, since our constraints are far from perfect to rule out all in-
valid differential patterns. For instance, assume xi and yi (0 ≤ i ≤ 3) are the
bit-level input and output differences of the PRESENT-80 S-box. According to
Sect. 2.2, xi, yi are subjected to the constraints of (3), (4) and (5). Obvious-
ly, (x0 · · · , x3, y0, · · · , y3) = (1, 0, 0, 1, 1, 0, 1, 1) satisfies the above constraints,
whereas 0x9 = 1001→ 0xB = 1011 is not a valid difference propagation pattern
for the PRESENT S-box, which can be seen from the differential distribution
table of the PRESENT S-box. Hence, we are actually trying to minimize the
number of the active S-boxes over a larger region, and the optimum value ob-
tained in this setting must be smaller than or equal to the actual minimum
number of active S-boxes. Although the above fact will not invalidate the lower
bound we obtained from our MILP model, this prevents the designers or ana-
lysts from obtaining tighter security bounds and valid (related-key) differential
characteristics from the feasible region.

The situation would be even worse when modelling an invertible S-box with
branch number BS = 2, which is the minimal value of the branch number for an
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invertible S-box. In the case of invertible S-box with BS = 2, the constraints of
(3), (4) are enough, and (5) is redundant.

Therefore, we are motivated to look for linear inequalities which can cut off
some part of the feasible region of the MILP model while leaving the region of
valid differential characteristics intact. For the convenience of discussion, we give
the following definition.

Definition 1. A valid cutting-off inequality is a linear inequality which is satis-
fied by all possible valid differential patterns, but is violated by at least one feasible
solution corresponding to an impossible differential pattern in the feasible region
of the original MILP problem.

3.1 Methods for Generating Valid Cutting-off Inequalities

In this section, we present two methods for generating valid cutting-off inequal-
ities by analyzing the differential behavior of the underlying S-box.

Modelling Conditional Differential Behaviour: In building integer pro-
gramming models in practice, sometimes it is possible to model certain logical
constraints as linear inequalities. For example, assume x is a continuous variable
such that 0 ≤ x ≤ M , where M is a fixed integer, and we know that δ is a 0-1
variable taking value 1 when x > 0, that is x > 0 ⇒ δ = 1. It is easy to ver-
ify that the above logical condition can be achieved by imposing the constraint
x−Mδ ≤ 0.

In fact, there is a surprisingly large number of different types of logical con-
ditions can be imposed in a similar way. We now give a theorem which will be
used in the following.

Theorem 1. If we assume that all variables are 0-1 variables, then the logical
condition that (x0, . . . , xm−1) = (δ0, . . . , δm−1) ∈ {0, 1}m ⊆ Zm implies y = δ ∈
{0, 1} ⊆ Z can be described by the following linear inequality

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi ≥ 0, (6)

where δi, δ are fixed constants and Z is the set of all integers.

Proof. We only prove the Theorem for the case δ = 0. For δ = 1, it can be
proved in a similar way. We assume

(δ0, . . . , δm−1) = (δ0, . . . , δs1−1; δs1 , . . . , δm−1) = (1, 1, . . . , 1; 0, 0, . . . , 0) = ∆∗.

For other 0-1 patterns, it can be permuted into such a form and this will not
affect our proof.

Firstly, (∆∗, 0) is satisfied by (6), which can be verified directly.
Secondly, we prove that all vectors (x0, . . . , xm−1, y) ∈ {0, 1}m+1 such that

(x0, . . . , xm−1) 6= ∆∗ are satisfied by (6). In such cases, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi = −
s1−1∑
i=0

xi +

m∑
i=s1

xi − y − 0 + s1 ≥ 0,
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for y = 0 or y = 1.
Finally we prove that the vector (x0, . . . , xm−1, y) = (∆∗, 1) is not satisfied

by the linear inequality. In such case, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi = −
s1−1∑
i=0

xi +

m∑
i=s1

xi − 1− 0 + s1 < 0.

The proof is completed.
For example, the PRESENT S-box has the following conditional differential

[26, 32, 38, 33, 18] properties, which are referred to as undisturbed bits in [50].

Fact 1. The S-box of PRESENT-80 has the following properties:
(i) 1001→***0: If the input difference of the S-box is 0x9 = 1001, then the

least significant bit of the output difference must be 0;
(ii) 0001→***1 and 1000→***1: If the input difference of the S-box is 0x1 =

0001 or 0x8 = 1000, then the least significant bit of the output difference must
be 1;

(iii) ***1→0001 and ***1→0100: If the output difference of the S-box is
0x1 = 0001 or 0x4 = 0100, then the least significant bit of the input difference
must be 1; and

(iv) ***0→0101: If the output difference of the S-box is 0x5 = 0101, then the
least significant bit of the input difference must be 0.

From Theorem 1, we have the following fact.

Fact 2. Let 0-1 variables (x0, x1, x2, x3) and (y0, y1, y2, y3) represent the input
and output bit-level differences of the S-box respectively, where x3 and y3 are the
least significant bits. Then the logical conditions in Theorem 1 can be described
by the following linear inequalities:

−x0 + x1 + x2 − x3 − y3 + 2 ≥ 0 (7){
x0 + x1 + x2 − x3 + y3 ≥ 0
−x0 + x1 + x2 + x3 + y3 ≥ 0

(8){
x3 + y0 + y1 + y2 − y3 ≥ 0
x3 + y0 − y1 + y2 + y3 ≥ 0

(9)

−x3 + y0 − y1 + y2 − y3 + 2 ≥ 0 (10)

For example, the linear inequality (7) removes all differential patterns of
the form (x0, . . . , x3, y0, . . . , y3) = (1, 0, 0, 1, ∗, ∗, ∗, 1), where (x0, . . . , x3) and
(y0, . . . , y3) are the input and output differences of the PRESENT S-box respec-
tively. We call this group of constraints presented in (7), (8), (9), and (10) the
constraints of conditional differential propagation (CDP constraints for short).
The CDP constraints obtained from Fact 1 and the differential patterns removed
by these CDP constraints are given in Table 1.
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Table 1: Impossible differential patterns removed by the CDP constraints gen-
erated according to the differential properties of the PRESENT S-box. Here,
a vector (λ0, . . . , λ3, γ0, . . . , γ3, θ) in the left column denotes a linear inequality
λ0x0 + · · ·+ λ3x3 + γ0y0 + · · ·+ γ3y3 + θ ≥ 0.

Constraints obtained by log-
ical condition modelling

Impossible differential patterns removed

(−1, 1, 1,−1, 0, 0, 0,−1, 2) (1, 0, 0, 1, 0, 0, 0, 1), (1, 0, 0, 1, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1, 1),

(1, 0, 0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1, 1, 1)

(1, 1, 1,−1, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1, 1, 0),

(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 1, 0)

(−1, 1, 1, 1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 1, 1, 0),

(1, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1, 1, 0)

(0, 0, 0, 1, 1, 1, 1,−1, 0) (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0, 0, 0, 1),

(1, 0, 0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0, 0, 1)

(0, 0, 0, 1, 1,−1, 1, 1, 0) (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 1, 0, 0),

(1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0, 0)

(0, 0, 0,−1, 1,−1, 1,−1, 2) (0, 0, 0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 1, 0, 1),

(1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 0, 1, 0, 1)

However, there are cases where no such conditional differential property ex-
ists. For example, two out of the eight S-boxes of Serpent [6] exhibit no such
property. Even when the S-box under consideration can be described with this
logical condition modelling technique, the inequalities generated may be not
enough to produce a satisfied result. In the following, a more general approach
for generating valid cutting-off inequalities is proposed.

Convex Hull of All Possible Differentials for an S-box: The convex
hull of a set Q of discrete points in Rn is the smallest convex set that contains
Q. A convex hull in Rn can be described as the common solutions of a set of
finitely many linear (in)equalities as follows:

λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0
· · ·

γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0
· · ·

(11)

This is called the H-Representation of a convex hull. Computing the H-
representation of the convex hull of a set of finitely many points is a fundamental
algorithm in computation geometry with many applications.

If we treat a differential of an ω×ν S-box as a point in Rω+ν , then we can get
a set of finitely many discrete points which includes all possible differential pat-
terns of this S-box . For example, one possible differential pattern of PRESENT
S-box is 0x9 = 1001 → 0xE = 1110 which is identified with (1, 0, 0, 1, 1, 1, 1, 0).
The set of all possible differential patterns for the S-boxes are essentially sets of
finitely many discrete points in high dimensional space, hence we can compute
their convex hulls by standard method in computational geometry.
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We now define the convex hull of a specific ω × ν S-box to be the set of al-
l linear (in)equalities in the H-Representation of the convex hull VS ⊆ Rω+ν
of all possible differential patterns of the S-box. The convex hull of a spe-
cific S-box can be obtained by using the inequality generator() function in the
sage.geometry.polyhedron class of the SAGE computer algebra system [49]. The
convex hull of the PRESENT S-box contains 327 linear inequalities. Any one of
these inequalities can be taken as a valid cutting-off inequality.

3.2 Selecting Valid Cutting-off Inequalities from the Convex Hull:
A Greedy Approach

The number of (in)equalities in the H-Representation of a convex hull computed
from a set of discrete points in n dimensional space is very large in general. For
instance, the convex hull VS ⊆ R8 of a 4 × 4 S-box typically involves several
hundreds of linear inequalities. Adding all of them to an MILP problem will
make the MILP problem insolvable in practical time. Hence, it is necessary to
select a small number, say n, of “best” inequalities from the convex hull. Here by
“best” we mean that, among all possible selections of n inequalities, the selected
ones maximize the number of removed impossible differentials. Obviously, this
is a hard combinatorial optimization problem. Therefore, we design a greedy
algorithm, listed in Algorithm 1, to approximate the optimum selection.

This algorithm builds up a set of valid cutting-off inequalities by selecting
at each step an inequality from the convex hull which maximizes the number
of removed impossible differential patterns from the current feasible region. For
instance, We select 6 valid cutting-off inequalities from the convex hull of the
PRESENT S-box using Algorithm 1. Compared with the 6 valid cutting-off
inequalities obtained by Theorem 1 (see Table 1), they cut off 24 more impossible
differential patterns, which leads to a relatively tighter feasible region.

Algorithm 1: Selecting n inequalities from the convex hull H of an S-box

Input: H: the set of all inequalities in the H-representation of the
convex hull of an S-box; X : the set of all impossible differential
patterns of an S-box; n: a positive integer.

Output: O: a set of n inequalities selected from H
1 l∗ := None; X ∗ := X ; H∗ := H; O := ∅;
2 for i ∈ {0, . . . , n− 1} do
3 l∗ := The inequality in H∗ which maximizes the number of removed

impossible differential patterns from X ∗ ;
4 X ∗ := X ∗ − {removed impossible differential patterns by l∗};
5 H∗ := H∗ − {l∗}; O := O ∪ {l∗};
6 end
7 return O
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4 Automatic Security Evaluation

To obtain the security bound of a block cipher with respect to related-key
differential attack, we can build an MILP model according to Sect. 2 with the
constraints introduced in Sect. 3.1 and Sect. 3.2 included. Then we solve the
MILP model using any MILP optimizer, and the optimized solution, say N , is
the minimum number of the active S-boxes from which we can deduce that the
probability of the best differential characteristic is upper bounded by εN , where
ε is the maximum differential probability (MDP) a single S-box.

However, it is computationally infeasible to solve an MILP model generated
by an r-round block cipher with large r. In such case, we can turn to the so
called simple split approach. We split the r-round block cipher into two parts
with consecutive r1 rounds and r2 rounds such that r1 + r2 = r. Then we apply
our method to these two parts. Assuming that there are at least Nr1 and Nr2
active S-boxes in the first and second part respectively, we can deduce that the
probability of the best differential characteristic for this r-round cipher is upper
bounded by ε(Nr1+Nr2 ). If r1 and r2 are still too large, they can be divided into
smaller parts further. Note that our method is applicable to both the single-key
and related-key models.

4.1 Techniques for Getting Tighter Security Bounds

Technique 1. In the above analysis, we pessimistically (in the sense that we
want to prove the security of a cipher) assume that all the active S-boxes take
the MDP ε. However, this is unlikely to happen in practice, especially in the case
that the number of active S-boxes is minimized. Therefore, we have the following
strategy for obtaining tighter security bound for a t-round characteristic.

Firstly, compute the set E of all the differential patterns of an S-box with
probabilities greater than or equal to the S-box’s MDP ε.

Secondly, compute the H-representation HE of the convex hull of E , and
then use the inequalities selected from HE by Algorithm 1 to generate a t-round
model according to Sect. 2 and Sect. 3. Note that the feasible region of this
model is smaller than that of a t-round model generated in standard way, since
the differential patterns allowed to take in this model is more restrictive. Hence,
we hope to get a larger objective value than Nt, which is the result obtained by
using the standard t-round model.

Finally, solve the model using a software optimizer. If the objective value is
greater than Nt, we know that there is no differential characteristic with only Nt
active S-boxes such that all these S-boxes take differential patterns with proba-
bility ε. And hence, we can conclude that there is at least one active S-box taking
a differential pattern with probability less than ε in a t-round characteristic with
only Nt active S-boxes.

Technique 2. Yet another technique for obtaining tighter security bound is
inspired by Alex Biryukov et al. and Sareh Emami et al.’s (extended) split ap-
proach [11, 22]. In Sun et al.’s work [48], the strategy for proving the security
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of an n-round iterative cipher against the related-key differential attacks is to
use the simple split approach. By employing the MILP technique, compute the
minimum number Nt of differentially active S-boxes for any consecutive t-round
(1 ≤ t ≤ n) related-key differential characteristic. Then the lower bound of the
number of active S-boxes for the full cipher (n-round) can be obtained by com-
puting

∑
j∈I⊆{1,2,... }

Ntj , where
∑
j∈I

tj = n. Note that the computational cost is

too high to compute Nn directly.
We point out that this simple “split strategy” can be improved to obtain

tighter security bound by exploiting more information of a differential charac-
teristic. The main idea is that the characteristic covering round 1 to round m and
the characteristic covering round m+1 to round 2m should not be treated equal
although they have the same number of rounds, since the starting difference of
a characteristic of round m+ 1 to 2m is not as free as that of a characteristic of
round 1 to round m. Therefore, we have the following strategy.

Firstly, split an r-round into two parts: round 1 to round r1, and round r1+1
to round r = r1 + r2.

Secondly, construct an MILP model covering round 1 to round r. Change the
objective function to be the sum of all S-boxes covering round r1 + 1 to round
r. Add some additional constraints on the number of active S-boxes covering
round 1 to round r1 (One way to obtain such constraints is to solve the model
covering round 1 to round r1).

Finally, solve the model using any software optimizer, and the result is the
lower bound of the number of active S-boxes of round r1 + 1 to round r (r2
rounds in total) for any characteristic covering round 1 to round r.

We have applied the methods presented in this section to PRESENT-80 and
LBlock, and the results are given in Appendix A.

5 A Heuristic Method for Finding (Related-key)
Differential Characteristics Automatically

To find a (related-key) differential characteristic with relatively high probability
covering r rounds of a cipher is the most important step in (related-key) differ-
ential cryptanalysis. Most of the tools for searching differential characteristics
are essentially based on Matsui’s algorithm [42]. In this section, we propose an
MILP based heuristic method for finding (related-key) differential characteris-
tics. Compared to other methods, our method is easier to implement, and more
flexible.

Thanks to the valid cutting-off inequalities which can describe the property of
an S-box according to its differential distribution table, our method can output
a good (related-key) differential characteristic directly by employing the MILP
technique. The procedure of our method is outlined as follows.

Step 1. For every S-box S, select n inequalities from the convex hull of the
set of all possible differential patterns of S using Algorithm 1, and generate an
r-round MILP model in which we require that all variables involved are 0-1.
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Step 2. Extract a feasible solution of the MILP model by using the Gurobi
[45] optimizer.

Step 3. Check whether the feasible solution is a valid (related-key) differential
characteristic. If it is a valid characteristic, the procedure terminates. Otherwise,
go to step 1, increase the number of selected inequalities from the convex hulls,
and repeat the whole process.

We have developed a software by employing the python interface provided by
the Gurobi optimizer, which automates the whole process of the above method.

To demonstrate the practicability of our method, we have applied the meth-
ods presented in this section to SIMON and the results are given in Appendix
B.

On the Quality of the Characteristics: The characteristics found by this
method are not guaranteed to be the best. However, if you would like to wait until
the optimizer outputs optimum solution, the characteristic found by this method
is guaranteed to have the minimum number of active S-boxes. Experimental
results show that we get reasonably good solutions.

On the Flexibility of the Searching Algorithm: By adding a small num-
ber of additional constraints, our method can be used to search characteristics
with specific properties. For example, by setting some given variables marking
the activity of some S-boxes to 1, we can search for characteristics with active
S-boxes of predefined positions, which may be used in leaked-state forgery at-
tacks [55]; by requiring the output and input variables to be the same, we can
search for iterative characteristics; by setting all the variables marking the ac-
tivity of all the S-boxes in the key schedule algorithm to be 0, we can search for
characteristics with 0 active S-boxes in its key schedule algorithm, which may
be preferred in the related-key differential attack.

6 Conclusion and Directions for Future Work

In this paper, we bring new constraints into the MILP model to describe the
differential properties of a specific S-box, and obtain a more accurate MILP
model for the differential behavior of a block cipher. Based on these constraints,
we propose an automatic method for evaluating the security of bit-oriented block
ciphers with respect to (related-key) differential attack. We also present a new
tool for finding (related-key) characteristics automatically.

At this point, several open problems emerge. Firstly, we observe that the
MILP instances derived from such cryptographic problems are very hard to
solve compared with general MILP problems with the same scale with respect
to the numbers of variables and constraints. Hence, it is interesting to develop
specific methods to accelerate the solving process of such problems and therefore
increase the number of rounds of the cipher under consideration that can be
dealt with. Secondly, the method presented in this paper is very general. Is it
possible to develop a compiler which can convert a standard description, say
a description using hardware description language, of a cipher into an MILP



14

instance to automate the entire security evaluation cycle with respect to (related-
key) differential attack?

Finally, the methodology presented in this paper has some limitations which
we would like to make clear, and trying to overcome these limitations is a top-
ic deserving further investigation. Firstly, this methodology is only suitable to
evaluate the security of constructions with S-boxes, XOR operations and bit
permutations, and can not be applied to block cipher like SPECK [5], which
involve modulo addition and no S-boxes at all. For tools which can be applied
to ARX constructions, we refer the reader to [12, 39–41, 43]. Secondly, in this
paper we do not consider the differential effect and we assume that the expected
differential probability (EDP) π of a characteristic over all keys is (almost) the
same as the fixed-key differential probability (DP) πK for almost all keys (the
common hypothesis of stochastic equivalence [35]), and that if the lower bound
of the EDP for any characteristic of a block cipher is less than 2−s, where s is
bigger than the block size or key size, then the block cipher is secure against
the (related-key) differential attack. For more in-depth discussion of the essential
gap between EDP π and DP πK , we refer the reader to [13] for more information.
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A On the Security of PRESENT-80, and LBlock with
respect to the Related-key Differential Attack

A.1 Results on PRESENT-80

We apply the logical condition modelling method presented in Sect. 3.1 to the
block cipher PRESENT-80 to determine its security bound with respect to the
related-key differential attack. In each of these MILP models, we include one
more constraint to ensure that the difference of the initial key register is nonzero,
since the case where the difference of the initial key register is zero can be
analyzed in the single-key model. Then we employ the Gurobi 5.5 optimizer [45]
to solve the MILP instances.

By default the computations are performed on a PC using 4 threads with
Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows XP), and a
star “*” is appended on a timing data to mark that the corresponding com-
putation is taken on a workstation equipped with two Intel(R) Xeon(R) E5620
CPU(2.4GHz, 8GB RAM, 8 cores).

We compute the number of active S-boxes for PRESENT-80 in the related-
key model up to 14 rounds, and the results and a comparison with previous
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results without using CDP constraints are summarized in Table 2. For example,
according to the 6th row of Table 2, the Gurobi optimizer finds that the minimum
number of active S-boxes for 6-round PRESENT-80 is at least 5 in no more than
16 seconds by solving the MILP model with CDP constraints.

Table 2: Results obtained from MILP models for PRESENT-80

Rounds
With CDP Constraints Without CDP Constraints

# Active S-boxes # Time(in seconds) # Active S-boxes # Time(in seconds)

1 0 1 0 1

2 0 1 0 1

3 1 1 1 1

4 2 1 2 1

5 3 5 3 3

6 5 16 4 10

7 7 107 6 26

8 9 254 8 111

9 10 522 9 171

10 13 4158 12 1540

11 15 18124 13 8136

12 16 50017 15 18102

13 18 137160* 17 49537*

14 20 1316808* 18 685372*

15 − > 20days − > 20days

These results clearly demonstrate that the MILP models with CDP con-
straints lead to tighter security bounds. In particular, we have proved that there
are at least 16 active S-boxes in the best related-key differential characteris-
tic for any consecutive 12-rounds of PRESENT-80. Therefore, the probability
of the best related-key differential characteristic of 24-round PRESENT-80 is
(2−2)16× (2−2)16 = 2−64, leading to the result that the 24-round PRESENT-80
is resistant to basic related-key differential attack based on related-key differen-
tial characteristic (rather than differential).

A.2 Results on LBlock

Up to now, there is no concrete result concerning the security of full-round
LBlock [56] against differential attack in the related-key model due to a lack of
proper tools for bit-oriented designs.

Since the encryption process of LBlock is nibble-oriented, the security of
LBlock against single-key differential attack can be evaluated by those word-
oriented techniques. However, the “≪ 29” operations in the key schedule algo-
rithm of LBlock destroy its overall nibble-oriented structure. In this subsection,
we apply the method proposed in this paper to LBlock, and some results con-
cerning its security against related-key differential attacks are obtained. Note
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that the type of constraints given in (5) are removed in our MILP models for
LBlock according to the explanations presented in previous sections.

From Table 3, we can deduce that the probability of the best differential
characteristic for full LBlock (totally 32 = 11+11+10 rounds) is upper bounded
by (2−2)10 × (2−2)10 × (2−2)8 = 2−56, where 2−2 is the MDP for a single S-box
of LBlock.

Table 3: Results for related-key differential analysis on LBlock (The #Variables
column records the sum of the number of the 0-1 variables and continuous vari-
ables in the MILP model).

Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 218+104 = 322 660 0 1

2 292+208 = 500 1319 0 1

3 366+312 = 678 1978 0 1

4 440+416 = 856 2637 0 1

5 514+520 = 1034 3296 1 2

6 588+624 = 1212 3955 2 12

7 662+728 = 1390 4614 3 38

8 736+832 = 1568 5273 5 128

9 810+936 = 1746 5932 6 386

10 884+1040 = 1924 6591 8 19932

11 958+1144 = 2102 7250 10 43793

In fact, here we have an implicit trade-off between the number of constraints
we use and the number of rounds we analyze. For example, we can use less
constraints for every S-box and try to analyze more rounds, or we can use more
constraints and focus on less rounds (but stronger bounds). However, it is not a
simple task to find the best trade-off due to our limited computational power.
We do try to analyze more rounds by using only one inequality selected from
the convex hull for every S-box. The largest number of rounds we are able to
analyze is 13, and we have prove that there are at least 13 active S-boxes in any
related-key characteristic for 13-round LBlock on a PC in roughly 49 days.

Then, we try to improve the above result with the two techniques presented
in Sect. 4.1. By using the first technique, we can show that there are at least
13 active S-boxes in a 13-round related-key differential characteristic of LBlock,
and there is at least one active S-box taking a differential pattern with probability
2−3 in any 13-round related-key differential characteristic of LBlock with only
13 active S-boxes. Therefore, the probability of a 13-round related-key differential
characteristic of LBlock is upper bounded by (2−2)12 × (2−3) = 2−27.

We now turn to the second technique presented in Sect. 4.1. By adding the
constraint that the number of active S-boxes of any characteristic covering round
22 to round 26 (5 rounds in total) has at least 1 active S-box (see Table 3),
and at most 12 active S-boxes to a 11-round (round 22 to round 32) MILP
model (If this is not the case, it will enable us to get better bounds than the
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result presented here), we can show that there are at least 3 active S-boxes
in a characteristic covering round 27 to round 32 . Combined with Fact 3, we
have that the probability of the best related-key differential characteristic for
full LBlock is upper bounded by 2−27 × 2−27 × (2−2)3 = 2−60.

B Search for Related-key Characteristics of SIMON48

SIMON [5] is a family of lightweight block ciphers designed by the U.S Nation-
al Security Agency (NSA). For a detailed description of SIMON and existing
attacks, we refer the reader to [2, 3, 23, 24, 28].

By treating the AND (F2×F2 → F2) operation as a 2×1 S-box, we apply our
method to SIMON in the single-key model. For SIMON48 we obtain a 15-round
differential characteristic with probability 2−46 (see Table 4), which is the best
15-round differential characteristic for 15-round SIMON48 published so far. If
we fix the input and output differences to be the differences suggested by the
characteristic we found, we can compute the probability of this differential by
searching all characteristics with probability greater than 2−54 in this differential,
and the result is 2−41.96 which is also the best result published so far.

Table 4: Single-key differential characteristic of 15-round SIMON48
Rounds Left Right

0 000000001000000000000000 000000100010001000000000
1 000000000010001000000000 000000001000000000000000
2 000000000000100000000000 000000000010001000000000
3 000000000000001000000000 000000000000100000000000
4 000000000000000000000000 000000000000001000000000
5 000000000000001000000000 000000000000000000000000
6 000000100000100000000000 000000000000001000000000
7 000000000010001000000010 000000100000100000000000
8 001000001000001000001000 000000000010001000000010
9 000000000010001000000010 001000001000001000001000
10 000000100000100000000000 000000000010001000000010
11 000000000000001000000000 000000100000100000000000
12 000000000000000000000000 000000000000001000000000
13 000000000000001000000000 000000000000000000000000
14 000000000000100000000000 000000000000001000000000
15 000000000010001000000000 000000000000100000000000

We would like to emphasize that in our MILP models we treat the input bits
of the AND operation as independent input bits, and the dependencies of the
input bits to the AND operation are not considered. Therefore, the characteristic
obtained by our method is not guaranteed to be valid. Hence, every time after the
Gurobi optimizer outputs a good solution (characteristic), we check its validity
and compute its probability by the method presented in [2].


