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Abstract. Boneh, Raghunathan, and Segev (CRYPTO ’13) have re-
cently put forward the notion of function privacy and applied it to
identity-based encryption, motivated by the need for providing predi-
cate privacy in public-key searchable encryption. Intuitively, their notion
asks that decryption keys reveal essentially no information on their cor-
responding identities, beyond the absolute minimum necessary. While
Boneh et al. showed how to construct function-private identity-based
encryption (which implies predicate-private encrypted keyword search),
searchable encryption typically requires a richer set of predicates.

In this paper we significantly extend the function privacy framework.
First, we consider the notion of subspace-membership encryption, a gen-
eralization of inner-product encryption, and formalize a meaningful and
realistic notion for capturing its function privacy. Then, we present a
generic construction of a function-private subspace-membership encryp-
tion scheme based on any inner-product encryption scheme. This is
the first generic construction that yields a function-private encryption
scheme based on a non-function-private one.

Finally, we present various applications of function-private subspace-
membership encryption. Among our applications, we significantly im-
prove the function privacy of the identity-based encryption schemes of
Boneh et al.: whereas their schemes are function private only for iden-
tities that are highly unpredictable (with min-entropy of at least A\ +
w(log A) bits, where A is the security parameter), we obtain function-
private schemes assuming only the minimal required unpredictability
(i-e., min-entropy of only w(log A) bits). This improvement offers a much
more realistic function privacy guarantee.

Keywords: Function privacy, functional encryption.

1 Introduction

Predicate encryption systems [13, 23] are public-key schemes where a single pub-
lic encryption key has many corresponding secret keys: every secret key corre-
sponds to a predicate p : ¥ — {0,1} where X' is some pre-defined set of indices

* The full version is available as Cryptology ePrint Archive, Report 2013/403 [11].
** This work was done while the author was visiting Stanford University.
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(or attributes). Plaintext messages are pairs (z,m) where x € X and m is in
some message space. A secret key sk, for a predicate p has the following seman-
tics: if ¢ is an encryption of the pair (z,m) then sk, can be used to decrypt ¢
only if the “index” x satisfies the predicate p. More precisely, attempting to de-
crypt ¢ using sk, will output m if p(z) = 1 and output L otherwise. A predicate
encryption system is secure if it provides semantic security for the pair (z,m)
even if the adversary has a few benign secret keys.

The simplest example of predicate encryption is a system supporting the set
of equality predicates, that is, predicates piq : X — {0,1} defined as pig(z) =1
iff x = id. In such a system there is a secret key skiq for every id € X' and given
the encryption ¢ of a pair (z,m) the key skig can decrypt ¢ and recover m only
when x = id. It is easy to see that predicate encryption for the set of equality
predicates is the same thing as (anonymous) identity-based encryption [8, 1].

Currently the most expressive collusion-resistant predicate encryption sys-
tems [23, 3] support the family of inner product predicates: for a vector space
Y =, this is the set of predicates p, : ¥ — {0,1} where v € ¥ and p,(z) =1
iff zlv. This family of predicates includes the set of equality predicates and
others.

Searching on encrypted data. Predicate encryption systems provide a general
framework for searching on encrypted data. Consider a mail gateway whose
function is to route incoming user email based on characteristics of the email.
For example, emails from “boss” that are marked “urgent” are routed to the
user’s cell phone as are all emails from “spouse.” All other emails are routed to
the user’s desktop. When the emails are transmitted in the clear the gateway’s
job is straight forward. However, when the emails are encrypted with the user’s
public key the gateway cannot see data needed for the routing decision. The
simplest solution is to give the gateway the user’s secret key, but this enables
the gateway to decrypt all emails and exposes more information than the gateway
needs.

A better solution is to encrypt emails using predicate encryption. The email
header functions as the index x and the the routing instructions are used as m.
The gateway is given a secret key sk, corresponding to the “route to cell phone”
predicate. This secret key enables the gateway to learn the routing instructions
for messages satisfying the predicate p, but learn nothing else about emails.

Function privacy. A limitation of many existing predicate encryption systems
is that the secret key sk, reveals information about the predicate p. As a result,
the gateway, and anyone else who has access to sk, learns the predicate p. Since
in many practical settings it is important to keep the predicate p secret, our goal
is to provide function privacy: sk, should reveal as little information about p as
possible.

At first glance it seems that hiding p is impossible: given sk, the gateway can
itself encrypt messages (z, m) and then apply sk, to the resulting ciphertext. In
doing so the gateway learns if p(xz) = 1 which reveals some information about
p. Nevertheless, despite this inherent limitation, function privacy can still be
achieved.
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Towards a solution. In recent work Boneh, Raghunathan, and Segev [10] put
forward a new notion of function privacy and applied it to identity-based encryp-
tion systems (i.e. to predicate encryption supporting equality predicates). They
observe that if the identity id is chosen from a distribution with super-logarithmic
min-entropy then the inherent limitation above is not a problem since the at-
tacker cannot learn id from skiq by a brute force search since there are too many
potential identities to test. They define function privacy for IBE systems by
requiring that when id has sufficient min-entropy then skiq is indistinguishable
from a secret key derived for an independently and uniformly distributed iden-
tity. This enables function private keyword searching on encrypted data. They
then construct several IBE systems supporting function-private keyword search-
ing.

While Boneh et al. [10] showed how to achieve function privacy for equality
predicates, encrypted search typically requires a richer set of searching predi-
cates, including conjunctions, disjunctions, and many others. The authors left
open the important question of achieving function privacy for a larger family of
predicates.

Our contributions. In this paper we extend the framework and techniques of
Boneh et al. [10] for constructing function-private encryption schemes. We put
forward a generalization of inner-product predicate encryption [23, 18, 3], which
we denote subspace-membership encryption, and present a definitional frame-
work for capturing its function privacy. Our framework identifies the minimal
restrictions under which a strong and meaningful notion of function privacy can
be obtained for subspace-membership encryption schemes.

Then, we present a generic construction of a function-private subspace mem-
bership encryption scheme based on any underlying inner-product encryption
scheme (even when the underlying scheme is not function private). Our construc-
tion is efficient, and in addition to providing function privacy, it preserves the
security properties of the underlying scheme. This is the first generic construction
that yields a function-private encryption scheme based on a non-function-private
one. Recall that even for the simpler case of identity-based encryption, Boneh et
al. [10] were not able to provide a generic construction, and had to individually
modify various existing schemes.

Finally, we present various applications of function-private subspace mem-
bership encryption (we refer the reader to Section 1.1 for an overview of these
applications). Among our applications, we significantly improve the function
privacy of the identity-based encryption schemes of Boneh et al. [10]. Specifi-
cally, whereas their schemes guarantee function privacy only for identity distri-
butions that are highly unpredictable (with min-entropy of at least A + w(log A)
bits, where \ is the security parameter), we construct schemes that guarantee
function privacy assuming only minémal unpredictability (i.e., min-entropy of
w(log A\) bits). This improvement presents a much more realistic function pri-
vacy guarantee.
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1.1 Overview of Our Contributions

A subspace-membership encryption scheme is a predicate encryption scheme
supporting subspace-membership predicates. That is, an encryption of a message
is associated with an attribute x € S, and secret keys are derived for subspaces
defined by all vectors in S* orthogonal to a matrix W € S™*¢ (for integers
m, ¢ € N and an additive group S).® Decryption recovers the message iff W -x =
0. We refer the reader to [11, Section 2.3] for the standard definitions of the
functionality and data security of predicate encryption (following [23, 3]).

Function privacy for subspace-membership encryption. Our goal is to
design subspace-membership encryption schemes in which a secret key, skw,
does not reveal any information, beyond the absolute minimum necessary, on
the matrix W. Formalizing a realistic notion of function privacy, however, is not
straightforward due to the actual functionality of subspace-membership encryp-
tion encryption. Specifically, assuming that an adversary who is given a secret
key skw has some a-priori information that the matrix W belongs to a small set
of matrices (e.g., {Wy, W1}), then the adversary may be able to fully recover
‘W: The adversary simply needs to encrypt a (possibly random) message m for
some attribute x that is orthogonal to Wy but not to Wi, and then run the
decryption algorithm on the given secret key skw and the resulting ciphertext
to identify the one that decrypts correctly. In fact, as in [10], as long as the
adversary has some a-priori information according to which the matrix W is
sampled from a distribution whose min-entropy is at most logarithmic in the
security parameter, there is a non-negligible probability for a full recovery.

In the setting of subspace-membership encryption (unlike that of identity-
based encryption [10]), however, the requirement that W is sampled from a
source of high min-entropy does not suffice for obtaining a meaningful notion
of function privacy. In Section 2 we show that even if W has nearly full min-
entropy, but two of its columns may be correlated, then a meaningful notion of
function privacy is not within reach.

In this light, our notion of function privacy for subspace-encryption schemes
focuses on secret key skw for which the columns of W form a block source. That
is, each column of W should have a reasonable amount of min-entropy even given
all previous columns. Our notion of function privacy requires that such a secret
key skw (where W is sampled from an adversarially-chosen distribution) be
indistinguishable from a secret key for a subspace chosen uniformly at random.

A function-private construction from inner-product encryption. Given
any underlying inner-product encryption scheme we construction a function-
private subspace-membership encryption scheme quite naturally. We modify the
key-generation algorithm as follows: for generating a secret key for a subspace
described by W, we first sample a uniform s <~ S™ and use the key-generation
algorithm of the underlying scheme for generating a secret key for the vector
v = WTs. Observe that as long as the columns of W form a block source, then

3 Note that by setting m = 1 one obtains the notion of an inner-product encryption
scheme [23, 18, 3].
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the leftover hash lemma for block sources guarantees that v is statistically close
to uniform. In particular, essentially no information on W is revealed.

We also observe that extracting from the columns of W using the same seed
for the extractor (s,-) interacts nicely with the subspace-membership function-
ality. Indeed, if W - x = 0, it holds that vIx = 0 and vice-versa with high
probability. We note that the case where the attribute set is small requires some
additional refinement that we omit from this overview, and we refer the reader
to Section 3 for more details.

Application 1: Function privacy when encrypting to roots of polyno-
mials. We consider predicate encryption schemes supporting polynomial eval-
uation where secret keys correspond to polynomials p € S[X] and messages are
encrypted to an attribute z € S. Given a secret key sk, and a ciphertext with
an attribute x, decryption recovers the message iff p(x) evaluates to 0. Our work
constructs such schemes from any underlying subspace-membership scheme.

We also explore the notion of function privacy for such polynomial encryp-
tion schemes. We require that secret keys for degree-d polynomials p(z) with
coefficients (pg, p1,...,pq) € ST coming from a sufficiently unpredictable ad-
versarially chosen (joint) distribution be indistinguishable from secret keys for
degree-d polynomials where each coefficient is sampled uniformly from the un-
derlying set. Unlike the case of subspace membership, we do not restrict our
security to those distributions whose unpredictability holds even when condi-
tioned on all previous (i.e., here we obtain security for any min-entropy source
and not only for block sources).

Our function-private construction maps attributes x to Vandermonde vectors
x = (1,z,2%,...) and a polynomial p(z) to a subspace W as follows. We sample
d + 1 polynomials r1(x),...,744+1(z) in a particular manner (as a product of d
uniformly random linear polynomials) and construct the subspace W whose 7!
row comprises the coefficients of p(x) - r;(x). In section 4.1, we elaborate on the
details and prove that our choice of randomizing polynomials allows us to show
that for polynomials whose coefficients come from an unpredictable distribution,
W'’s columns have conditional unpredictability. And similarly, for polynomials
with uniformly distributed coefficients, W’s columns are uniformly distributed.
This allows us to infer the function privacy of the polynomial encryption scheme
from the function privacy of the underlying subspace-membership encryption
scheme.

Application 2: Function-private IBE with minimal unpredictability.
As another interesting application of predicate encryption supporting polyno-
mial evaluation, we consider the question of constructing function-private IBE
schemes whose function privacy requires only the minimal necessary unpre-
dictability assumption. It is easy to see (and as was shown in [10]) that if
the adversary has some a-priori information according to which identities are
sampled from a distribution with only logarithmic bits of entropy, then a simple
adversary recovers id from skjg with non-negligible probability by simply encrypt-
ing a messages to a guessed id and checking if decryption recovers the messages
successfully.
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Their constructions use a technique of preprocessing the id with a randomness
extractor to recover idgy that is statistically close to uniform and thus hides any
information about the underlying distribution of identities. As the extracted
identity is roughly A bits long, the distribution of identities must have min-
entropy at least A4+w(log ) bits to guarantee that extraction works. The identity
space is much larger and this is still a meaningful notion of function privacy
but the question of designing schemes that require the minimal min-entropy of
w(log A\) bits was left open.

Starting from encryption schemes supporting polynomial evaluation (for our
construction, linear polynomials suffice), this work shows how to construct function-
private IBE schemes with the only restriction on identities being that they
are unpredictable. We consider identities in a set S and consider a polynomial
pid(z) = (r—id). By first randomizing the polynomial with uniformly chosen r in
S, we observe that if id has the minimal super-logarithmic unpredictability, then
the coefficients of the polynomial r-(z—id) have sufficient unpredictability. Thus,
considering polynomial encryption schemes where secret keys correspond to such
polynomials and attributes correspond to = = id, we construct IBE schemes that
are function private against distributions that only have the minimum necessary
unpredictability.

1.2 Related Work

As discussed above, the notion of function privacy was recently put forward by
Boneh, Raghunathan, and Segev [10]. One of the main motivations of Boneh et al.
was that of designing public-key searchable encryption schemes [8,20,1, 13,28,
23,5,14,2, 3] that are keyword private. That is, public-key searchable encryption
schemes in which search tokens hide, as much as possible, their corresponding
predicates. They presented a framework for modeling function privacy, and con-
structed various function-private anonymous identity-based encryption schemes
(which, in particular, imply public-key keyword-private searchable encryption
schemes).

More generally, the work of Boneh et al. initiated the study of function pri-
vacy in functional encryption [12,26,6,21,4,19], where a functional secret key
sk corresponding to a function f enables to compute f(m) given an encryption
¢ = Encpi(m). Intuitively, in this setting function privacy guarantees that a func-
tional secret key sk; does not reveal information about f beyond what is already
known and what can be obtained by running the decryption algorithm on test
ciphertexts. In [10], the authors also discuss connections of function privacy to
program obfuscation.

Our notion of subspace-membership encryption generalizes that of inner-
product encryption introduced by Katz, Sahai, and Waters [23]. They defined
and constructed predicate encryption schemes for predicates corresponding to
inner products over Zy (for some large N). Informally, this class of predicates
corresponds to functions fy where f,(x) = 1 if and only if (v,x) = 0. Subse-
quently, Freeman [18] modified their construction to inner products over groups
of prime order p, and Agrawal, Freeman, and Vaikuntanathan [3] constructed an
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inner-product encryption scheme over Z, for a small prime p. Other results on
inner product encryption study adaptive security [25], delegation in the context
of hierarchies [24], and generalized IBE [9].

Finally, we note that function privacy in the symmetric-key setting, where
the encryptor and decryptor have a shared secret key, was studied by Shen,
Shi, and Waters [27]. They designed a function-private inner-product encryption
scheme. As noted by Boneh et al. [10], achieving function privacy in the public-
key setting is a more subtle task due to the inherent conflict between privacy
and functionality.

1.3 Notation

For an integer n € N we denote by [n] the set {1,...,n}, and by U,, the uniform
distribution over the set {0,1}". For a random variable X we denote by z + X
the process of sampling a value z according to the distribution of X. Similarly,
for a finite set S we denote by x <— S the process of sampling a value x according
to the uniform distribution over S. We denote by x (and sometimes x) a vector
(z1,...,7)x|). We denote by X = (X1,..., X7) a joint distribution of 7" random
variables. A non-negative function f : N — R is negligible if it vanishes faster
than any inverse polynomial. A non-negative function f : N — R is super-
polynomial if it grows faster than any polynomial.

The min-entropy of a random variable X is Hoo (X) = — log(max, Pr[X = z]).
A k-source is a random variable X with Hoo(X) > k. A (T, k)-block source is
a random variable X = (X1,..., Xr) where for every ¢ € [T] and 21,...,2;-1
it holds that Hoo (X;|X1 = x1,...,Xi—1 = 2,-1) > k. The statistical distance
between two random variables X and Y over a finite domain 2 is SD(X,Y) =
3> wen | Pr[X =w] — Pr[Y = w]|. Two random variables X and Y are §-close
if SD(X,Y) < §. Two distribution ensembles {X)}reny and {Y)}ren are sta-
tistically indistinguishable if it holds that SD(X),Y)) is negligible in A. They
are computationally indistinguishable if for every probabilistic polynomial-time
algorithm A it holds that [Pr[A(1*,z) = 1] — Pr[A(1*,y) = 1]| is negligible in
A, where x < X, and y < Y.

1.4 Paper Organization

The remainder of this paper is organized as follows. Due to space constraints,
we refer the reader to the full version [11, Section 2| for standard definitions
and tools. In Section 2 we introduce the notions of subspace-membership en-
cryption and function privacy for subspace-membership encryption. In Section
3 we present a generic construction of a function-private subspace-membership
encryption scheme based on any inner-product encryption scheme. In Section 4
we present various applications of function-private subspace-membership encryp-
tion. In Section 5 we discuss several open problems that arise from this work.
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2 Subspace-Membership Encryption and Its Function
Privacy

In this section we formalize the notion of subspace-membership encryption and
its function privacy within the framework of Boneh, Raghunathan and Segev [10].
A subspace-membership encryption scheme is a predicate encryption scheme [13,
23] supporting the class of predicates F, over an attribute space ¥ = S*, defined
as

1W-x=0e8S™

7= {fw We Smxl} with Fw(x) = {O otherwise

for integers m,¢ € N, and an additive group S. Informally, in a subspace-
membership encryption, an encryption of a message is associated with an at-
tribute x € S, and secret keys are derived for subspaces defined by all vectors
in S orthogonal to a matrix W &€ S™**. Decryption recovers the message if
and only if W - x = 0. (See [11, Section 2.3] for the standard definitions of the
functionality and data security of predicate encryption.) Subspace-membership
encryption with delegation was also studied in [24, 25]. Here we do not need the
delegation property.

Based on the framework introduced by Boneh, Raghunathan, and Segev [10],
our notion of function privacy for subspace-membership encryption considers
adversaries that are given the public parameters of the scheme and can interact
with a “real-or-random” function-privacy oracle RoR™ defined as follows, and
with a key-generation oracle.

Definition 2.1 (Real-or-random function-privacy oracle). The real-or-
random function-privacy oracle RoR takes as input triplets of the form (mode,
msk, V'), where mode € {real, rand}, msk is a master secret key, andV = (V1,...,
Vy) € S™*¢ is a circuit representing a joint distribution over S™** (i.e., each V;
is a distribution over S™). If mode = real then the oracle samples W + V and
if mode = rand then the oracle samples W < S™** uniformly. It then invokes
the algorithm KeyGen(msk,-) on W for outputting a secret key skw .

Definition 2.2 (Function-privacy adversary). An (¢, k)-block-source function-
privacy adversary A is an algorithm that is given as input a pair (1, pp) and ora-
cle access to RoRM (mode, msk, -) for some mode € {real, rand}, and to KeyGen(msk,
). It is required that each ofA’s queries to RoR™ be an (£, k)-block-source.

Definition 2.3 (Function-private subspace-membership encryption). A
subspace-membership encryption scheme IT = (Setup, KeyGen, Enc, Dec) is (¢, k)-
block-source function private if for any probabilistic polynomial-time (¢, k)-block-
source function-privacy adversary A, there exists a negligible function v(\) such
that

Advip () ¥

Pr[Exptiel a(\) = 1] = Pr[Exptid 4 () = 1] < v,

where for each mode € {real,rand} and X\ € N the experiment Expt?ﬁf’fLA()\) is
defined as follows:
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1. (pp, msk) « Setup(1*).
2. b<_ARORFP(mode,msk,-),KeyGen(msk,»)(1)\

3. Output b.

,PP).

In addition, such a scheme is statistically (¢, k)-block-source function private if
the above holds for all computationally-unbounded (¢, k)-block-source function-
privacy adversary making a polynomial number of queries to the RoR™ oracle.

We note here that a security model that allows the adversary to receive the
master secret key msk in place of the oracle KeyGen(msk, ) leads to a seemingly
stronger notion of function privacy. However, such a notion is subsumed by
statistical function privacy and the schemes constructed in this paper actually
satisfy this stronger notion.

Multi-shot vs. single-shot adversaries. Note that Definition 2.3 considers
adversaries that query the function-privacy oracle for any polynomial number of
times. In fact, as adversaries are also given access to the key-generation oracle,
this “multi-shot” definition is polynomially equivalent to its “single-shot” variant
in which adversaries query the real-or-random function-privacy oracle RoRP at
most once. This is proved via a straightforward hybrid argument, where the
hybrids are constructed such that only one query is forwarded to the function-
privacy oracle, and all other queries are answered using the key-generation oracle.

The block-source requirement on the columns of W. Our definition of
function privacy for subspace-membership encryption requires that a secret key
skw reveals no unnecessary information about W as long as the columns of W
form a block source (i.e., each column is unpredictable even given the previous
columns). One might consider a stronger definition, in which the columns of
W may be arbitrarily correlated, as long as each column of W is sufficiently
unpredictable. Such a definition, however, is impossible to satisfy.

Specifically, consider the special case of inner-product encryption (i.e., m =
1), and an adversary that queries the real-or-random oracle with a distribution
over vectors w € S’ defined as follows: sample ¢ — 1 independent and uniform
values u1,...,up—1 < S and output w = (u1, 2u1, ua, ..., us—1). Such a distri-
bution clearly has high min-entropy (specifically, (¢ — 1)log|S]| bits), and each
coordinate of w has min-entropy log [S| bits. However, secret keys for vectors
drawn from this distribution can be easily distinguished from secret keys for
vectors drawn from the uniform distribution over S’: encrypt a message M to
the attribute x = (—2,1,0,...,0) € S* and check to see if decryption succeeds
in recovering M. For a random vector w € S the decryption succeeds only with
probability 1/|S| giving the adversary an overwhelming advantage.

Therefore, restricting function privacy adversaries to query the RoRFP oracle
only with sources whose columns form block sources is essential for achieving a
meaningful notion of function privacy.

On correlated RoR™P queries. In Definition 2.2 we consider adversaries that
receives only a single secret key sky for each query to the RoRFP oracle. Our
definition easily generalizes to include adversaries that are allowed to query
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the RoRF" oracle with correlated queries. More specifically, an adversary can
receive secret keys skw,,...,skw, for any parameter 7' that is polynomial in
the security parameter. The RoR™" oracle samples subspaces W1, ..., W from
an adversarially chosen joint distribution over (Sm”)T with the restriction that
for every 1 < i < T, the columns of W; come from a (¢, k)-block-source even
conditioned on any fixed values for W1,..., W,;_;.2

Function privacy of existing inner-product encryption schemes. The
inner-product predicate encryption scheme from lattices [3] is trivially not func-
tion private as the secret key includes the corresponding function f, as part of
it (this is necessary for the decryption algorithm to work correctly). The scheme
constructed from bilinear groups with composite order [23] however presents no
such obvious attack, but we were not able to prove its function privacy based on
any standard cryptographic assumption.

3 A Generic Construction Based on Inner-Product
Encryption

In this section we present a generic construction of a function-private subspace-
membership encryption scheme starting from any inner-product encryption scheme.
Due to space constraints, we deal with a large attribute space S of size super-
polynomial in the security parameter A here, and explain our idea of extending
our construction to the case when |S| is small (see [11, Section 4.2] for the de-
tails).

Our construction. Let ZP = (IP.Setup, IP.KeyGen, IP.Enc, IP.Dec) be an inner-
product encryption scheme with attribute set X = S*. We construct a subspace-
membership encryption scheme SM = (SM.Setup, SM.KeyGen, SM.Enc, SM.Dec)
as follows.

— Setup: SM.Setup is identical to IP.Setup. On input the security parameter
it outputs public parameters pp and the master secret key msk by running
IP.Setup(1?).

— Key generation: SM.KeyGen takes as input the master secret key msk
and a function fw where W € S™** and proceeds as follows. It samples
uniform s < S™ and computes v = WTs € S’. Next, it samples a secret key
sky < IP.KeyGen(msk, v) and outputs skw def sky.

— Encryption: SM.Enc is identical to IP.Enc. On input the public parameters,
an attribute x € S, and a message M, the algorithm outputs a ciphertext
¢ < IP.Enc(pp, x, M).

— Decryption: SM.Dec is identical to IP.Dec. On input the public parameters
pp, a secret key skw, and a ciphertext ¢, it outputs M <« IP.Dec(pp, skw, ¢).

4 Or equivalently, the columns of [ W1 | Wa | --- | Wr | are distributed according to
a (T¢, k)-block-source.
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Correctness. Correctness of the construction follows from the correctness of
the underlying inner-product encryption scheme. For every W € S™*¢ and every
x € S, it suffices to show the following:

— If f(I) =1, then it holds that W - x = 0. This implies xTv = xT (WTs) =0
and therefore SM.Dec correctly outputs M as required.

— If f(I) = 0, then it holds that e % W -x # 0 € S™. As xTv = xT (WTs) =
eTs, for any e # 0 the quantity xTv is zero with probability 1/|S| over choices
of s. As 1/|S| is negligible in A whenever |S| is super-polynomial in A, the
proof of correctness follows.

Security. We state the following theorem about the security of our construction.

Theorem 3.1. IfZP is an attribute hiding (resp. weakly attribute hiding) inner-
product encryption scheme for an attribute set S of size super-polynomial in the
security parameter, then it holds that:

1. The scheme SM is an attribute hiding (resp. weakly attribute hiding) subspace-
membership encryption scheme under the same assumption as the security
of the underlying inner-product encryption scheme.

2. The scheme SM when m > 2 is statistically function private for (¢, k)-block-
sources for any £ = poly(\) and k > log|S| + w(log A).

Proof. We first prove the attribute-hiding property of the scheme, and then
prove its function privacy.

Attribute hiding. Attribute-hiding property of SM follows from the attribute-
hiding property of ZP in a rather straightforward manner. Given a challenger for
the attribute-hiding property of ZP, an SM adversary A can be simulated by al-
gorithm B as follows: A’s challenge attributes are forwarded to the ZP-challenger
and the resulting public parameterers are published. Secret key queries can be
simulated by first sampling uniform s < S™, then computing v. = WTs and
forwarding v to the ZP key generation oracle. Similarly, the challenge messages
from the adversary are answered by forwarding them to the challenger. In the
full version [11, Section 4.1], we elaborate on the details and show that if @
denotes the number of secret key queries by A, it holds that

Advzp p(A) > Advsa,a(X) —2Q/S], (1)

thus completing the proof of the attribute hiding property of SM.

Function privacy. Let A be a computationally unbounded (¢, k)-block-source
function-privacy adversary that makes a polynomial number @ = Q(\) of queries
to the RoR™ oracle. We prove that the distribution of A’s view in the exper-
iment Expt'FeSE sm.4 is statistically close to the distribution of A’s view in the
experiment Exptie% v, 4 (we refer the reader to Definition 2.3 for the descrip-
tions of these expériménts). We denote these two distributions by View,e, and
View,and, respectively.
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As the adversary A is computationally unbounded, we assume without loss
of generality that A does not query the KeyGen(msk, -) oracle—such queries can
be internally simulated by .A. Moreover, as discussed in Section 2, it suffices to
focus on adversaries A that query the RoR” oracle exactly once. From this point
on we fix the public parameters pp chosen by the setup algorithm, and show that
the two distributions View,e, and View,,nq are statistically close for any such pp.

Denote by V' = (V4,..., V) the random variable corresponding to the (¢, k)-
source with which A queries the RoRF" oracle. For each i € [¢], let (w1, . .., wim)
denote a sample from V;. Also, let s = (s1,...,8m) € S™. As A is computation-
ally unbounded, and having fixed the public parameters, we can in fact assume

that
VieWmode = <<Z ;- wi,l) e <Z 8; wu)) (2)
i=1 i=1

for mode € {real,rand}, where W = {w; ;} is drawn from V for mode =

i€[m],je(l]
real, W is uniformly distributed over S"** for mode = rand, and s; < S for
every i € [{]. For mode € {real,rand} we prove that the distribution Viewmede is
statistically close to a uniform distribution over S™.

Note that the collection of functions {gs, ..s,, : S™ — S}s,, . s.es defined
bY Gsy...vsm W1y ooy Wiy) = Z;il sj - wj is universal. This enables us to directly
apply the Leftover Hash Lemma for block-sources [16,22,29,17] implying that
for our choice of parameters m, £ and k the statistical distance between View e
and the uniform distribution is negligible in A.> The same clearly holds also for
VieW,and, as the uniform distribution over S™*¢ is, in particular, a (¢, k)-block-
source. This completes the proof of function privacy.

Theorem 3.1 for correlated RoRFP queries. Recollect that the definition
of function privacy for subspace membership (Definition 2.3) extends to adver-
saries that query the RoRFF oracle with secret keys for T correlated subspaces
Wi,...,Wr for any T = poly(A). If the columns of the jointly sampled sub-
spaces [W1|Wa|---| Wy] form a block source, we can extend the proof of func-
tion privacy to consider such correlated queries. The adversaries view comprises
T terms as in Equation (2) with randomly sampled vectrs sy, ..., sy in place of
s. The collection of functions g remains universal and a simple variant of the
Leftover Hash Lemma implies that for our choice of parameters, the statistical
distance between View,e, and the uniform distribution is negligible in A (and
similarly for Viewyand)-

Dealing with small attribute spaces. We also consider constructing subspace-
membership encryption schemes where we do not place any restrictions on the
size of the underlying attribute space S. In our generic construction, observe that
correctness requires that 1/[S| be negligible in A. If |S| is not super-polynomial in

5 We note here that a weaker version of the Leftover Hash Lemma will suffice as the
adversary’s view does not include (s1,...,Sm).
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the security parameter, then correctness fails with a non-negligible probability.
Additionally, this breaks the proof of attribute-hiding security in Theorem 3.1:
In Equation (1), if the quantity 2Q/|S| is non-negligible, then a non-negligible
advantage of an adversary A does not translate to a non-negligible advantage
for the reduction algorithm B against the inner-product encryption scheme.

To overcome this difficulty, we refine the construction as follows using a
parameter 7 = 7(A) € N. We split the message into 7 secret shares and apply
parallel repetition of 7 copies of the underlying inner-product encryption scheme,
where each copy uses independent public parameters and master secret keys.
For the proof of security, it suffices to have 7 such that the quantity 7/|S|™ is
negligible in A. Due to space constraints, a formal description of the scheme and
a statement of its security is deferred to [11, Section 4.2].

4 Applications of Function-Private Subspace-Membership
Encryption
4.1 Roots of a Polynomial Equation

We can construct a predicate encryption scheme for predicates corresponding to

def {fp : p € S[X],deg(p) < d}, where

fp(gc):{lifp(x)_oGS for z € S.

polynomial evaluation. Let d)pOly

0 otherwise

Correctness and attribute hiding properties of the predicate encryption scheme
for the class of predicates @p(zlly are defined as in the case of a generic predicate
encryption scheme in a natural manner (see [11, Definition 2.3]).

Function-private polynomial encryption. For the class 452(21", consider a
real-or-random function privacy oracle RoR™? (along the lines of Definition 2.1)
that takes as input triplets of the form (mode, msk, P), where mode € {real, rand},
msk is a master secret key, and P = (P, ..., P;_1) € S is a circuit representing
a joint distribution over coefficients of polynomials p with deg(p) < d. If mode =
real then the oracle samples p < P and if mode = rand then the oracle samples
p + S% uniformly. It then invokes the algorithm KeyGen(msk, -) on p and outputs
secret key sk,.

Along the lines of Definition 2.2, we consider a k-source @ ¥ function-privacy
adversary A. Such an adversary is given inputs (1*, pp) and oracle access to
RoRFP? and each query to the oracle is a k-source (over the coefficients of the
polynomial).

Definition 4.1 (@pob’ Function privacy). A predicate encryption scheme for
the class of predicates @pob’ denoted IT = (Setup, KeyGen, Enc, Dec) is k-source

function-private if for any probabilistic polynomial-time k-source @p ly function-
privacy adversary A, there exists a negligible function v(\) such that

AV () & |Pr[ExptiRla, ma(N) = 1] Pr[BotE r () = 1| < v,
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where for each mode € {real,rand} and A € N the experiment Expt?ﬁf’%n)A()\) is
defined as follows:

1. (pp, msk) « Setup(1*).
2. b« ARORFP"P(mode,msk,»),KeyGen(msk,-)(1>\,pp).

3. Output b.

In addition, such a scheme is statistically k-source function private if the above
holds for any computationally-unbounded k-source @Z(zlly function privacy ad-

versary making a polynomial number of queries to the RoRP? oracle.

Correlated RoRFP-? queries. Definition 4.1 extends to adversaries that query
the RoR™"? oracle on T correlated queries. A scheme IT is said to be (T, k)-source
(resp. (T, k)-block-source) function private if each query (Py,...,P7r) of a joint
distribution over T polynomials is a (T, k)-source (resp. (T, k)-block-source).

Constructing function-private predicate encryption schemes support-
ing polynomial evaluation. Given a subspace membership encryption scheme
(Setup, KeyGen, Enc, Dec) with parameters m = d and ¢ = 2d — 1, we can con-
struct a predicate encryption scheme for @Zily as follows (for simplicity, we
consider the instructive case d = 3 and subsequently explain how our technique
generalizes):

— Setup: The Setup algorithm remains unchanged.

— Encryption: To encrypt a message M for the attribute z € S, the en-
cryption algorithm sets x = (:104,:103,:62,90, 1)T and outputs the ciphertext
Enc(pp, x, M).

— Key generation: To generate a secret key corresponding to the polynomial
p = pg - 2 4+ p1 - ¢ + po, the key-generation algorithm constructs a vector
p = (p2,p1,p0)T € S®. Next, it “blinds” the polynomial p(z) with two linear
polynomials 7(z) = r; -z + ro and s(z) = $1 - & + sp and computes the
coefficients of the polynomial p(z)-r(z)-s(z). The coefficients 71, g, $1, So are
sampled independently and uniformly at random from S. The key generation
algorithm repeats this step with two more sets of polynomials (we refer
to them as “randomizing” polynomials) r/(z),s’(x) and »”(z), s”(x) whose
coeflicients are also sampled uniformly at random. It constructs

[ — coefficients of p(z) - 7(z) - s(z) —
W = | — coefficients of p(z) - 7/(x) - §'(z) — | € S35, (3)
— coefficients of p(x) - ' (z) - s (x) —

D2r180 + P2roS1  P2roSo + PiTiSo  P1ToSo + PoTrosS1
P2ri1s1 PoToSo
+pir181 +p170S1 + PoT1S1 +poT1S0

! ! /s ! ! ! ! ! ! /s
B DP2r1Sg + P2rpsT  P2TSo +P1T1Sy  P1ToSo + PoTpS1 orh s
- 1°1 /i ! ot !l VA} 0°0

+p17181 +p17ryS1 + Pory Sy +poT180

1! 1 1 1! 1! 1
par’sy D27y S0 + P2rgS1  P2rgSo + PiTiSo  P1ToSo + PorpSi por!!so

1 " 11 " 1"

+p17y s1 +p17g s1+ port s1 +pory so 0
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The algorithm then runs KeyGen(msk, W) and outputs skw .
— Decryption: The decryption algorithm remains unchanged.

Correctness and attribute hiding. Given a ciphertext ¢ for attribute = and
a secret key for polynomial p, if p(x) = 0 then it follows that W - x = 0. If
W - x = 0, then z is a root of polynomials p-r-s, p-7'-s', and p-r" - 5"
which implies that x is a root of p(z) with overwhelming probability over the
choices of polynomials r, 7/, 7" s,s’, s"” € S[X].% The attribute hiding property of
the scheme follows in a fairly straightforward manner from the attribute hiding
property of the subspace membership encryption scheme.

Function privacy. We show that with overwhelming probability over the choices
of the randomizing polynomials: (a) if the coefficients of p, namely (p2,p1, po)
are sampled from a k-source, then W is distributed according to a (5, k)-block
source, and (b) if the coefficients of p are sampled uniformly at random from
S3, then W is distributed uniformly over S3*5. Given the above two claims, a
straightforward reduction allows us to simulate a RoRFF-? oracle given access to
a RoR oracle for the subspace membership predicate with parameters m = 3 and
¢ = 5. Thus, we can state the following theorem.

Theorem 4.2. If SM is a subspace membership encryption scheme with param-
eters m = 3 and £ = 5 that satisfies function privacy against (5, k)-block-source
adversaries, then the predicate encryption scheme for the class of predicates @z%ly

constructed above is statistically function private against k-source adversaries.

Applying Theorem 3.1 for adversaries that query the RoRP oracle with T
correlated queries immediately gives us the following corollary.

Corollary 4.3. Given any large attribute space inner-product encryption scheme
with £ = 3, there exists a predicate encryption scheme for the class of predicates
@2%13' that is statistically function-private against (T,k)-block-sources for any

T = poly(\) and k > log S| + w(log A).

Proof of claims (a) and (b). Consider column wy = (par1 81, par’ sy, parisy)T.

We observe that over choices of s, s}, and s, the column wy is distributed uni-
formly over S®. The second column wy is also distributed uniformly at random
by noting that the elements par1 50, P21} sj, and pary s are distributed uniformly
in S* over choices of 71, 74, and 7} (which are themselves information theoreti-
cally hidden in wy). An identical argument shows that over choices of 7, r{, and
ry, and so, sp, and sj, the fourth and fifth columns, wy and ws, are distributed
uniformly in S®. This is true even conditioned on all the other columns. It suf-
fices to show that conditioned on w1, wy, wy, and ws, column w3 has entropy
at least log [S| + w(log A).

5 From a simple union bound over the events where three linear polynomials share a
root, this probability works out to be > 1 — 8/|S|*> which is indeed overwhelming.
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We re-write w3 as R - p where

T0S0 T1S0 +T0S1 T1S1
R = | r{s} 7ish+rhsh ris) | € S5, (4)

rysy i sq +rost sy
With overwhelming probability over random choices of all the coefficients in
the polynomials r, s, 7/, s’, v, and s”, the matrix R is full-rank over S. Therefore,
the distribution of ws has a one-one correspondence with the distribution of p.
Therefore, wg has entropy at least k even given R if p is sampled from a k-source
and w3 is uniform over S? even given R if p is sampled uniformly from S3. This
concludes the proof of claims (a) and (b). |

A general technique for sﬁzzly. As stated earlier, we can construct predicate

encryption for the class of predicates @Z?ily starting with a subspace membership
encryption scheme with parameters m = d and £ = 2d — 1. The main idea
in extending beyond d = 3 is to construct d randomized “blindings” of p(z).
For i € [d], the i** row of W now comprises coefficients of a polynomial p(z) -
ri1(z) -7 g—1(x) where each of the 7; ;(x)’s are random linear polynomials
sampled as r(z) and s(z) are sampled in the d = 3 construction. The details of
our construction are as follows. Due to space constraints the details about the
construction are deferred to the full version [11, Section 5.1].

Comparing entropy requirements. In Definition 4.1 and Corollary 4.3 it suf-
fices to consider function-privacy adversaries that query the “real-or-random”
oracle with polynomials whose coefficients come from a k-source. We do not
require the sources have conditional min-entropy in contrast to subspace mem-
bership function privacy (see Definition 2.3 and the discussion in Section 2). The
reason this weaker restriction on @z(gy function-privacy adversaries suffices when
it does not suffice against subspace membership function-privacy adversaries is
that the class of predicates Qi‘fily offers a weaker functionality than is offered by
subspace membership. In particular, if the adversary evaluates ciphertexts with
attributes corresponding to “ill-formed” non-Vandermonde vectors, i.e., vectors
not of the form (1, z, 22, ...), correctness of decryption is not guaranteed and the
particular attack outlined in Section 2 fails. It is easy to see this in our construc-
tion as well—the randomizing polynomials ensure correctness only holds when
the subspace membership predicate is evaluated on Vandermonde vectors.

4.2 Function-Private IBE with Minimal Unpredictability

As discussed in Section 1.1, the IBE schemes of Boneh et al. [10] are function pri-
vate only for identity distributions with min-entropy at least A + w(log A). How-
ever, the only inherent restriction required for a meaningful notion of security
is that identity distributions have min-entropy w(log ). In this section, start-
ing with predicate encryption schemes for polynomial evaluation constructed in
Section 4.1, we construct an IBE scheme satisfying function privacy with only a
super-logarithmic min-entropy restriction on identity distributions.
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Scheme. Consider a predicate encryption scheme for the class of linear predi-
cates Qliozly comprising algorithms (Setup, KeyGen, Enc, Dec). From Section 4.1,
such a predicate encryption scheme can be built from any underlying subspace
membership scheme for parameters m = 2 and £ = 3. Given such a scheme, we
construct an IBE scheme ZBEOPT for the space of identities S as follows.

— Setup: On input 1*, the IBE setup algorithm runs Setup(1*) to receive
(pp, msk) and publishes pp.

— Key generation: On input msk and an identity id € S, the key generation
algorithm constructs a (randomized) polynomial pig(x) such that pig(x) =0
if and only if z = id as follows. The algorithm samples uniform r < S and
computes pig(z) = r(z — id). It then runs the underlying KeyGen algorithm
to output skig < KeyGen(msk, piqg).

— Encryption: On input pp, an identity id, and a message M, the encryption
algorithm computes Enc(pp, id, M).

— Decryption: On input pp, a ciphertext ¢, and a secret key sk, the decryption
algorithm simply computes the underlying decryption algorithm to output
M « Dec(pp, sk, ¢).

Correctness of the IBE scheme follows from the correctness of the under-
lying @2(§y—predicate encryption scheme. Data privacy and anonymity of the
IBE scheme (see [11, Definition 2.5]) follows directly from the attribute hiding

property of the underlying @zozly-predicate encryption scheme. In the theorem

that follows, we prove that ZBEPT is function-private against minimally unpre-
dictable sources.

Theorem 4.4. Given any large attribute space inner-product encryption scheme
for dimension ¢ = 3, there exists an IBE scheme function private against (T, k)-
block-sources for any T = poly(A\) and k > w(log\).

Proof outline. For simplicity, consider adversaries that query the real-or-random
oracle with k-sources (i.e., T'= 1). As outlined in Section 4.1 we first construct a

predicate encryption scheme for QY)I;OQIY that is function private against k’-sources

for k' > log|S| + w(log\). We instantiate ZBECPT described above with this

predicate encryption scheme.

The proof proceeds by showing that RoRT'BE queries (see [11, Definition
2.6]) ID can be compiled to distributions over coefficients of linear polynomials
P = (P, Py) such that if Ho(ID) = k, then Hoo(P) = k + log [S|. This allows
us to simulate a RoRFF'BE oracle given an oracle RoR™? for linear polynomials
thus showing that ZBE OPT ig function-private against k-sources if the encryption
scheme for 432‘7.’213' is function-private against k’-sources. Due to space constraints,
the reader is referred to the full version for details [11, Section 5.1].

Fully-secure function-private IBE. Current constructions of inner-product
encryption schemes [23, 3] satisfy a selective notion of security where the chal-
lenge attributes are chosen by the adversary before seeing the public parameters.
Our transformation of inner-product encryption schemes to function-private IBE
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schemes with minimal unpredictability is not limited to selective security. Start-
ing from an inner-product encryption scheme satisfying an adaptive version of
attribute hiding, we can construct fully-secure IBE schemes. We also note that
the standard complexity leveraging approach (see [7, Section 7.1]) gives a generic
transformation from selectively-secure IBE to fully-secure IBE. This approach
does not modify the key generation algorithm and therefore preserves function
privacy.

5 Conclusions and Open Problems

Our work proposes subspace-membership encryption and constructs the first
such function-private schemes from any inner-product encryption scheme. We
also show its application to constructing function-private polynomial encryption
schemes and function-private IBE schemes with minimal unpredictability. In this
section, we discuss a few extensions and open problems that arise from this work.

Function privacy from computational assumptions. In this work we con-
struct subspace-membership schemes that are statistically function private. Al-
though the construction of inner-product encryption schemes from lattices [3]
presents an immediate function-privacy attack, we were unable to find such at-
tacks for the construction from composite-order groups [23] (or its prime order
variant [18]). We conjecture that suitable “min-entropy” variants of the deci-
sional Diffie-Hellman assumption [15] have a potential for yielding a proof of
computational function privacy for these schemes.

Other predicates. A pre-cursor to the work on predicate encryption supporting
inner-products was work on predicate encryption supporting comparison and
range queries by Boneh and Waters [13]. They achieve this by constructing
predicate encryption supporting an interesting primitive, denoted Hidden-Vector
Encryption (HVE). Briefly, in HVE, attributes correspond to vectors over an
alphabet Y and secret keys correspond to vectors over the augmented alphabet
X U {x}. Decryption works if the attributes and secret key match for every
coordinate that is not a *.

HVE can be implemented using inner-product encryption schemes [23] but it
breaks function privacy in a rather trivial manner. Formalizing function privacy
for HVE does not immediately follow from the notion of function privacy for
inner-products because of the role played by x. The questions of formalizing
function privacy (which in turn will imply realistic notions also for encryption
supporting range and comparison queries) and designing function-private HVE
schemes are left as open problems. It is also open to formalize security and
design function-private encryption schemes that support multivariate polynomial
evaluation.

Enhanced function privacy. A stronger notion of function privacy, denoted
enhanced function privacy [10], asks that an adversary learn nothing more than
the minimum necessary from a secret key even given corresponding cipher-
texts with attributes that allow successful decryption. Constructing enhanced
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function-private schemes for subspace membership and inner products is an in-
teresting line of research that may require new ideas and techniques.
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