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Abstract. We construct new families of elliptic curves over Fp2 with
efficiently computable endomorphisms, which can be used to accelerate
elliptic curve-based cryptosystems in the same way as Gallant–Lambert–
Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our
construction is based on reducing quadratic Q-curves (curves defined
over quadratic number fields without complex multiplication, but with
isogenies to their Galois conjugates) modulo inert primes. As a first ap-
plication of the general theory we construct, for every prime p > 3, two
one-parameter families of elliptic curves over Fp2 equipped with endo-
morphisms that are faster than doubling. Like GLS (which appears as a
degenerate case of our construction), we offer the advantage over GLV
of selecting from a much wider range of curves, and thus finding secure
group orders when p is fixed. Unlike GLS, we also offer the possibility of
constructing twist-secure curves. Among our examples are prime-order
curves over Fp2 , equipped with fast endomorphisms, and with almost-
prime-order twists, for the particularly efficient primes p = 2127 − 1 and
p = 2255 − 19.

Keywords: Elliptic curve cryptography, endomorphisms, GLV, GLS, exponen-
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1 Introduction

Let E be an elliptic curve over a finite field Fq, and let G ⊂ E(Fq) be a cyclic
subgroup of prime order N . When implementing cryptographic protocols in G,
the fundamental operation is scalar multiplication (or exponentiation):

Given P in G and m in Z, compute [m]P := P ⊕ · · · ⊕ P︸ ︷︷ ︸
m times

.

The literature on general scalar multiplication algorithms is vast, and we
will not explore it in detail here (see [10, §2.8,§11.2] and [5, Chapter 9] for
introductions to exponentiation and multiexponentiation algorithms). For our
purposes, it suffices to note that the dominant factor in scalar multiplication
time using conventional algorithms is the bitlength of m. As a basic example,



if G is a generic cyclic abelian group, then we may compute [m]P using a variant
of the binary method, which requires at most dlog2me doublings and (in the
worst case) about as many addings in G.

But elliptic curves are not generic groups: they have a rich and concrete ge-
ometric structure, which should be exploited for fun and profit. For example,
endomorphisms of elliptic curves may be used to accelerate generic scalar mul-
tiplication algorithms, and thus to accelerate basic operations in curve-based
cryptosystems.

Suppose E is equipped with an efficient endomorphism ψ, defined over Fq.
By efficient, we mean that we can compute the image ψ(P ) of any point P in
E(Fq) for the cost of O(1) operations in Fq. In practice, we want this to cost no
more than a few doublings in E(Fq).

Assume ψ(G) ⊆ G, or equivalently, that ψ restricts to an endomorphism of G.1

Now G is a finite cyclic group, isomorphic to Z/NZ; and every endomorphism
of Z/NZ is just an integer multiplication modulo N . Hence, ψ acts on G as
multiplication by some integer eigenvalue λψ: that is,

ψ|G = [λψ]G .

The eigenvalue λψ is a root of the characteristic polynomial of ψ in Z/NZ.

Returning to the problem of scalar multiplication: we want to compute [m]P .
Rewriting m as

m = a+ bλψ (mod N)

for some a and b, we can compute [m]P using the relation

[m]P = [a]P + [bλψ]P = [a]P + [b]ψ(P )

and a two-dimensional multiexponentation such as Straus’s algorithm [28], which
has a loop length of log2 ‖(a, b)‖∞ (ie, log2 ‖(a, b)‖∞ doubles and as many adds;
recall that ‖(a, b)‖∞ = max(|a|, |b|)). If λψ is not too small, then we can easily
find (a, b) such that log2 ‖(a, b)‖∞ is roughly half of log2N . (We remove the “If”
and the “roughly” for our ψ in §4.) The endomorphism lets us replace conven-
tional log2N -bit scalar multiplications with 1

2 log2N -bit multiexponentiations.
In terms of basic binary methods, we are halving the loop length, cutting the
number of doublings in half.

Of course, in practice we are not halving the execution time. The precise
speedup ratio depends on a variety of factors, including the choice of exponenti-
ation and multiexponentiation algorithms, the cost of computing ψ, the shortness
of a and b on the average, and the cost of doublings and addings in terms of

1 This assumption is satisfied almost by default in the context of classical discrete log-
based cryptosystems. If ψ(G) 6⊆ G, then E [N ](Fq) = G + ψ(G) ∼= (Z/NZ)2, so N2 |
#E(Fq) and N | q − 1; such E are cryptographically inefficient, and discrete logs in
G are vulnerable to the Menezes–Okamoto–Vanstone reduction [21]. However, these
G do arise naturally in pairing-based cryptography; in that context the assumption
should be verified carefully.



bit operations—to say nothing of the cryptographic protocol, which may pro-
hibit some other conventional speedups. For example: in [11], Galbraith, Lin,
and Scott report experiments where cryptographic operations on GLS curves re-
quired between 70% and 83% of the time required for the previous best practice
curves—with the variation depending on the architecture, the underyling point
arithmetic, and the protocol.

To put this technique into practice, we need a source of cryptographic elliptic
curves equipped with efficient endomorphisms. To date, in the large character-
istic case2, there have been essentially only two constructions:

1. The classic Gallant–Lambert–Vanstone (GLV) construction [12]. Here, ellip-
tic curves over number fields with explicit complex multiplication (CM) by
CM-orders with small discriminants are reduced modulo suitable primes p;
an explicit endomorphism on the CM curve reduces to an efficient endomor-
phism over the finite field.

2. The more recent Galbraith–Lin–Scott (GLS) construction [11]. Here, curves
over Fp are viewed over Fp2 ; the p-power sub-Frobenius induces an extremely
efficient endomorphism on the quadratic twist (which can have prime order).

These constructions have since been combined to give 3- and 4-dimensional
variants [18, 32], and extended to hyperelliptic curves in a variety of ways [3, 17,
26, 29]. However, basic GLV and GLS remain the archetypal constructions.

Our contribution: new families of endomorphisms. In this work, we propose a
new source of elliptic curves over Fp2 with efficient endomorphisms: quadratic
Q-curves.

Definition 1. A quadratic Q-curve of degree d is an elliptic curve E without
CM, defined over a quadratic number field K, such that there exists an isogeny
of degree d from E to its Galois conjugate σE, where 〈σ〉 = Gal(K/Q).3

Q-curves are well-established objects of interest in number theory, where
they formed a natural setting for generalizations of the Modularity Theorem.
Ellenberg’s survey [8] gives an excellent introduction to this beautiful theory.

Our application of quadratic Q-curves is rather more prosaic: given a d-
isogeny Ẽ → σẼ over a quadratic field, we reduce modulo an inert prime p
to obtain an isogeny E → σE over Fp2 . We then exploit the fact that the p-
power Frobenius isogeny maps σE back onto E ; composing with the reduced
d-isogeny, we obtain an endomorphism of E of degree dp. For efficiency reasons,
d must be small; it turns out that for small values of d, we can write down
one-parameter families of Q-curves (our approach below was inspired by the
explicit techniques of Hasegawa [15]). We thus obtain one-parameter families of
elliptic curves over Fp2 equipped with efficient non-integer endomorphisms. For

2 We are primarily interested in the large characteristic case, where q = p or p2, so we
will not discuss τ -adic/Frobenius expansion-style techniques here.

3 The Galois conjugate σE is the curve formed by applying σ to all of the coefficients
of the defining equation of E ; see §2.



these endomorphisms we can give convenient explicit formulæ for short scalar
decompositions (see §4).

For concrete examples, we concentrate on the cases d = 2 and 3 (in §5 and §6,
respectively), where the endomorphism is more efficient than a single doubling
(we briefly discuss higher degrees in §11). For maximum generality and flexibility,
we define our curves in short Weierstrass form; but we include transformations
to Montgomery, twisted Edwards, and Doche–Icart–Kohel models where appro-
priate in §8.

Comparison with GLV. Like GLV, our method involves reducing curves defined
over number fields to obtain curves over finite fields with explicit CM. However,
we emphasise a profound difference: in our method, the curves over number fields
generally do not have CM themselves.

GLV curves are necessarily isolated examples—and the really useful examples
are extremely limited in number (see [18, App. A] for a list of curves). The
scarcity of GLV curves4 is their Achilles’ heel: as noted in [11], if p is fixed
then there is no guarantee that there will exist a GLV curve with prime (or
almost-prime) order over Fp. Consider the situation discussed in [11, §1]: the
most efficient GLV curves have CM discriminants −3 and −4. If we are working
at a 128-bit security level, then the choice p = 2255 − 19 allows particularly fast
arithmetic in Fp. But the largest prime factor of the order of a curve over Fp
with CM discriminant −4 (resp. −3) has 239 (resp. 230) bits: using these curves
wastes 9 (resp. 13) potential bits of security. In fact, we are lucky with D = −3
and −4: for all of the other discriminants offering endomorphisms of degree at
most 3, we can do no better than a 95-bit prime factor, which represents a
catastrophic 80-bit loss of relative security.

In contrast, our construction yields true families of curves, covering ∼ p
isomorphism classes over Fp2 . This gives us a vastly higher probability of finding
prime (or almost-prime)-order curves over practically important fields.

Comparison with GLS. Like GLS, we construct curves over Fp2 equipped with
an inseparable endomorphism. While these curves are not defined over the prime
field, the fact that the extension degree is only 2 means that Weil descent attacks
offer no advantage when solving DLP instances (see [11, §9]). And like GLS, our
families offer around p distinct isomorphism classes of curves, making it easy to
find secure group orders when p is fixed.

4 The scarcity of useful GLV curves is easily explained: efficient separable endomor-
phisms have extremely small degree (so that the dense defining polynomials can be
evaluated quickly). But the degree of the endomorphism is the norm of the corre-
sponding element of the CM-order; and to have non-integers of very small norm,
the CM-order must have a tiny discriminant. Up to twists, the number of elliptic
curves with CM discriminant D is the Kronecker class number h(D), which is in
O(
√
D). Of course, for the tiny values of D in question, the asymptotics of h(D)

are irrelevant; for the six D corresponding to endomorphisms of degree at most 3,
we have h(D) = 1, so there is only one j-invariant. For D = −4 (corresponding to
j = 1728) there are two or four twists over Fp; for D = −3 (corresponding to j = 0)
we have two or six, and otherwise we have only two. In particular, there are at most
18 distinct curves over Fp with a non-integer endomorphism of degree at most 3.



But unlike GLS, our curves have j-invariants in Fp2 : they are not isomorphic
to or twists of subfield curves. This allows us to find twist-secure curves, which
are resistant to the Fouque–Lercier–Réal–Valette fault attack [9]. As we will see
in §9, our construction reduces to GLS in the degenerate case d = 1 (that is,

where φ̃ is an isomorphism). Our construction is therefore a sort of generalized
GLS—though it is not the higher-degree generalization anticipated by Galbraith,
Lin, and Scott themselves, which composes the sub-Frobenius with a non-rational
separable isogeny and its dual isogeny (cf. [11, Theorem 1]).

In §4, we prove that we can immediately obtain scalar decompositions of the
same bitlength as GLS for curves over the same fields: the decompositions pro-
duced by Proposition 2 are identical to the GLS decompositions of [11, Lemma 2]
when d = 1, up to sign. For this reason, we do not provide extensive imple-
mentation details in this paper: while our endomorphisms cost a few more Fq-
operations to evaluate than the GLS endomorphism, this evaluation is typically
carried out only once per scalar multiplication. This evaluation is the only dif-
ference between a GLS scalar multiplication and one of ours: the subsequent
multiexponentiations have exactly the same length as in GLS, and the underly-
ing curve and field arithmetic is the same, too.

2 Notation and Conventions

Throughout, we work over fields of characteristic not 2 or 3. Let

E : y2 = x3 + a4x+ a6

be an elliptic curve over such a field K.

Galois conjugates. For every automorphism σ of K, we define the conjugate
curve

σE : y2 = x3 + σa4x+ σa6.

If φ : E → E1 is an isogeny, then we obtain a conjugate isogeny σφ : σE → σE1
by applying σ to the defining equations of φ, E , and E1.

Quadratic twists. For every λ 6= 0 in K, we define a twisting isomorphism

δ(λ) : E −→ Eλ : y2 = x3 + λ4a4x+ λ6a6

by
δ(λ) : (x, y) 7−→ (λ2x, λ3y) .

The twist Eλ is defined over K(λ2), and δ(λ) is defined over K(λ).5

For every K-endomorphism ψ of E , there is a twisted K(λ2)-endomorphism

ψλ := δ(λ)ψδ(λ−1)

of Eλ. Observe that δ(λ1)δ(λ2) = δ(λ1λ2) for any λ1, λ2 in K, and δ(−1) = [−1].
Also, σ(Eλ) = (σE)

σλ for all automorphisms σ of K.

5 Throughout, conjugates are marked by left-superscripts, twists by right-superscripts.



If µ is a nonsquare in K, then E
√
µ is a quadratic twist of E . If K = Fq,

then E
√
µ1 and E

√
µ2 are Fq-isomorphic for all nonsquares µ1, µ2 in Fq (the

isomorphism δ(
√
µ1/µ2) is defined over Fq because µ1/µ2 must be a square).

When the choice of nonsquare is not important, E ′ denotes the quadratic twist.
Similarly, if ψ is an Fq-endomorphism of E , then ψ′ denotes the corresponding
twisted Fq-endomorphism of E ′.
The trace. If K = Fq, then πE denotes the q-power Frobenius endomorphism
of E . Recall that the characteristic polynomial of πE has the form

χE(T ) = T 2 − tr(E)T + q, with |tr(E)| ≤ 2
√
q .

The trace tr(E) of E satisfies #E(Fq) = q + 1− tr(E) and tr(E ′) = −tr(E).

p-th powering. We write (p) for the p-th powering automorphism of Fp. Note

that (p) is almost trivial to compute on Fp2 = Fp(
√
∆), because (p)(a+ b

√
∆) =

a− b
√
∆ for all a and b in Fp.

3 Quadratic Q-curves and Their Reductions

Suppose Ẽ/Q(
√
∆) is a quadratic Q-curve of prime degree d (as in Definition 1),

where ∆ is a discriminant prime to d, and let φ̃ : Ẽ → σẼ be the corresponding
d-isogeny. In general, φ̃ is only defined over a quadratic extension Q(

√
∆, γ) of

Q(
√
∆). We can compute γ from ∆ and ker φ̃ using [13, Proposition 3.1], but

after a suitable twist we can always reduce to the case where γ =
√
±d (see [13,

remark after Lemma 3.2]). The families of explicit Q-curves of degree d that
we treat below have their isogenies defined over Q(

√
∆,
√
−d); so to simplify

matters, from now on we will

Assume φ̃ is defined over Q(
√
∆,
√
−d).

Let p be a prime of good reduction for Ẽ that is inert in Q(
√
∆) and prime

to d. If O∆ is the ring of integers of Q(
√
∆), then

Fp2 = O∆/(p) = Fp(
√
∆) .

Looking at the Galois groups of our fields, we have a series of injections

〈(p)〉 = Gal(Fp(
√
∆)/Fp) ↪→ Gal(Q(

√
∆)/Q) ↪→ Gal(Q(

√
∆,
√
−d)/Q) .

The image of (p) in Gal(Q(
√
∆)/Q) is σ, because p is inert in Q(

√
∆). When

extending σ to an automorphism of Q(
√
∆,
√
−d), we extend it to be the image

of (p): that is,

σ
(
α+ β

√
∆+ γ

√
−d+ δ

√
−d∆

)
= α−β

√
∆+

(
−d
/
p
) (
γ
√
−d− δ

√
−d∆

)
(1)

for all α, β, γ, and δ ∈ Q. (Recall that the Legendre symbol
(
n
/
p
)

is 1 if n is a
square mod p, −1 if n is not a square mod p, and 0 if p divides n.)



Now let E/Fp2 be the reduction modulo p of Ẽ . The curve σẼ reduces to (p)E ,

while the d-isogeny φ̃ : Ẽ → σẼ reduces to a d-isogeny φ : E → (p)E over Fp2 .

Applying σ to φ̃, we obtain a second d-isogeny σφ̃ : σẼ → Ẽ travelling in the
opposite direction, which reduces mod p to a conjugate isogeny (p)φ : (p)E → E
over Fp2 . Composing σφ̃ with φ̃ yields endomorphisms σφ̃ ◦ φ̃ of Ẽ and φ̃ ◦ σφ̃
of σẼ , each of degree d2. But (by definition) Ẽ and σẼ do not have CM, so all
of their endomorphisms are integer multiplications; and since the only integer
multiplications of degree d2 are [d] and [−d], we conclude that

σφ̃ ◦ φ̃ = [εpd]Ẽ and φ̃ ◦ σφ̃ = [εpd]σ Ẽ , where εp ∈ {±1} .

Technically, σφ̃ and (p)φ are—up to sign—the dual isogenies of φ̃ and φ, respec-
tively. The sign εp depends on p (as well as on φ̃): if τ is the extension of σ

to Q(
√
∆,
√
−d) that is not the image of (p), then τ φ̃ ◦ φ̃ = [−εpd]Ẽ . Reducing

modulo p, we see that

(p)φ ◦ φ = [εpd]E and φ ◦ (p)φ = [εpd](p)E .

The map (x, y) 7→ (xp, yp) defines p-isogenies

π0 : (p)E −→ E and (p)π0 : E −→ (p)E .

Clearly, (p)π0 ◦π0 (resp. π0 ◦ (p)π0) is the p2-power Frobenius endomorphism of E
(resp. (p)E). Composing π0 with φ yields a degree-pd endomorphism

ψ := π0 ◦ φ ∈ End(E) .

If d is very small—say, less than 10—then ψ is efficient because φ is defined by
polynomials of degree about d, and π0 acts as a simple conjugation on coordinates
in Fp2 , as in Eq. (1). (The efficiency of ψ depends primarily on its separable
degree, d, and not on the inseparable part p.)

We also obtain an endomorphism ψ′ on the quadratic twist E ′ of E . Indeed,
if E ′ = E

√
µ, then ψ′ = ψ

√
µ, and ψ′ is defined over Fp2 .

Proposition 1. With the notation above:

ψ2 = [εpd]πE and (ψ′)2 = [−εpd]πE′ .

There exists an integer r satisfying dr2 = 2p+ εptr(E) such that

ψ = 1
r (πE + εpp) and ψ′ = −1

r (πE′ − εpp) .

The characteristic polynomial of both ψ and ψ′ is

Pψ(T ) = Pψ′(T ) = T 2 − εprdT + dp .



Proof. Clearly π0 ◦ φ = (p)φ ◦ (p)π0, so

ψ2 = π0φπ0φ = π0φ
(p)φ(p)π0 = π0[εpd](p)π0 = [εpd]π0

(p)π0 = [εpd]πE .

Choosing a nonsquare µ in Fp2 , so E ′ = E
√
µ and ψ′ = ψ

√
µ, we find

(ψ′)2 = δ(µ
1
2 )ψ2δ(µ−

1
2 ) = δ(µ

1
2 )[εpd]πEδ(µ

− 1
2 )

= δ(µ
1
2 (1−p

2))[εpd]πE′ = δ(−1)[εpd]πE′ = [−εpd]πE′ .

Using π2
E − tr(E)πE + p2 = 0 and π2

E′ + tr(E)πE′ + p2 = 0, we verify that the
expressions for ψ and ψ′ give the two square roots of εpdπE in Q(πE), and−εpdπE′
in Q(π′E), and that the claimed characteristic polynomial is satisfied. ut

Now we just need a source of quadratic Q-curves of small degree. Elkies [7]
shows that all Q-curves correspond to rational points on certain modular curves:
Let X∗(d) be the quotient of the modular curve X0(d) by all of its Atkin–Lehner
involutions, let K be a quadratic field, and let σ be the involution of K over Q.
If e is a point in X∗(d)(Q) and E is a preimage of e in X0(d)(K) \ X0(d)(Q),

then E parametrizes (up to Q-isomorphism) a d-isogeny φ̃ : Ẽ → σẼ over K.
Luckily enough, for very small d, the curves X0(d) and X∗(d) have genus

zero—so not only do we get plenty of rational points on X∗(d), we get a whole
one-parameter family of Q-curves of degree d. Hasegawa gives explicit universal
curves for d = 2, 3, and 7 in [15, Theorem 2.2]: for each squarefree integer ∆ 6= 1,
every Q-curve of degree d = 2, 3, 7 over Q(

√
∆) is Q-isomorphic to a rational

specialization of one of these families. Hasegawa’s curves for d = 2 and 3 (Ẽ2,∆,s
in §5 and Ẽ3,∆,s in §6) suffice not only to illustrate our ideas, but also to give
useful practical examples.

4 Short Scalar Decompositions

Before moving on to concrete constructions, we will show that the endomor-
phisms developed in §3 yield short scalar decompositions. Proposition 2 below
gives explicit formulæ for producing decompositions of at most dlog2 pe bits.

Suppose G is a cyclic subgroup of E(Fp2) such that ψ(G) = G; let N = #G.
Proposition 1 shows that ψ acts as a square root of εpd on G: its eigenvalue is

λψ ≡ (1 + εpp)/r (mod N) . (2)

We want to compute a decomposition

m = a+ bλψ (mod N)

so as to efficiently compute

[m]P = [a]P + [bλψ]P = [a]P + [b]ψ(P ) .



The decomposition of m is not unique: far from it. The set of all decompo-
sitions (a, b) of m is the coset (m, 0) + L, where

L := 〈(N, 0), (−λψ, 1)〉 ⊂ Z2

is the lattice of decompositions of 0 (that is, of (a, b) such that a + bλψ ≡ 0
(mod N)).

We want to find a decomposition where a and b have minimal bitlength: that
is, where dlog2 ‖(a, b)‖∞e is as small as possible. The standard technique is to
(pre)-compute a short basis of L, then use Babai rounding [1] to transform each
scalar m into a short decomposition (a, b). The following lemma outlines this
process; for further detail and analysis, see [12, §4] and [10, §18.2].

Lemma 1. Let e1, e2 be linearly independent vectors in L. Let m be an integer,
and set

(a, b) := (m, 0)− bαee1 − bβee2 ,

where (α, β) is the (unique) solution in Q2 to the linear system (m, 0) = αe1 +
βe2. Then

m ≡ a+ λψb (mod N) and ‖(a, b)‖∞ ≤ max (‖e1‖∞, ‖e2‖∞) .

Proof. This is just [12, Lemma 2] (under the infinity norm). ut
We see that better decompositions of m correspond to shorter bases for L.

If |λψ| is not unusually small, then we can compute a basis for L of size O(
√
N)

using the Gauss reduction or Euclidean algorithms (cf. [12, §4] and [10, §17.1.1]).6

The basis depends only on N and λψ, so it can be precomputed.
In our case, lattice reduction is unnecessary: we can immediately write down

two linearly independent vectors in L that are “short enough”, and thus give
explicit formulae for (a, b) in terms of m. These decompositions have length
dlog2 pe, which is near-optimal in cryptographic contexts: if N ∼ #E(Fp2) ∼ p2,
then log2 p ∼ 1

2 log2N .

Proposition 2. With the notation above: given an integer m, let

a = m−
⌊
m(1 + εpp)/#E(Fp2)

⌉
(1 + εpp) +

⌊
mr/#E(Fp2)

⌉
εpdr and

b =
⌊
m(1 + εpp)/#E(Fp2)

⌉
r −

⌊
mr/#E(Fp2)

⌉
(1 + εpp) .

Then, assuming d� p and m 6≡ 0 (mod N), we have

m ≡ a+ bλψ (mod N) and dlog2 ‖(a, b)‖∞e ≤ dlog2 pe .

Proof. Eq. (2) yields rλψ ≡ 1 + εpp (mod N) and rεpd ≡ (1 + εpp)λψ (mod N),
so e1 = (1+εpp,−r) and e2 = (−εpdr, 1+εpp) are in L (they generate a sublattice
of determinant #E(Fp2)). Applying Lemma 1 with α = m(1+εpp)/#E(Fp2) and
β = mr/#E(Fp2), we see that m ≡ a + bλψ (mod N) and ‖(a, b)‖∞ ≤ ‖e2‖∞.
But d|r| ≤ 2

√
dp (since |tr(E)| ≤ 2p) and d� p, so ‖e2‖∞ = p+ εp. The result

follows on taking logs, and noting that dlog2(p± 1)e ≤ dlog2 pe (since p > 3). ut
6 General bounds on the constant hidden by the O(·) are derived in [26], but they are

suboptimal for our endomorphisms in cryptographic contexts, where Proposition 2
gives better results.



5 Endomorphisms from Quadratic Q-curves of Degree 2

Let∆ be a squarefree integer. Hasegawa defines a one-parameter family of elliptic
curves over Q(

√
∆) by

Ẽ2,∆,s : y2 = x3 − 6(5− 3s
√
∆)x+ 8(7− 9s

√
∆) , (3)

where s is a free parameter taking values in Q [15, Theorem 2.2]. The discrimi-

nant of Ẽ2,∆,s is 29 ·36(1−s2∆)(1 +s
√
∆), so Ẽ2,∆,s has good reduction at every

p > 3 with
(
∆
/
p
)

= −1, for every s in Q.

The curve Ẽ2,∆,s has a rational 2-torsion point (4, 0), which generates the

kernel of a 2-isogeny φ̃2,∆,s : Ẽ2,∆,s → σẼ2,∆,s defined over Q(
√
∆,
√
−2). We

construct φ̃2,∆,s explicitly: Vélu’s formulae [30] define the (normalized) quotient

Ẽ2,∆,s → Ẽ2,∆,s/〈(4, 0)〉, and then the isomorphism Ẽ2,∆,s/〈(4, 0)〉 → σẼ2,∆,s
is the quadratic twist δ(1/

√
−2). Composing, we obtain an expression for the

isogeny as a rational map:

φ̃2,∆,t : (x, y) 7−→

(
−x
2
− 9(1 + s

√
∆)

x− 4
,

y√
−2

(
−1

2
+

9(1 + s
√
∆)

(x− 4)2

))
.

Conjugating and composing, we see that σφ̃2,∆,tφ̃2,∆,t = [2] if σ(
√
−2) = −

√
−2,

and [−2] if σ(
√
−2) =

√
−2: that is, the sign function for φ̃2,∆,t is

εp = −
(
−2
/
p
)

=

{
+1 if p ≡ 5, 7 (mod 8) ,

−1 if p ≡ 1, 3 (mod 8) .
(4)

Theorem 1. Let p > 3 be a prime, and define εp as in Eq. (4). Let ∆ be a

nonsquare7 in Fp, so Fp2 = Fp(
√
∆). For each s in Fp, let

C2,∆(s) := 9(1 + s
√
∆)

and let E2,∆,s be the elliptic curve over Fp2 defined by

E2,∆,s : y2 = x3 + 2(C2,∆(s)− 24)x− 8(C2,∆(s)− 16) .

Then E2,∆,s has an efficient Fp2-endomorphism of degree 2p defined by

ψ2,∆,s : (x, y) 7−→
(
−xp

2
− C2,∆(s)p

xp − 4
,
yp√
−2

(
−1

2
+
C2,∆(s)p

(xp − 4)2

))
,

and there exists an integer r satisfying 2r2 = 2p+ εptr(E2,∆,s) such that

ψ2,∆,s =
1

r

(
πE2,∆,s + εpp

)
and ψ2

2,∆,s = [εp2]πE2,∆,s .

7 The choice of ∆ is (theoretically) irrelevant, since all quadratic extensions of Fp are
isomorphic. If ∆ and ∆′ are two nonsquares in Fp, then ∆/∆′ = a2 for some a in Fp,
so E2,∆,t and E2,∆′,at are identical. We are therefore free to choose any practically
convenient value for ∆, such as one permitting faster arithmetic in Fp(

√
∆).



The twisted endomorphism ψ′2,∆,s on E ′2,∆,s satisfies ψ′2,∆,s = −1
r (πE′2,∆,s − εpp)

and (ψ′2,∆,s)
2 = [−εp2]πE′2,∆,s . The characteristic polynomial of ψ2,∆,s and ψ′2,∆,s

is P2,∆,s(T ) = T 2 − εprT + 2p.

Proof. Reduce Ẽ2,∆,s and φ̃2,∆,s mod p and compose with π0 as in §3, then apply
Proposition 1 using Eq. (4). ut

If G ⊂ E2,∆,s(Fp2) is a cyclic subgroup of order N such that ψ2,∆,s(G) = G,
then the eigenvalue of ψ2,∆,s on G is

λ2,∆,s =
1

r
(1 + εpp) ≡ ±

√
εp2 (mod N) .

Applying Proposition 2, we can decompose scalar multiplications in G as [m]P =
[a]P + [b]ψ2,∆,s(P ) where a and b have at most dlog2 pe bits.

Proposition 3. Theorem 1 yields at least p−3 non-isomorphic curves over Fp2
(and at least 2p−6 non-Fp2-isomorphic curves, if we count the quadratic twists)
equipped with efficient endomorphisms.

Proof. It suffices to show that the j-invariant j
(
E2,∆,s

)
= 26(5−3s

√
∆)3

(1−s2∆)(1+s
√
∆)

takes

at least p− 3 distinct values in Fp2 as s ranges over Fp. If j(E2,∆,s1) = j(E2,∆,s2)

with s1 6= s2, then s1 and s2 satisfy F0(s1, s2) − 2
√
∆F1(s1, s2) = 0, where

F1(s1, s2) = (s1 + s2)(63∆s1s2 − 65) and F0(s1, s2) = (∆s1s2 + 1)(81∆s1s2 −
175)+49∆(s1+s2)2 are polynomials over Fp. If s1 and s2 are in Fp, then we must
have F0(s1, s2) = F1(s1, s2) = 0. Solving the simultaneous equations, discarding
the solutions that can never be in Fp, and dividing by two (since (s1, s2) and
(s2, s1) represent the same collision) yields at most 3 collisions j(E2,∆,s1) =
j(E2,∆,s2) with s1 6= s2 in Fp. ut

We observe that σẼ2,∆,s = Ẽ2,∆,−s, so we do not gain any more isomorphism
classes in Proposition 3 by including the codomain curves.

6 Endomorphisms from Quadratic Q-curves of Degree 3

Let ∆ be a squarefree discriminant; Hasegawa defines a one-parameter family of
elliptic curves over Q(

√
∆) by

Ẽ3,∆,s : y2 = x3 − 3
(
5 + 4s

√
∆
)
x+ 2

(
2s2∆+ 14s

√
∆+ 11

)
, (5)

where s is a free parameter taking values in Q. As for the curves in §5, the curve
Ẽ3,∆,s has good reduction at every inert p > 3 for every s in Q.

The curve Ẽ3,∆,s has a subgroup of order 3 defined by the polynomial x− 3,

consisting of 0 and (3,±2(1− s
√
∆)). Exactly as in §5, taking the Vélu quotient

and twisting by 1/
√
−3 yields an explicit 3-isogeny φ̃3,∆,s : Ẽ3,∆,s → σẼ3,∆,s; its

sign function is

εp = −
(
−3
/
p
)

=

{
+1 if p ≡ 2 (mod 3) ,

−1 if p ≡ 1 (mod 3) .
(6)



Theorem 2. Let p > 3 be a prime, and define εp as in Eq. (6). Let ∆ be a

nonsquare8 in Fp, so Fp2 = Fp(
√
∆). For each s in Fp, let

C3,∆(s) := 2(1 + s
√
∆)

and let E3,∆,s be the elliptic curve over Fp2 defined by

E3,∆,s : y2 = x3 − 3
(
2C3,∆(s) + 1

)
x+

(
C3,∆(s)2 + 10C3,∆(s)− 2

)
.

Then E3,∆,s has an efficient Fp2-endomorphism ψ3,∆,s of degree 3p, mapping
(x, y) to(
−x

p

3
− 4C3,∆(s)p

xp − 3
− 4C3,∆(s)2p

3(xp − 3)2
,
yp√
−3

(
−1

3
+

4C3,∆(s)p

(xp − 3)2
+

8C3,∆(s)2p

3(xp − 3)3

))
,

and there exists an integer r satisfying 3r2 = 2p+ εptr(E3,∆,s) such that

ψ2
3,∆,s = [εp3]πE3,∆,s and ψ3,∆,s =

1

r
(π + εpp) .

The twisted endomorphism ψ′3,∆,s on E ′3,∆,s satisfies (ψ′3,∆,s)
2 = [−εp3]πE′3,∆,s

and ψ′3,∆,s = (−πE′3,∆,s + εpp)/r. Both ψ3,∆,s and ψ′3,∆,s have characteristic

polynomial P3,∆,s(T ) = T 2 − εprT + 3p.

Proof. Reduce Ẽ3,∆,s and φ̃3,∆,s mod p, compose with π0 as in §3, and apply
Proposition 1 using Eq. (6). ut

Proposition 4. Theorem 2 yields at least p−8 non-isomorphic curves over Fp2
(and counting quadratic twists, at least 2p − 16 non-Fp2-isomorphic curves)
equipped with efficient endomorphisms.

Proof. The proof is exactly as for Proposition 3. ut

7 Cryptographic-sized Curves

We will now exhibit some curves with cryptographic parameter sizes, and se-
cure and twist-secure group orders. We computed the curve orders below using
Magma’s implementation of the Schoof–Elkies–Atkin algorithm [25, 19, 4].

First consider the degree-2 curves of §5. By definition, E2,∆,s and its quadratic
twist E ′2,∆,s have points of order 2 over Fp2 : they generate the kernels of our

endomorphisms. If p ≡ 2 (mod 3), then 2r2 = 2p + εptr(E) implies tr(E) 6≡
0 (mod 3), so when p ≡ 2 (mod 3) either p2 − tr(E) + 1 = #E2,∆,s(Fp2) or
p2 +tr(E)+1 = #E ′2,∆,s(Fp2) is divisible by 3. However, when p ≡ 1 (mod 3) we
can hope to find curves of order twice a prime whose twist also has order twice
a prime.

8 As in Theorem 1, the particular value of ∆ is theoretically irrelevant.



Example 1. Let p = 280 − 93 and ∆ = 2. For s = 4556, we find a twist-secure
curve: #E2,2,4556(Fp2) = 2N and #E ′2,2,4556(Fp2) = 2N ′ where

N = 730750818665451459101729015265709251634505119843 and

N ′ = 730750818665451459101730957248125446994932083047

are 159-bit primes. Proposition 2 lets us replace 160-bit scalar multiplications in
E2,2,4556(Fp2) and E ′2,2,4556(Fp2) with 80-bit multiexponentiations.

Now consider the degree-3 curves of §6. The order of E3,∆,s(Fp2) is always
divisible by 3: the kernel of ψ3,∆,s is generated by the rational point (3, C3,∆(s)).
However, on the quadratic twist, the nontrivial points in the kernel of ψ′3,∆,s are
not defined over Fp2 (they are conjugates), so E ′3,∆,s(Fp2) can have prime order.

Example 2. Let p = 2127− 1; then ∆ = −1 is a nonsquare in Fp. The parameter
value s = 122912611041315220011572494331480107107 yields

#E3,−1,s(Fp2) = 3 ·N and #E ′3,−1,s(Fp2) = N ′ ,

where N is a 253-bit prime and N ′ is a 254-bit prime. Using Proposition 2,
any scalar multiplication in E3,−1,s(Fp2) or E ′3,−1,s(Fp2) can be computed via a
127-bit multiexponentiation.

Example 3. Let p = 2255 − 19; then ∆ = −2 is a nonsquare in Fp. Taking

s = 52960937784593362700485649923279446947410945689208862015782690291692803003486

yields #E3,−2,s(Fp2) = 3 ·N and #E3,−2,s(Fp2) = N ′, where N and N ′ are 509-
and 510-bit primes, respectively. Proposition 2 transforms any 510-bit scalar
multiplication in E3,−2,s(Fp2) or E ′2,−2,s(Fp2) into a 255-bit multiexponentiation.

8 Alternative Models: Montgomery, Twisted Edwards,
and Doche–Icart–Kohel

Montgomery models. The curve E2,∆,s has a Montgomery model over Fp2 if and
only if 2C2,∆(s) is a square in Fp2 (by [22, Proposition 1]): in that case, setting

B2,∆(s) :=
√

2C2,∆(s) and A2,∆(s) = 12/B2,∆(s) ,

the birational mapping (x, y) 7→ (X/Z, Y/Z) =
(
(x− 4)/B2,∆(s), y/B2,∆(s)2

)
takes us from E2,∆,s to the projective Montgomery model

EM2,∆,s : B2,∆(s)Y 2Z = X
(
X2 +A2,∆(s)XZ + Z2

)
. (7)

(If 2C2,∆(s) is not a square, then EM2,∆,s is Fp2-isomorphic to the quadratic twist
E ′2,∆,s.) These models offer a particularly efficient arithmetic, where we use only



the X and Z coordinates [20]. The endomorphism is defined (on the X and Z
coordinates) by

ψ2,∆,s : (X : Z) 7−→ (X2p +A2,∆(s)pXpZp + Z2p : −2B2,∆(s)1−pXpZp) .

Twisted Edwards models. Every Montgomery model corresponds to a twisted
Edwards model (and vice versa) [2, 16]. Let

a2(s) = (A2,∆(s) + 2)/B2,∆(s) and d2(s) = (A2,∆(s)− 2)/B2,∆(s) ;

then with u = X/Z and v = Y/Z, the birational maps

(u, v) 7→ (x1, x2) =

(
u

v
,
u− 1

u+ 1

)
, (x1, x2) 7→ (u, v) =

(
1 + x2
1− x2

,
1 + x2

x1(1− x2)

)
take us between the Montgomery model of Eq. (7) and the twisted Edwards
model

ETE
2,∆,s : a2(s)x21 + x22 = 1 + d2(s)x21x

2
2 .

Doche–Icart–Kohel models. Doubling-oriented Doche–Icart–Kohel models of el-
liptic curves are defined by equations of the form

y2 = x(x2 +Dx+ 16D) .

These curves have a rational 2-isogeny φ with kernel 〈(0, 0)〉, and φ and its dual
isogeny φ† are both in a special form that allows us to double more quickly by
using the decomposition [2] = φ†φ (see [6, §3.1] for details).

Our curves E2,∆,s come equipped with a rational 2-isogeny, so it is natural
to try putting them in Doche–Icart–Kohel form. The isomorphism

α : (x, y) 7−→ (u, v) =
(
µ2(x+ 4), µ3y

)
with µ = 4

√
6/C2,∆(s)

takes us from E2,∆,s into a doubling-oriented Doche–Icart–Kohel model

EDIK
2,∆,s : v2 = u

(
u2 +D2,∆(s)u+ 16D2,∆(s)

)
,

where D2,∆(s) = 27/(1+s
√
∆). While EDIK

2,∆,s is defined over Fp2 , the isomorphism

is only defined over Fp2(
√

1 + s
√
∆); so if 1 + s

√
∆ is not a square in Fp2 then

EDIK
2,∆,s is Fp2-isomorphic to E ′2,∆,s. The endomorphism ψDIK

2,∆,s := αψ2,∆,sα
−1 is

Fp-isomorphic to the Doche–Icart–Kohel isogeny (they have the same kernel).
Similarly, we can exploit the rational 3-isogeny on E3,∆,s for Doche–Icart–

Kohel tripling (see [6, §3.2]). Let a3,∆(s) = 9/C3,∆(s) and b3,∆(s) = a3,∆(s)−1/2;
then the isomorphism (x, y) 7→ (u, v) =

(
a3,∆(s)(x/3− 1), b3,∆(s)3y

)
takes us

from E3,∆,s to the tripling-oriented Doche–Icart-Kohel model

EDIK
3,∆,s : v2 = u3 + 3a3,∆(s)(u+ 1)2 .



9 Degree One: GLS as a Degenerate Case

Returning to the framework of §3, suppose Ẽ is a curve defined over Q and
base-extended to Q(

√
D): then Ẽ = σẼ , and we can apply the construction of §3

taking φ̃ : Ẽ → σẼ to be the identity map. Reducing modulo an inert prime p,
the endomorphism ψ is nothing but π0 (which is an endomorphism, since E is
a subfield curve). We have ψ2 = π2

0 = πE , so the eigenvalue of ψ is ±1 on
cryptographic subgroups of E(Fp2). Clearly, this endomorphism is of no use to
us for scalar decompositions.

However, looking at the quadratic twist E ′, the twisted endomorphism ψ′

satisfies (ψ′)2 = −πE′ ; the eigenvalue of ψ′ on cryptographic subgroups is a
square root of −1. We have recovered the Galbraith–Lin–Scott endomorphism
(cf. [11, Theorem 2]).

More generally, suppose φ̃ : Ẽ → σẼ is a Q-isomorphism: that is, an isogeny
of degree 1. If Ẽ does not have CM, then σφ̃ = εpφ̃

−1, so ψ2 = [εp]πE with

εp = ±1. This situation is isomorphic to GLS. In fact, Ẽ ∼= σẼ implies j(Ẽ) =

j(σẼ) = σj(Ẽ); so j(Ẽ) is in Q, and Ẽ is isomorphic to (or a quadratic twist of)
a curve defined over Q. We note that in the case d = 1, we have r = ±t0 in
Proposition 1 where t0 is the trace of π0, and the basis constructed in the proof
of Proposition 2 is (up to sign) the same as the basis of [11, Lemma 3].

While E ′(Fp2) may have prime order, E(Fp2) cannot: the points fixed by π0
form a subgroup of order p+1−t0, where t20−2p = tr(E) (the complementary sub-
group, where π0 has eigenvalue −1, has order p+ 1+ t0). We see that the largest
prime divisor of #E(Fp2) can be no larger than O(p). If we are in a position to
apply the Fouque–Lercier–Réal–Valette fault attack [9]—for example, if Mont-
gomery ladders are used for scalar multiplication and multiexponentiation—then
we can solve DLP instances in E ′(Fp2) in O(p1/2) group operations (in the worst

case!). While O(p1/2) is still exponentially difficult, it falls far short of the ideal
O(p) for general curves over Fp2 . GLS curves should therefore be avoided where
the fault attack can be put into practice.

10 CM Specializations

By definition, Q-curves do not have CM. However, some exceptional fibres of
the families Ẽ2,∆,s and Ẽ3,∆,s do have CM. There are only finitely many such

curves over any given Q(
√
∆); following Quer ([23, §5] and [24, §6]), we give

an exhaustive list of the corresponding parameter values in Tables 1 and 2. In
each table, if ∆ is a squarefree discriminant and there exists s in Q such that
1/(s2∆− 1) takes the first value in a column, then the curve Ẽd,∆,s/Q(

√
∆) has

CM by the quadratic order of discriminant D specified by the second value.
Suppose we have chosen d, ∆, and s such that Ẽd,∆,s is a CM-curve. If the dis-

criminant of the associated CM order is small, then we can compute an explicit
endomorphism of Ẽd,∆,s of small degree, which then yields an efficient endomor-
phism ρ (say) on the reduction Ed,∆,s modulo p (as in the GLV construction). If



Table 1. CM specializations of Ẽ2,∆,s (cf. Quer [23, §5])

1/(s2∆− 1) 4 −9 48 −81 324 −2401 −9801 25920 777924 −96059601

D −20 −24 −36 −40 −52 −72 −88 −100 −148 −232

Table 2. CM specializations of Ẽ3,∆,s (cf. Quer [24, §6])

1/(s2∆− 1) 1/4 −2 −27/2 16 −125/4 80 1024 3024 250000

D −15 −24 −48 −51 −60 −75 −123 −147 −267

p is inert, then we also have the degree-dp endomorphism ψ constructed above.
Combinations of ρ and ψ may be used for four-dimensional scalar decomposi-
tions; for example, the endomorphisms [1], ρ, ψ, ρψ can be used as a basis for the
4-dimensional decomposition techniques elaborated by Longa and Sica in [18].

In fact, reducing these CM fibres modulo a well-chosen p turns out to form a
simple alternative construction for some of the curves investigated by Guillevic

and Ionica in [14]: the twisted curve E
√
3

2,∆,s coincides with the curve E1,c of [14,

§2] when c = s
√
∆, while E3,∆,s is the curve E2,c of [14, §2] when c = −2s

√
∆.

The almost-prime-order 254-bit curve of [14, Example 1] corresponds to the
reduction modulo p of a twist of one of the curves in the column of Table 1
with 1/(s2∆− 1) = 4. This curve has an efficient CM endomorphism (a square
root of [−5]) as well as an endomorphism of degree 2p; these endomorphisms are
combined to compute short 4-dimensional scalar decompositions.

From the point of view of scalar multiplication, using CM fibres of these
families allows us to pass from 2-dimensional to 4-dimensional scalar decompo-
sitions, with a consequent speedup. However, in restricting to CM fibres we also
re-impose the chief drawback of GLV on ourselves: that is, as explained in the
introduction, we cannot hope to find secure (and twist-secure) curves over Fp2
when p is fixed. In practice, this means that the 4-dimensional scalar decom-
position speedup comes at the cost of suboptimal field arithmetic; we pay for
shorter loop lengths with comparatively slower group operations.

We must therefore make a choice between 4-dimensional decompositions and
fast underlying field arithmetic. In this article we have chosen the latter option,
so we will not treat CM curves in depth here (we refer the reader to [14] instead).

11 Higher Degrees

We conclude with some brief remarks on Q-curves of other degrees. Hasegawa
provides a universal curve for d = 7 (and any ∆) in [15, Theorem 2.2], and our
results for d = 2 and d = 3 carry over to d = 7 in an identical fashion, though



the endomorphism is slightly less efficient in this case (its defining polynomials
are sextic).

For d = 5, Hasegawa notes that it is impossible to give a universal Q-curve for
every discriminant ∆: there exists a quadratic Q-curve of degree 5 over Q(

√
∆)

if and only if
(
5
/
pi
)

= 1 for every prime pi 6= 5 dividing ∆ [15, Proposition
2.3]. But this is no problem when reducing modulo p, if we are prepared to give
up total freedom in choosing ∆: we can take ∆ = −11 for p ≡ 1 (mod 4) and
∆ = −1 for p ≡ 3 (mod 4), and then use the curves defined in [15, Table 6]. The
generic curves here do not have rational torsion points; it is therefore possible
for the reductions and their twists to have prime order.

Composite degree Q-curves (such as d = 6 and 10) promise more interesting
results. Degrees greater than 10 yield less efficient endomorphisms, and so are
less interesting from a practical point of view.
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