
Succinct Non-Interactive Zero Knowledge
Arguments from Span Programs and Linear

Error-Correcting Codes

Helger Lipmaa

Institute of Computer Science, University of Tartu, Estonia

Abstract. Gennaro, Gentry, Parno and Raykova proposed an efficient
NIZK argument for Circuit-SAT, based on non-standard tools like con-
scientious and quadratic span programs. We propose a new linear PCP
for the Circuit-SAT, based on a combination of standard span pro-
grams (that verify the correctness of every individual gate) and high-
distance linear error-correcting codes (that check the consistency of wire
assignments). This allows us to simplify all steps of the argument, which
results in significantly improved efficiency. We then construct an NIZK
Circuit-SAT argument based on existing techniques.

Keywords: Circuit-SAT, linear error-correcting codes, linear PCP, non-
interactive zero knowledge, polynomial algebra, quadratic span program,
span program, verifiable computation

1 Introduction

By using non-interactive zero knowledge (NIZK, [3]), the prover can create a
proof π, s.t. any verifier can later, given access to a common reference string,
the statement, and π, verify the truth of the intended statement without learning
any side information. Since a single proof might get transferred and verified many
times, one often requires sublinear communication and verifier’s computation.
(Unless stated explicitly, we measure the communication in group elements, and
the computation in group operations.) While succinct NIZK proofs are impor-
tant in many cryptographic applications, there are only a few different generic
methodologies to construct them efficiently.

Groth [16] proposed the first sublinear-communication NIZK argument
(computationally-sound proof, [4]) for an NP-complete language. His construc-
tion was improved by Lipmaa [19]. Their Circuit-SAT argument consists of ef-
ficient arguments for more primitive tasks like Hadamard sum, Hadamard prod-
uct and permutation. The Circuit-SAT arguments of [16,19] have constant
communication, quadratic prover’s computation, and linear verifier’s computa-
tion in s (the circuit size). In [16], the CRS length is Θ(s2), and in [19], it is

Θ(r−1
3 (s)) = o(s22

√
2 log2 s), where r3(N) = Ω(N log1/4N/22

√
2 log2N) [9] is the

cardinality of the largest progression-free subset of [N]. Because of the quadratic
prover’s computation, the arguments of Groth and Lipmaa are not applicable in

2 Helger Lipmaa

practice, unless s is really small. Very recently, Fauzi, Lipmaa and Zhang [10] con-
structed arguments for NP-complete languages Set Partition, Subset Sum and
Decision Knapsack with the CRS length Θ(r−1

3 (s)) and prover’s computation
Θ(r−1

3 (s) log s). They did not propose a similar argument for the Circuit-SAT.

Gennaro, Gentry, Parno and Raykova [15] constructed a Circuit-SAT NIZK
argument based on efficient (quadratic) span programs. Their argument con-
sists of two steps. The first step is an information-theoretic reduction from the
Circuit-SAT to QSP-SAT [2], the satisfaction problem of quadratic span pro-
grams (QSPs, [15]). The second step consists of cryptographic tools that allow
one to succinctly verify the satisfiability of a QSP.

Intuitively, a span program consists of vectors ui for i > 0, a target vector
u0, and a labelling of every vector ui by a literal xι = x1

ι or x̄ι = x0
ι or by ⊥. A

span program accepts an inputw iff u0 belongs to the span of the vectors ui that
are labelled by literals xwιι (or by ⊥) that are consistent with the assignment
w = (wι) to the input x = (xι). I.e., u0 =

∑
i>0 aiui, where ai 6= 0 if the

labelling of ui is not consistent with w. (See Sect. 3 for more background.)

Briefly, the first step constructs span programs (which satisfy a non-standard
conscientiousness property) that verify the correct evaluation of every individual
gate. Conscientiousness means that the span program accepts only if all inputs
to the span program were actually used (in the case of Circuit-SAT, this means
that the prover has set some value to every input and output wire of the gate,
and that exactly the same value can be uniquely extracted from the argument).
The gate checkers are aggregated to obtain a single large conscientious span
program that verifies the operation of every individual gate in parallel. They then
construct a weak wire checker that verifies consistency, i.e., that all individual
gate checkers work on an unequivocally defined set of wire values. The weak wire
checker of [15] guarantees consistency only if all gate checkers are conscientious.
They define quadratic span programs (QSPs, see [15]) and construct a QSP that
implements both the aggregate gate checker and the weak wire checker.

In the second step, Gennaro et al. construct a non-adaptively sound NIZK
argument that verifies the QSP, with a linear CRS length, Θ(s log2 s) prover’s
computation, and linear-in-input size verifier’s computation. It can be made
adaptively sound by using universal circuits [25], see [15] for more information.

The construction of [15] is quite monolithic and while containing many new
ideas, they are not sufficiently clarified in [15]. Bitansky et al [2] simplified the
second step of the construction from [15], by first constructing a linear PCP [2],
then a linear interactive proof, and finally a NIZK argument for Circuit-SAT.
Their more modular approach makes the ideas behind the second step more
accessible. Unfortunately, [2] is slightly less efficient than [15], and uses a (pre-
sumably) stronger security assumption.

We improve the construction of [15] in several aspects. Some improvements
are conceptual (e.g., we provide cleaner definitions, that allow us to offer more
efficient constructions) and some of the improvements are technical (with special
emphasis on concrete efficiency). More precisely, we modularize — thus making
its ideas more clear and accessible — the first step of [15] to construct a suc-

Succinct NIZK Arguments from Span Programs and Linear ECCs 3

cinct non-adaptive 3-query linear PCP [2] for Circuit-SAT. Then we use the
techniques of [2], together with several new techniques, to modularize the second
step of [15]. Importantly and contrarily to [2], by doing so we both improve on
the efficiency of both steps and relax the security assumptions. We outline our
construction below, and sketch the differences compared to [15].

The main body of the current work consists of a cleaner and more efficient
reduction from Circuit-SAT to QSP-SAT (another NP-complete language,
defined later). Given a circuit C, we construct an efficient circuit checker, a QSP
that is satisfiable iff C is satisfiable.

To verify whether circuit C accepts an input, we use a small standard (i.e.,
not necessarily conscientious) span program to verify an individual gate. For
example, a NAND checker is a span program that accepts if the gate implements
NAND correctly. We construct efficient span programs for gate checkers, needed
for the Circuit-SAT argument. E.g., we construct a size 6 and dimension 3
NAND checker; this can be compared to size 12 and dimension 9 conscientious
NAND checker from [15]. By using the AND composition of span programs, we
construct a single large span program that verifies every gate in parallel.

Unfortunately, simple AND composition of the gate checkers is not secure,
because it allows “double-assignments”. More precisely, some vectors of several
adjacent gate checkers are labelled by the variable corresponding to the same
wire. While every individual checker might be locally correct, one checker could
work with value 0 while another checker could work with value 1 assigned to the
same wire. Clearly, such bad cases should be detected. More precisely, it must
be possible to verify efficiently that the coefficients ai that were used in the gate
checkers adjacent to some wire are consistent with a unique wire value.

We solve this issue as follows. Let Code be an efficient high-distance linear
[N,K,D] error-correcting code with D > N/2. For any wire η, consider all
vectors from adjacent gate checkers that correspond to the claimed value xη
of this wire. Some of those vectors (say ui) are labelled by the positive literal
xη and some (say vi) by the negative literal x̄η. The individual gate checker’s
acceptance “fixes” certain coefficients ai (that are used with ui) and bi (that are
used with vi) for all adjacent gate checkers. Roughly stating, for consistency of
wire η one requires that either all ai are zero (then unequivocally xη = 0), or
all bi are zero (then unequivocally xη = 1). We verify that this is the case by
applying Code separately to the vectors a and b. The high-distance property of
Code guarantees that if a and b are not consistent, then there exists a coefficient
i, s.t. Code(a)i · Code(b)i 6= 0.

Motivated by this construction, we redefine QSPs [15] as follows. Let ◦ denote
the pointwise product of two vectors. A QSP (that consists of two target vectors
u0 = (u0j) ∈ Fd and v0 = (v0j) ∈ Fd and two m × d matrices U = (uij) and
V = (vij) for i ∈ [m] and j ∈ [d]) over some field F accepts an input iff for some
vectors a and b, consistent with this input,

(a> · U − u0) ◦ (b> · V − v0) = 0 . (1)

Clearly, Eq. (1) is equivalent to the requirement that for all j ∈ [d],
(
∑m
i=1 aiuij − u0j) · (

∑m
i=1 bivij − v0j) = 0. Since F is an integral domain, the

4 Helger Lipmaa

latter holds iff for all j ∈ [d], either
∑m
i=1 aiuij = u0j or

∑m
i=1 bivij = v0j ,

which can be seen as an element-wise OR of two span programs. This can be
compared to the element-wise AND of two span programs that accepts iff for
all j ∈ [d], both

∑m
i=1 aiuij = u0j and

∑m
i=1 bivij = v0j iff two span programs

accept simultaneously, i.e.,
∑
aiui = u0 and

∑
bivi = v0. On the other hand,

it is not known how to implement an element-wise OR composition of two span
programs as a small span program. QSPs add an element-wise OR to an element-
wise AND, and thus it is not surprising that they increase the expressiveness of
span programs significantly.

The above linear error-correcting code based construction implements a QSP
(a wire checker), with U and V being related to the generating matrices of the
code. (See Def. 2.) Basically, the wire checker verifies the consistency of vectors
a and b with the input.

We use the systematic Reed-Solomon code, since it is a maximum distance
separable code with optimal support (i.e., it has the minimal possible number
of non-zero elements in its generating matrix). It also results in the smallest
degree of certain polynomials in the full NIZK argument. While no connection
to error-correcting codes was made in [15], their wire checker can be seen as
a suboptimal (overdefined) variant of the systematic Reed-Solomon code. Due
to the better theoretical foundation, the new wire checker is more efficient, and
optimal in its size and support. Moreover, one can use any efficient high-distance
(D > N/2) linear error-correcting code, e.g., a near-MDS code [7]. Whether this
would result in any improvement in the computational complexity of the final
NIZK argument is an interesting open question.

Moreover, the wire checker of [15] is consistent (and thus their NIZK argu-
ment is sound) only if the gate checkers are conscientious. The new wire checker
does not have this requirement. This not only enables one to use more efficient
gate checkers but also potentially enables one to use known techniques (combina-
torial characterization of span program size [11], semidefinite programming [24])
to construct more efficient checkers for larger unit computations.

We construct an aggregate wire checker by applying an AND composition
to wire checkers, and then construct a single QSP (the circuit checker) that
implements both the aggregate gate checker and the aggregate wire checker. At
this point, the approach of the current paper pays off also conceptually: one can
compare the description of the circuit checker (called a canonical QSP) in [15,
Sect. 2.4], that takes about 3/4 of a page, with the description from the current
paper (Def. 3) that takes only a couple of lines.

We prove that the circuit checker (the QSP) is satisfiable iff the original
circuit is satisfiable. Since the efficiency of the new circuit checker depends on
the fan-out of the circuit, we use the classical result from [17] about constructing
low fan-out circuits that allows us to optimize the worst case size and other
parameters, especially support, of the circuit checker.

To summarize, the new circuit checker consists of two elements. First, an
aggregate gate checker (a span program) that verifies that every individual gate
is executed correctly on their local variables. Second, an aggregate wire checker

Succinct NIZK Arguments from Span Programs and Linear ECCs 5

(a QSP, based on a high-distance linear error-correcting code) that verifies that
individual gates are executed on the consistent assignments to the variables. Im-
portantly (for the computational complexity of the NIZK argument), the circuit
checker is a composition of small (quadratic) span programs, and has only a
constant number of non-zero elements per vector.

This finishes the description of the Circuit-SAT to QSP-SAT reduction.
To construct an efficient NIZK argument for Circuit-SAT, we need several ex-
tra steps. Based on the new circuit checker, we first construct a non-adaptive
2-query linear PCP([2], see Sect. 8 for a definition) for Circuit-SAT with linear
communication. This seems to be the first known non-trivial 2-query linear PCP.
Moreover, we use a more elaborate extraction technique which, differently from
the one from [15], also works with non-conscientious gate checkers. This improves
the efficiency of the linear PCP. In particular, the computation of the decision
functionality of the linear PCP is dominated by a small constant number of field
operations. The same functionality required Θ(n) operations in [15,2]. Interest-
ingly, this construction by itself is purely linear-algebraic, by using concepts like
span programs, linear error-correcting codes, and linear PCPs.

To improve the communication of the linear PCP, as in [15], we define poly-
nomial span programs and polynomial QSPs. Differently from [15] (that only
gave the polynomial definition), our main definition of QSPs — as sketched
above — is linear-algebraic, and we then use a transformation to get a QSP to a
“polynomial” form. We feel the linear-algebraic definition is much more natural,
and describes the essence of QSPs better. Based on the polynomial redefinition
of QSPs and the Schwartz-Zippel lemma, we construct a succinct non-adaptive
3-query linear PCP for Circuit-SAT. The prover’s computation in this linear
PCP is Θ(s log s), where s is the size of the circuit, and the verifier’s computation
is again Θ(1). In [15], the corresponding parameters were Θ(s log2 s) and Θ(n).
Thus, the new 3-query linear PCP is more efficient and conceptually simpler
than the previously known 3-query linear PCPs [2].

By using techniques of [2], we convert the linear PCP to a succinct non-
adaptive linear interactive proof, and then to a succinct non-adaptive NIZK
argument. (See the full version, [20].) As in the case of the argument from [15],
the latter can be made adaptive by using universal circuits [25].

Since the reduction from linear PCP to NIZK from [2] loses some efficiency
and relies on a stronger security assumption than stated in [15], we also describe
a direct NIZK argument with a (relatively complex) soundness proof that fol-
lows the outline of the soundness proof from [15]. The main difference in the
proof is that we rephrase certain proof techniques from [15] in the language of
multilinear universal hash functions. This might be an interesting contribution
by itself. Apart from a more clear proof, this results in a slightly weaker security
assumption. (See the full version [20] of this paper.)

The new non-adaptive Circuit-SAT argument has CRS length Θ(s),
prover’s computation Θ(s log s), verifier’s computation Θ(1), and communica-
tion Θ(1). In all cases, the efficiency has been improved as compared to the
(QSP-based) argument from [15]. Moreover, all additional optimization tech-

6 Helger Lipmaa

niques applicable to the argument from [15] (e.g., the use of collision-resistant
hash functions) are also applicable to the new argument.

We hope that by using our techniques, one can construct efficient NIZK argu-
ments for other languages, like the techniques of [19] were used in [5] to construct
an efficient range argument, and in [21] to construct an efficient shuffle. QSPs
have more applications than just in the NIZK construction. We only mention
that one can construct a related zap [8], and a related (public or designated-
verifier) succinct non-interactive argument of knowledge (SNARK, see [22,6]) by
using the techniques of [1,14].

It is also natural to apply our techniques to verifiable computation [13]:
instead of gates, one can talk about small (but possibly much larger) compu-
tational units, and instead of wires, about the values transferred between the
computational units. Since here one potentially deals with much larger span
programs than in the case of the Circuit-SAT argument, the use of standard
(non-conscientious) span programs is especially beneficial. Since in the case of
verifiable computation, the computed function F (and thus also the circuit C) is
known while generating the CRS, one can use the non-adaptively sound version
of the new argument [23].

Gennaro et al. [15] also proposed a NIZK argument that is based on quadratic
arithmetic programs (QAP-s), a novel computational model for arithmetic cir-
cuits. QAP-based arguments are often significantly more efficient than QSP-
based arguments, see [15,23]. We can use our techniques to improve on QAP-
based arguments, but here the improvements are less significant and thus we
have omitted full discussion. (See the full version.) Briefly, differently from [15],
we give an (again, more clean) linear-algebraic definition of QAP-s. This enables
us to present a short alternative proof of the result from [15] that any arithmetic
circuit with n inputs and s multiplication gates can be computed by a QAP of
size n+ s and dimension s. We remark that the QAP-based construction results
in a 4-query linear PCP, while the QSP-based construction from the current
paper results in a 3-query linear PCP.

Due to the lack of space, many proofs are given only in the full version [20].

2 Preliminaries: Circuits and Circuit-SAT

For a fixed circuit C, let s = |C| be its size (the number of gates), se its number
of wires, and n be its input size. Every gate ι computes some unary or binary
function fι : {0, 1}≤2 → {0, 1}. We denote the set of gates of C by [s] and the set
of wires of C by [se]. Assume that the first n wires, η ∈ [n], start from n input
gates ι ∈ [n]. Every wire η ∈ [se] corresponds to a formal variable xη in a natural
way. This variable obtains an assignment wη, η ∈ [se], computed by C from the
input assignment (wi)

n
i=1. Denote w := (wη)seη=1. We write C(w) := C((wi)

n
i=1).

For a gate ι of C, let deg+(ι) be its fan-out, and let deg−(ι) be its fan-in. Let
deg(ι) = deg−(ι) + deg+(ι).

Let poly(x) := xO(1). Let R = {(C,w)} be an efficiently computable binary
relation with |w| = poly(|C|) and s := |C| = poly(|w|). Here, C is a statement,

Succinct NIZK Arguments from Span Programs and Linear ECCs 7

and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be the related NP-language.
For fixed s, we have a relation Rs and a language Ls.

The language Circuit-SAT consists of all (strings representing) circuits that
produce a single bit of output and that have a satisfying assignment. That is,
a string representing a circuit C is in Circuit-SAT if there exists w ∈ {0, 1}se
such that C(w) = 1.

As before, we assume that s = |C| is the number of gates, not the bitlength
needed to represent C. Thus, Ls = {C : |C| = s ∧ (∃w ∈ {0, 1}se , C(w) = 1)}
and Rs = {(C,w) : |C| = s ∧w ∈ {0, 1}se ∧ C(w) = 1}.

Let G = (V,E) be the hypergraph of the circuit C. The vertices of G cor-
respond to the gates of C. A hyperedge η connects the input gate of some wire
to (potentially many) output gates of the same wire. In C, an edge η (except
input edges, that have φ adjacent vertices) has φ+ 1 adjacent vertices, where φ
is the fan-out of η’s designated input gate. Every vertex of G can only be the
starting gate of one hyperedge and the final gate of two hyperedges (since we
only consider unary and binary gate operations). Thus, |E(G)| ≤ 2(|V (G)|−n).

3 Preliminaries: Span Programs

Let F = Zq be a finite field of size q � 2, where q is a prime. However, most
of the results can be generalized to arbitrary fields. By default, vectors like u
denote row vectors. For matrix U , let ui be its ith row vector. For an m × d
matrix U over F, let span(U) := {

∑m
i=1 aiui : a ∈ Fm}. Let xι, ι ∈ [n], be formal

variables. Denote the positive literals xι by x1
ι and the negative literals x̄ι by x0

ι .

A span program [18] P = (u0, U, %) over a field F is a linear-algebraic com-
putation model. It consists of a non-zero target vector u0 ∈ Fd, an m×d matrix
U over F, and a labelling % : [m] → {xι, x̄ι : ι ∈ [n]} ∪ {⊥} of U ’s rows by
one of 2n literals or by ⊥. Let Uw be the submatrix of U consisting of those
rows whose labels are satisfied by the assignment w ∈ {0, 1}n, that is, belong
to {xwιι : ι ∈ [n]} ∪ {⊥}. P computes a function f , if for all w ∈ {0, 1}n:
u0 ∈ span(Uw) if and only if f(w) = 1.

Let %−1
w = {i ∈ [m] : %(i) ∈ {xwιι : ι ∈ [n]} ∪ {⊥}} be the set of rows

whose labels are satisfied by the assignment w. The size, size(P), of P is m. The
dimension, sdim(P), is equal to d. P has support supp(P), if all vectors u ∈ U
have altogether supp(P) non-zero elements. Clearly, u0 can be replaced by an
arbitrary non-zero vector; one obtains the corresponding new span program (of
the same size and dimension, but possibly different support) by applying a basis
change matrix. Let D(xι) := maxj∈{0,1} |%−1(xjι)|, for each ι ∈ [n] and j ∈ {0, 1},
be the maximum number of vectors that have the same label (ι, j); this parameter
is needed when we construct wire checkers.

Complex span programs are constructed by using simple span programs and
their composition rules. The Boolean function NAND ∧̄ is defined as ∧̄(x, y) =
x∧̄y = ¬(x ∧ y). Span programs for AND, NAND, OR, XOR, and equality
of two variables x and y are as in Fig. 1. Given span programs P0 = SP (f0)

8 Helger Lipmaa

 1 1

x 1 0
y 0 1

 1

x̄ 1
ȳ 1

 1

x 1
y 1

0 1

x 1 1
y 1 1
x̄ −1 0
ȳ −1 0

0 1

x 1 1
y −1 0
x̄ −1 0
ȳ 1 1

1 1 1

x 1 0 0
y 0 1 0
z 1 1 0
x̄ 0 0 1
ȳ 0 0 1
z̄ 0 0 1

1 1 1

x 0 1 0
y1 0 0 1
y2 1 0 0
x̄ 1 0 0
ȳ1 0 1 0
ȳ2 0 0 1

Fig. 1. From left to right: standard span programs SP (∧), SP (∧̄), SP (∨), SP (⊕),
SP (=) and new span programs SP (c∧̄) and SP (cY)

an P1 = SP (f1) for functions f0 and f1, one uses well-known AND and OR
compositions to construct span programs for f0 ∧ f1 and f0 ∨ f1.

A span program (u0, U, %) is conscientious [15] if a linear combination associ-
ated to a satisfying assignment must use at least one vector associated to either
xι or x̄ι for every ι ∈ [n]. Clearly, SP (∧), SP (⊕) and SP (=) are conscientious,
while SP (∨) is not.

4 Efficient Gate Checkers

A gate checker for a gate that implements f : {0, 1}n → {0, 1} is a function
cf : {0, 1}n+1 → {0, 1}, s.t. cf (x, y) = 1 iff f(x) = y. The NAND-checker
c∧̄ : {0, 1}3 → {0, 1} outputs 1 iff z = x∧̄y.

Lemma 1. SP (c∧̄) on Fig. 1 is a span program for c∧̄. It has size 6, dimension
3, and support 7.

As seen from the proof , given an accepting assignment (x, y, z), one can
efficiently find small values ai ∈ [−2, 1] such that

∑
i≥1 aiui = u0. How-

ever, a satisfying input to SP (c∧̄) does not fix the values ai unequivocally: if
(x, y, z) = (0, 0, 1) (that is, a1 = a2 = a6 = 0), then one can choose an arbitrary
a4 and set a5 ← 1− a4. Since one can set a4 = 0, SP (c∧̄) is not conscientious.

Given SP (c∧̄), one can construct a size 6 and dimension 3 span program for
the AND-checker c∧(x, y, z) := (x ∧ y)⊕ z̄ by interchanging in SP (c∧̄) the rows
labelled by z and z̄. Similarly, one can construct a size 6 and dimension 3 span
program for the OR-checker c∨(x, y, z) := (x̄∧ ȳ)⊕z by interchanging in SP (c∧̄)
the rows labelled by x and x̄, and the rows labelled by y and ȳ. NOT-checker
[x 6= y] = x ⊕ y is just the XOR function, and thus one can construct a size 4
and dimension 2 span program for the NOT-checker function.

We need the dummy gates y ← x, and corresponding dummy checkers
c=(x, y) = [x = y]. Clearly, the dummy checker function is just to the equal-
ity test, and thus has a conscientious span program of size 4 and dimension 2.
Moreover, if x = y ∈ {0, 1}, then a1 = a2 = x, while a3 = a4 = 1− x.

We need the fork-checker cY(x, y1, y2) for the fork gate that computes y1 ← x,
y2 ← x. In the CNF form, cY(x, y1, y2) = (x̄∨y2)∧(x∨ ȳ1)∧(y1∨ ȳ2). Since every
literal is mentioned once in the CNF, we can use AND and OR compositions to

Succinct NIZK Arguments from Span Programs and Linear ECCs 9

derive the span program on Fig. 1. It has size 6, dimension 3, and support 6.
We also need a 1-to-φ fork-checker that has 1 input x and φ outputs yι, with
yι ← x. The φ-fork checker is cφY(x,y) = (x ∧ y1 ∧ · · · ∧ yφ) ∨ (x̄ ∧ ȳ1 ∧ · · · ∧ ȳφ).

Clearly, cφY has CNF cφY(x,y) = (x∨ ȳ1)∧ (y1 ∨ ȳ2)∧ · · · ∧ (yφ−1 ∨ ȳφ)∧ (yφ ∨ x̄).
From this we construct a span program exactly as in the case φ = 2, with size
2(φ + 1) and dimension φ + 1. It has only one vector labelled with every xι/y
or its negation, thus D(x) = D(yι) = 1 for all ι. To compute the support, note

that SP ∗(cφY) has two 1-entries in every column, and one in every row. Thus,

supp(SP (cφY)) =
∑φ+1
i=1 2 = 2φ+ 2.

5 Aggregate Gate Checker

Given a circuit that consists of NAND, AND, OR, XOR, and NOT gates, we
combine the individual gate checkers by using the AND composition rule. In
addition, for the wire checker of Sect. 6.2 (and thus also the final NIZK argument)
to be more efficient, all gates of the circuit C need to have a small fan-out. In [15],
the authors designed a circuit of size 3 · |C| that implements the functionality
of C but only has fan-out 2 except for a specially introduced dummy input.
Their aggregate gate checker (AGC) has size 36 · |C| and dimension 27 · |C|.
By using the techniques of [17] (that replaces every high fan-out gate with an
inverse binary tree of fork gates, and then gives a more precise upper bound of
the resulting circuit size), we prove a more precise result. We do not introduce
the dummy input but we still add a dummy gate for every input. We then say
that we deal with a circuit with dummy gates.

Since we are interested in circuit satisfiability, the X-checker (where say X =
NAND) of the circuit’s output gate simplifies to the X gate (e.g., NAND checker
simplifies to NAND). Since X has a more efficient span program than X checker,
then for the sake of simplicity, we will not mention this any more.

Let C be a circuit. The AGC function agc of a circuit C is a function agc :

{0, 1}
∑|C|
ι=1 deg(ι) → {0, 1}|C|. I If cι is the gate checker of the ιth gate and xι has

dimension deg(ι), then agc(x1, . . . ,x|C|) = (c1(x1), . . . , c|C|(x|C|)).
As in [15], we construct the AGC by AND-composition of the gate checkers of

the individual gate checkers. Since for an individual gate checker and a satisfying
assignment, one can compute the corresponding coefficient vector a in constant
time, the aggregate coefficient vector a can be computed from w in time Θ(s).
Let a← c2q(w) be the corresponding algorithm.

Theorem 1. Let f : {0, 1}n → {0, 1} be the function computed by a fan-in ≤ 2
circuit C with s = |C| NAND, AND, OR, XOR, and NOT gates. There exists
a fan-in ≤ 2 and fan-out ≤ φ circuit with dummy gates Cbnd for f , that has
the same s gates as C, n additional dummy gates, and up to (s − 2n)/(φ − 1)
additional φ-fork gates. Let φ∗ := 1/(φ − 1). The AGC agc(Cbnd) has a span
program P with size(P) ≤ (8 + 4φ∗) s − (6 + 8φ∗)n, sdim(P) ≤ (4 + 2φ∗) s −
(3 + 4φ∗)n, and supp(P) ≤ (9 + 4φ∗) s − (5 + 8φ∗)n. If φ = 3, then size(P) ≤
10s− 10n, sdim(P) ≤ 5s− 5n, and supp(P) ≤ 11s− 9n.

10 Helger Lipmaa

The upper bounds of this theorem are worst-case, and often imprecise. The
optimal choice of φ depends on the parameter that we are going to optimize.
The AGC has optimal size, dimension and support if φ is large (preferably even
if the fan-out bounding procedure of Thm. 1 is not applied at all). The support
of the aggregate wire checker (see Sect. 6.3) is minimized if φ = 2. To balance
the parameters, we concentrate on the case φ = 3.

6 Quadratic Span Programs and Wire Checker

6.1 Quadratic Span Programs

An intuitive definition of quadratic span programs (QSPs) was given in the in-
troduction and will not be repeated here. We now give a formal (linear-algebraic)
definition of QSPs. In Sect. 9, we will provide an equivalent polynomial redefi-
nition of QSPs that is the same as the definition given in [15].

Definition 1. A quadratic span program (QSP) Q = (u0,v0, U, V, %) over a
field F consists of two target vectors u0,v0 ∈ Fd, two m× d matrices U and V ,
and a common labelling % : [m]→ {xι, x̄ι : ι ∈ [n]}∪{⊥} of the rows of U and V .
Q accepts an input w ∈ {0, 1}n iff there exist (a, b) ∈ Fm×Fm, with ai = 0 = bi
for all i 6∈ %−1

w , such that (a> · V −u0) ◦ (b> ·W − v0) = 0, where x ◦ y denotes
the pointwise (Hadamard) product of x and y. Q computes a function f if for
all w ∈ {0, 1}n: f(w) = 1 iff Q accepts w.

We remark that one can have u0 = v0 = 0. (See Def. 2, for example.)
The size, size(Q), of Q is m. The dimension, sdim(Q), of Q is d. The support,

supp(Q), of Q is equal to the sum of the supports (that is, the number of non-
zero elements) of all vectors ui and vi. Clearly, one can compose QSPs by using
the AND and OR composition rules of span programs, though one has to take
care to apply the same transformation to both U and V simultaneously.

The language QSP-SAT consists of all (strings representing) QSPs that pro-
duce a single bit of output and that have a satisfying assignment. I.e., a string
representing an n-input QSP Q is in QSP-SAT if there exists w ∈ {0, 1}n, such
that Q(w) = 1. The witness of this fact is (a, b), and we write Q(a, b) = Q(w).

6.2 Wire Checker

Gate checkers verify that every individual gate is followed correctly, i.e., that its
output wire obtains a value which is consistent with its input wires. One also
requires inter-gate (wire) consistency that ensures that adjacent gate checkers do
not make double assignments to any of the wires. Here, we consider hyperwires
that have one input gate and potentially many output gates. Following [15], for
this purpose we construct a wire checker. We first construct a wire checker for
every single wire (that verifies that the variables involved in the span programs
of the vertices that are adjacent to this concrete wire do not get inconsistent
assignments), and then aggregate them by using an AND composition.

Succinct NIZK Arguments from Span Programs and Linear ECCs 11

For a (hyper)wire η, let N(η) be the set of η’s adjacent gates. For gate ι ∈
N(η), let Pι = (u

(ι)
0 , U (ι), %(ι)) be its gate checker. For every ι ∈ N(η), one of the

input or output variables of Pι (that we denote by xι:η) corresponds to xη. Recall
that for a local variable y of a span program Pι, D(y) = max(|%−1(y)|, |%−1(ȳ)|).
We assume |%−1(y)| = |%−1(y)|, by adding zero vectors to the span programs if
necessary. Let D(η) :=

∑
ι∈N(η)D(xι:η) be the number of the times the rows of

adjacent gate checkers have been labelled by a local copy of x1
η.

We define the ηth wire checker between the rows of adjacent gates i ∈ N(η)
in the AGC that are labelled either by the local variable xi:η or its negation x̄i:η,
i.e., between 2D(η) rows {i : ∃k ∈ N(η) s.t. %(k)(i) = xk:η ∨ %(k)(i) = x̄k:η}. Let

ψ be the natural labelling of the wire checkers, with ψ(i) = xjη iff %(k)(i) = xjk:η

for some k ∈ N(η).

Example 1. Consider a (hyper)wire η that has one input gate ι1 and two output
gates ι2 and ι3. Assume that all three gates implement NAND, and thus they
have gate checkers SP (c∧̄) from Fig. 1. Assume that xη = zι1 = xι2 = yι3 . Thus,
the ηth wire checker is defined between the rows 3 and 6 of the checker for ι1,
rows 1 and 4 of the checker for ι2, and rows 2 and 5 of the checker for ι3. Thus,
D(η) = D(zι1) +D(xι2) +D(yι3) = 6. ut

We first define the wire checker for a wire η and thus for one variable xη. In
Sect. 6.3, we will give a definition and a construction in the aggregate case.

For y = (y1, . . . , y2D)>, let y(1) := (y1, . . . , yD)> and y(2) :=
(yD+1, . . . , y2D)>. Fix a wire η. Assume that D = D(η). Let Q =
(u0,v0, U, V, ψ), with m× d matrices U and V , be a QSP. Q is a wire checker,
if for any a, b ∈ F2D, Eq. (1) holds iff a and b are consistent bit assignments in
the following sense: for both k ∈ {1, 2}, either a(k) = 0 or b(k) = 0.

We propose a new wire checker that is based on the properties of high-
distance linear error-correcting codes, see the introduction for some intuition.
To obtain optimal efficiency, we choose particular codes (namely, systematic
Reed-Solomon codes).

Definition 2. Let D∗ := 2D − 1. Let RSD be the D × D∗ generator matrix
of the [D∗, D,D]q systematic Reed-Solomon code. Let m = 2D and d = 2D∗.

Let U = UD =

(
RSD 0D×D∗

0D×D∗ RSD

)
and V = VD =

(
0D×D∗ RSD
RSD 0D×D∗

)
. Let Qwc :=

(0,0, U, V, ψ), where ψ−1(x̄η) = [1, D] and ψ−1(xη) = [D + 1, 2D].

We informally define the degree sdeg(Q) of a (quadratic) span program Q as
the degree of the interpolating polynomial that obtains the value uij at point j.
See Sect. 9 for a formal definition.

Lemma 2. Qwc is a wire checker of size 2D, degree D+D∗ = 3D−1, dimension
2D∗ = 4D − 2, and support 4D2.

Proof. The claim about the parameters follows straightforwardly from the prop-
erties of the code. It is easy to see that if a and b are consistent bit as-
signments, then Qwc accepts. For example, if a(1) = b(2) = 0, then clearly

12 Helger Lipmaa

(a> · U)j =
∑m
i=1 aiuij = 0 for j ∈ [1, D∗] and (b> · V)j =

∑m
i=1 bivij = 0 for

j ∈ [D∗ + 1, 2D∗]. Thus, (a> · U)j · (b> · V)j = 0 for j ∈ [1, 2D∗], and thus
(a> · U − 0) ◦ (b> · V − 0) = 0.

Now, assume that a and b are inconsistent bit assignments, i.e., a(k) 6= 0
and b(k) 6= 0 for k ∈ {1, 2}. W.l.o.g., let k = 1. Since RSD is the generator ma-
trix of the systematic Reed-Solomon code, the vectors a> · RSD and b> · RSD
have at least D > D∗/2 non-zero coefficients among its first D∗ coefficients.
Thus, both

∑m
i=1 aiuij and

∑m
i=1 bivij are non-zero for more than D∗/2 dif-

ferent values j ∈ [D∗]. Hence, there exists a coefficient j ∈ [D∗], such that
(
∑m
i=1 aiuij)(

∑m
i=1 bivij) 6= 0. Thus, Qwc does not accept. ut

We chose a Reed-Solomon code since it is a maximum distance separable (MDS)
code and thus minimizes the number of columns in RSD. It also naturally mini-
mizes the degree of the wire checker. Moreover, RSD has D2 non-zero elements.
Clearly (and this is the reason we use a systematic code), D2 is also the smallest
support a generator matrix G of an [n = 2D − 1, k = D, d = D]q code can
have, since every row of G is a codeword and thus must have at least d non-zero
entries. Thus, G must have at least dD ≥ D2 non-zero entries, where the last
inequality is due to the singleton bound.

The (weak) wire checker of [15], while described by using a completely dif-
ferent terminology, can be seen as implementing an overdefined version (with
D∗ = 3D − 2) of the construction from Def. 2. The linear-algebraic reinterpre-
tation of QSPs together with the introducing of coding-theoretic terminology
allowed us to better exposit the essence of wire checkers. It also allowed us to
improve on the efficiency, and prove the optimality of the new construction.

A wire checker with U = V = RSD satisfies the even stronger security
requirement that Eq. (1) holds iff either a = 0 or b = 0. One may hope to pair
up literals corresponding to xη in the U part and literals corresponding to x̄η in
the V part. This is impossible in our application: when we aggregate the wire
checkers, we must use vectors labelled with both negative and positive literals in
the same part, U or V , and we cannot pair up columns from U and V that have
different indices. (See Def. 3.) The construction of Def. 2 allows one to do it,
though one has to use V that is a dual of U according to the following definition.

For a labelling ψ, we define the dual labelling ψdual, such that ψdual(i) = xjη iff

ψ(i) = x1−j
η . Let V = Udual be the same matrix as U , except that it has rows from

ψ−1(x̄η) and ψ−1(xη) switched, for every η. To simplify the notation, we will not
mention the dual labelling ψdual unless absolutely necessary, and we will assume
implicitly that (as it was in Def. 2) always V = Udual. Now, [15] constructed a
weak wire checker that guarantees consistency if all individual gate checkers are
conscientious. The new wire checker is both more efficient and more secure.

6.3 Aggregate Wire Checker

Let Q = (0,0, U, V, ψ), with two m×d matrices U and V = Udual, be a QSP. Q is
an aggregate wire checker (AWC) for circuit C, if Eq. (1) holds iff a, b ∈ Fm are

Succinct NIZK Arguments from Span Programs and Linear ECCs 13

consistent bit assignments in the following sense: for each η ∈ [se] and k ∈ {0, 1},
either ai = 0 for all i ∈ ψ−1(xkη) or bi = 0 for all i ∈ ψ−1(xkη).

We construct the AWC by AND-composing wire checkers for the individual
wires. The AWC first resets all vectors ui and vi to 0, and precomputes RSDη
for all relevant values Dη ≤ 2(φ + 1). After that, for every wire η, it sets the
entries in rows, labelled by either xη or x̄η, and columns corresponding to wire
η, according to the ηth wire checker.

We recall from Sect. 6.2 that for the wire checker of some wire to work,
the vectors in U and V of this wire checker must have dual orderings. To keep
notation simple, we will not mention this in what follows.

Theorem 2. Let φ ≥ 2. Assume that Cbnd is the circuit, obtained by the
transformation described in Thm. 1 (including the added dummy gates). For
η ∈ E(Cbnd), denote D∗η = 2Dη − 1. Let d ←

∑
D∗η. We obtain the AWC Qawc

by merging wire checkers for the individual wires η ∈ E(Cbnd) as described above.

Proof. Let m be the size of the AWC (see Thm. 3). If a, b are consistent assign-
ments, then their restrictions to ψ−1(x̄η) ∪ ψ−1(xη) are consistent assignments
of the ηth wire. For every η ∈ E(Cbnd), the ηth wire checker guarantees that
(
∑m
i=1 aiuij)(

∑m
i=1 bivij) = 0, for columns j corresponding to this wire, iff the bit

assignments of the ηth wire are consistent. Thus, (
∑m
i=1 aiuij)(

∑m
i=1 bivij) = 0

for j ∈ [1, d] iff the bit assignments of all wires are consistent. ut

Theorem 3. Let φ∗ := 1/(φ − 1). Assume C implements f : {0, 1}n → {0, 1},
and s = |C|. Then size(Qawc) ≤ (6 + 4φ∗)s − (2 + 8φ∗)n − 4, sdim(Qawc) ≤
(12 + 8φ∗)s − (6 + 16φ∗)n − 8, sdeg(Qawc) ≤ (9 + 6φ∗)s − (4 + 12φ∗)n − 6,
supp(Qawc) ≤ 4(φ+ 1)2((1 + φ∗)s+ (4− 2φ∗)n− 1). If φ = 3, then size(Qawc) ≤
8s − 6n − 4, sdim(Qawc) ≤ 16s − 14n − 8, sdeg(Qawc) ≤ 12s − 10n − 6, and
supp(Qawc) ≤ 72s− 68n− 36.

Clearly, other parameters but support are minimized when φ is large. If support
is not important, then one can dismiss the bounding fan-out step, and get size
2s, dimension 12s, and degree 9s.

Like in the case of wire checkers, [15] constructed a weak AWC that guaran-
tees the required “no double assignments” property only if the individual gate
checkers are conscientious. The new AWC does not have this restriction. The
size of the weak AWC from [15] is 24s and the degree of it is 76s.

7 Circuit Checker

Next, we combine the aggregate gate and wire checkers into a circuit checker, that
can be seen as a reduction from Circuit-SAT to QSP-SAT. Circuit checker was
called a canonical quadratic span program in [15]. Since [18] introduced canonical
span programs in a completely different context, we changed the terminology.

Let C be a circuit, and let Pw = (0,0, Uw, V w, ψ) be an AWC for Cbnd.
Let P g = (u0, U

g, %) be an AGC for Cbnd. Let P g
dual = (u0, V

g, %dual) be the

14 Helger Lipmaa

corresponding dual span program. As before, V g = Ug
dual and V w = Uw

dual, and
% and ψ are related as in Sect. 6.3. Let mg = size(Pw) = size(P g) = size(P g

dual).
Assume that Uw = {uw

1 , . . . ,u
w
mg
} and Ug = {ug

1, . . . ,u
g
mg
} (and similarly,

V w = {vw1 , . . . ,vwmg
} and V g) are ordered consistently (see Sect. 6.3).

Definition 3. For mg = size(P g), dg = sdim(P g) and dw = sdim(Pw), define
the circuit checker to be the QSP cΛ(C) = (u0,v0, U, V, %), where

u0

U
v0
V

 =

u0 1dg 0dw
Ug 0mg×dg U

w

1dg u0 0dw
0mg×dg V g V w

 . (2)

Here, U = (u1, . . . ,um)>, V = Udual = (v1, . . . ,vm)>.

Recall that we denoted by c2q that computed the witness a of the AGC from
w. We also denote (a, b)← c2q(w), given that b is the dual of a.

Theorem 4. Let w ∈ {0, 1}se . C(w) = 1 iff cΛ(C)(c2q(w)) = 1.

Proof. Clearly, cΛ(C)(a, b) = 1 iff P g, P g
dual and Pw all accept with the same

witness (a, b): (i) (
∑m
i=1 aiu

g
ij − u0j)(0− 1) = 0 for j ∈ [dg] iff

∑m
i=1 aiu

g
ij = u0j

for j ∈ [dg] iff
∑m
i=1 aiu

g
i = u0, (ii) (0 − 1)(

∑m
i=1 biv

g
ij − u0j) = 0 for j ∈

[dg] iff
∑m
i=1 biv

g
ij = u0j for j ∈ [dg] iff

∑m
i=1 biv

g
i = u0, (iii) (

∑m
i=1 aiu

w
ij) ·

(
∑m
i=1 biv

w
ij) = 0 for j ∈ [dw].

Assume C(w) = 1. By the construction of P g, there exists a ∈ Fm, with
ai = 0 for i 6∈ ψ−1

w , s.t. a> · Ug = u0. Let b← a, then also b> · V g = u0. Since
a and b are consistent bit assignments in the evaluation of C(w), Pw accepts.

Second, assume that there exist (a, b), s.t. cΛ(C)(a, b) = 1. Since Pw accepts,
there are no double assignments. That means, that for each η, for some (possibly
non-unique) bit wη ∈ {0, 1} and all i ∈ ψ−1(x

w̄η
η), ai = 0. Dually, bi = 0 for all

i ∈ ψ−1
dual(x

w̄η
η) (wη clearly has to be the same in both cases). Since this holds for

every wire, there exists an assignment w of input values, s.t. for all i 6∈ ψ−1
w and

j 6∈ (ψ−1
dual)w, ai = bj = 0. Moreover, C(w) = 1. ut

We will explain in the full version how the parameters of Q := cΛ(C) influence
the efficiency of the Circuit-SAT NIZK argument. For example, the support of
Q affects the prover’s computation, while its degree d affects the CRS length but
also the prover’s computation and the security assumption. More precisely, the
prover’s computation of the non-adaptive NIZK argument is Θ(supp(Q)+d·log d)
non-cryptographic operations and Θ(d) cryptographic operations. One should
choose φ such that the prover’s computation will be minimal. This value depends
on the constants in Θ. For simplicity, we will consider the case φ = 3.

Theorem 5. Let s = |C| and Q := cΛ(Cbnd). Let φ be the fanout of Cbnd, and
φ∗ = 1/(φ − 1). Then sdeg(Q) ≤ (17 + 10φ∗)s − (6 + 20φ∗)n − 6, supp(Q) ≤
(50+8φ(3+φ)+40φ∗)s+2(−13+8φ(3+2φ)−40φ∗)n−8(1+φ)2, and size(Q) ≤
size(Pw) + size(P g) ≤ 2(7 + 4φ∗)s − (8 + 16φ∗)n − 4. If φ = 3, then sdeg(Q) ≤
22s− 16n− 6, size(Q) ≤ 18s− 16n− 4, and supp(Q) ≤ 214s+ 366n− 128.

Succinct NIZK Arguments from Span Programs and Linear ECCs 15

The degree of the circuit checker from [15] is 130s and its size is 36s. Thus, even
when φ = 3, we have improved on their construction about 6 times degree-wise
and 2 times size-wise. The QSP-SAT witness (a, b) can be computed in linear
time Θ(s) by using the algorithm c2q.

8 Two-Query Linear PCP for Circuit-SAT

In Thm. 4, we presented a reduction from Circuit-SAT to QSP-SAT. That
is, we showed that if for some w, C(w) = 1, then one can efficiently construct a
witness (a, b) = c2q(w) such that cΛ(C)(a, b) = 1. In this section, we construct
a two-query non-adaptive linear PCP [2] for Circuit-SAT. In the rest of the
paper, we modify this to succinct three-query non-adaptive linear PCP, to a non-
adaptive linear interactive proof and finally to a non-adaptive non-interactive
zero knowledge argument. Here, non-adaptivity means that the query algorithm
(in the linear PCP and linear interactive proof) or the CRS generation algorithm
(in the NIZK argument) may depend on the statement C.

Let R = {(C,w)} be a binary relation, F be a finite field, Plpcp be a deter-
ministic prover algorithm and Vlpcp = (Qlpcp,Dlpcp), where Qlpcp is a probabilistic
query algorithm and Dlpcp is an oracle deterministic decision algorithm. The pair
(Plpcp,Vlpcp) is a non-adaptive k-query linear PCP [2] for R over F with query
length m if it satisfies the following conditions.
Syntax: on any input C and oracle π, the verifier Vlpcp works as follows.
Qlpcp(C) generates k queries q1, . . . , qk ∈ Fm to π, and a state informa-
tion st. Given k oracle answers z1 ← 〈π, q1〉, . . . , zk ← 〈π, qk〉, such that
z = (z1, . . . , zk), Dπlpcp(st;w) = Dlpcp(st, z;w) accepts or rejects.

Completeness: for every (C,w) ∈ R, the output of Plpcp(C,w) is a descrip-
tion of a linear function π : Fm → F such that Dπlpcp(st;w) accepts with
probability 1.

Knowledge: there exists a knowledge extractor Xlpcp, such that for every linear
function π∗ : Fm → F: if the probability that Vπ∗

lpcp(C) accepts is at least ε,

then Xπ∗

lpcp(C) outputs w such that (C,w) ∈ R.
(Plpcp,Vlpcp) has degree (dQ, dD), if Qlpcp (resp., Dlpcp) can be computed by an
arithmetic circuit of degree dQ (resp., dD).

We remark that in the following non-adaptive linear PCP, Dlpcp does not
depend on w.

Theorem 6. Let F be a field, and let C be a circuit with dummy gates. Let P(2)
lpcp

and V(2)
lpcp = (Q(2)

lpcp,D
(2)
lpcp) be as follows:

Q(2)
lpcp(C): Q ← cΛ(C); m ← size(Q); qu ← (ui,0m)mi=1; qv ← (0m,vi)

m
i=1;

q ← (qu, qv); st← (u0,v0); return (q, st);

P(2)
lpcp(C,w): Q← cΛ(C); (πu,πv) = (a, b)← c2q(w); return π = (πu,πv);

D(2)
lpcp(st, (zu, zv);w): if (zu − u0) ◦ (zv − v0) = 0 then return 1 else return 0;

(P(2)
lpcp,V

(2)
lpcp) is a non-adaptive 2-query linear PCP for Circuit-SAT with query

length 2md and knowledge error 0.

16 Helger Lipmaa

Proof. Completeness: Clearly, zu ← 〈π, qu〉 =
∑m
i=1 aiui, zv ← 〈π, qv〉 =∑m

i=1 bivi. Thus, zu − u0 = a> · U − u0 and zv − v0 = b> · V − v0, and the
circuit checker accepts.

Knowledge property: Due to the construction of Q(2)
lpcp, zu =

∑m
i=1 aiui,

and zv =
∑m
i=1 bivi. If D(2)

lpcp accepts, then by Thm. 4, the wire checker implies
that no wire η gets a double assignment. However, it may be the case that some
wire has no assignment. Nevertheless, on input (st, C) and access to the oracle
π∗, we will now extract a Circuit-SAT witness w = (wη)sei=η (i.e., the vector
of wire values) such that C(w) = 1.

First, the extractor obtains the whole linear function π∗ = (a, b), by querying
the oracle π∗ up to 2m times. We deduce w from π∗ as follows.

Let η be any wire of the circuit C. Since the wire checker accepts, the gate
checkers of its neighbouring gates do not assign multiple values to the wire η.
There are two different cases.

If η is an input wire to the circuit, then its output gate ι is a conscientious
dummy gate. Therefore, the value wη can be extracted from the local values of
ai corresponding to the gate ι.

Assume that η is an internal wire. Since all gates implement functions with
well-defined outputs, the gate checker of the input gate of η assigns some value
wη to this wire. Moreover, every output gate ι of η either assigns the same value
wη or does not assign any value. In the latter case, the output value of ι does not
depend on wη, and thus assigning wη to η is consistent with the output value
of ι. Therefore, also here the value wη can be extracted, but this time from the
local values of ai and bi corresponding to the input gate of η. ut

A simple corollary of this theorem is that the algorithm c2q is efficiently invert-
ible. Thus, the constructed NP-reduction from Circuit-SAT to QSP-SAT
preserves knowledge (i.e., it is a Levin reduction).

Note that the communication and computation can be optimized by defining
qu ← (ui)

m
i=1, qv ← (vi)

m
i=1, and computing say zu ← 〈πu, qu〉.

9 Succinct 3-Query Linear PCP from Polynomial QSPs

Since we are interested in succinct arguments, we need to be able to compress the
witness vectors a and b. As in [15], we will do it by using polynomial interpolation
to define polynomial QSPs. We employ the Schwartz-Zippel lemma to show that
the resulting succinct 3-query linear PCP has the knowledge property.

9.1 Polynomial Span Programs and QSPs

Instead of considering the target and row vectors of a span program or a QSP as
being members of the vector space Fd, interpret them as degree-(d− 1) polyno-
mials in F[X]. The map u→ û(X) is implemented by choosing d different field
elements (that are the same for all vectors u) rj ← F, and then defining a degree-
(≤ d− 1) polynomial û(X) via polynomial interpolation, so that û(rj) = uj for

Succinct NIZK Arguments from Span Programs and Linear ECCs 17

all j ∈ [d]. This maps the vectors ui of the original span program P to poly-
nomials ûi(X), and the target vector u0 to the polynomial û0(X). Finally, let

Z(X) :=
∏d
j=1(X − rj); this polynomial can be thought of as a mapping of the

all-zero vector 0 = (0, . . . , 0).
The choice of rj influences efficiency. If rj are arbitrary, then multipoint

evaluation and polynomial interpolation take time O(d log2 d) [12]. If d is a power
of 2 and rj = ωjd, where ωd is the dth primitive root of unity, then both operations
can be done in time O(d log d) by using Fast Fourier Transform [12]. In what
follows, d and rj are chosen as in the current paragraph.

Clearly, u0 is in the span of the vectors that belong to %−1
w iff u0 =∑

i∈%−1
w
aiui for some ai ∈ F. The latter is equivalent to the requirement

that Z(X) divides û(X) :=
∑
i∈%−1

w
aiûi(X) − û0(X). Really, u0 is the vec-

tor of evaluations of û0(X), and ui is the vector of evaluations of ûi(X). Thus,∑
aiui − u0 = 0 iff

∑
aiûi(X) − û0(X) evaluates to 0 at all rj , and hence is

divisible by Z(X).
A polynomial span program P = (û0, U, %) over a field F consists of a target

polynomial û0(X) ∈ F[X], a tuple U = (ûi(X))mi=1 of polynomials from F[X],
and a labelling % : [m]→ {xι, x̄ι : ι ∈ [n]} ∪ {⊥} of the polynomials from U . Let
Uw be the subset of U consisting of those polynomials whose labels are satisfied
by the assignment w ∈ {0, 1}n, that is, by {xwιι : ι ∈ [n]} ∪ {⊥}. The span
program P computes a function f , if for all w ∈ {0, 1}n: there exists a ∈ Fm
such that Z(X) | (û0(X) +

∑
u∈Uw

aiû(X)) (P accepts) iff f(w) = 1.
Alternatively, P accepts w ∈ {0, 1}n iff there exists a vector a ∈ Fm, with

ai = 0 for all i 6∈ %−1
w , s.t. Z(X) |

∑m
i=1 aiûi(X)− û0(X). The size of P is m and

the degree of P is degZ(X).

Definition 4. A polynomial QSP Q = (û0, v̂0, U, V, %) over a field F con-
sists of target polynomials û0(X) ∈ F[X] and v̂0(X) ∈ F[X], two tuples
U = (ûi(X))mi=1 and V = (v̂i(X))mi=1 of polynomials from F[X], and a la-
belling % : [m] → {xι, x̄ι : ι ∈ [n]} ∪ {⊥}. Q accepts an input w ∈ {0, 1}n
iff there exist two vectors a and b from Fm, with ai = 0 = bi for all i 6∈ %−1

w ,
s.t. Z(X) | (

∑m
i=1 aiûi(X)− û0(X)) (

∑m
i=1 biv̂i(X)− v̂0(X)). Q computes a

Boolean function f : {0, 1}n → {0, 1} if Q accepts w iff f(w) = 1.

The size of Q is m and the degree of Q is degZ(X). Keeping in mind the
reinterpretation of span programs, Def. 4 is clearly equivalent to Def. 1. (Also
here, V = Udual, with the dual operation defined appropriately.)

To get from the linear-algebraic interpretation to polynomial interpretation,
one has to do the following. Assume that the dimension of the QSP is d and that
the size is m. Let rj ← ωjd, j ∈ [d]. For i ∈ [m], interpolate the polynomial ûi(X)
(resp., v̂i(X)) from the values ûi(rj) = uij (resp., v̂i(rj) = vij) for j ∈ [d]. Set

Z(X) :=
∏d
j=1(X − rj). The labelling ψ is left unchanged. It is clear that the

resulting polynomial QSP (û0, v̂0, U, V, ψ) computes the same Boolean function
as the original QSP.

The polynomial circuit checker cpoly
Λ (C) = (û0, v̂0, U, V, ψ), with U =

(û0, . . . , ûm) and V = (v̂0, . . . , v̂m), is the polynomial version of cΛ(C).

18 Helger Lipmaa

Theorem 7. Let w ∈ {0, 1}n. C(w) = 1 iff cpoly
Λ (C)(c2q(w)) = 1.

Proof. Follows from Thm. 4 and the construction of polynomial QSPs. ut

9.2 Succinct Three-Query Linear PCP

To achieve better efficiency, following [2], we define a 3-query linear PCP with
|z| = Θ(1) that is based on the polynomial QSPs. For a set P of polynomials, let
span(P) be their span (i.e., the set of F-linear combinations). Then, u is in the
span of vectors ui, u =

∑m
i=1 aiui, iff the corresponding interpolated polynomial

û(X) is in the span of polynomials ûi(X), i.e., û(X) =
∑m
i=1 aiûi(X).

Let F be any field. We recall that according to the Schwartz-Zippel lemma,
for any nonzero polynomial f : Fm → F of total degree d and any finite subset
S of F, Prx←Sm [f(x) = 0] ≤ d/|S|.

Theorem 8. Let F be a field, and C a circuit with dummy gates. Let P(3)
lpcp and

V(3)
lpcp = (Q(3)

lpcp,D
(3)
lpcp) be as follows. Here, PolyInt is polynomial interpolation.

Q(3)
lpcp(C): Q← cΛ(C); m← size(Q); d← sdeg(Q); For i← 1 to d do: ri ← ωid;

σ ←r F; Compute (σi)d−1
i=0 ; Z(σ) ←

∏d
j=1(σ − rj); Compute (ûi(σ))mi=0,

(v̂i(σ))mi=0; st ← (Z(σ), û0(σ), v̂0(σ)); qu ← (((ûi(σ))mi=1,0m,0d); qv ←
(0m, (v̂i(σ))mi=1,0d) qh ← (0m,0m, (σ

i)d−1
i=0); q ← (qu, qv, qh); return

(q, st);

P(3)
lpcp(C,w): Compute (Q,m, (ri)

d
i=1) as in Q(3)

lpcp(C); (a, b) ← c2q(w); u† ←
u0 +

∑m
i=1 aiui; û†(X) ← PolyInt((ri, u

†
i)
d
i=1); v† ← v0 +

∑m
i=1 aivi;

v̂†(X)← PolyInt((ri, v
†
i)
d
i=1); Z(X)←

∏d
i=1(X− ri); ĥ(X) =

∑d−1
i=0 hiX

i ←
û†(X)v̂†(X)/Z(X) ∈ Fd−2; return π = (πu,πv,πh)← (a, b, ĥ) ∈ F2m+d;

D(3)
lpcp(st, (zu, zv, zh);w): if (zu − û0(σ)) · (zv − v̂0(σ)) = Z(σ) · zh then return 1

else return 0;

(P(3)
lpcp,V

(3)
lpcp) is a non-adaptive 3-query linear PCP over F for Circuit-SAT with

query length 2m+ d and knowledge error 2d/|F|.

Proof. Completeness: again straightforward, since zu = ûw(σ) ← 〈π, qu〉 =∑m
i=1 aiûi(σ), zv = v̂(σ)← 〈π, qv〉 =

∑m
i=1 biv̂i(σ), and zh = ĥ(σ)← 〈π, qh〉 =∑d−1

i=0 ĥiσ
i. Knowledge: assume that the verifier accepts with probability

ε ≥ 2d/|F|. That is, Prσ←F[(
∑m
i=1 aiûi(σ) − û0(σ))(

∑m
i=1 aiv̂i(σ) − v̂0(σ)) =

Z(σ) · (
∑d−1
i=0 hiσ

i)] = ε. Due to the Schwartz-Zippel lemma, since ε ≥ 2d/|F|,
(
∑m
i=1 aiûi(X)− û0(X))(

∑m
i=1 aiv̂i(X)− v̂0(X)) = Z(X) ·(

∑d−1
i=0 hiX

i), and due
to the equivalence between QSPs and polynomial QSPs, Eq. (1) holds. The claim
now follows from Thm. 6. ut

Theorem 9. Assume d is a power of 2. P(3)
lpcp runs in time Θ(d log d), Q(3)

lpcp runs

in time Θ(d log d), and the time of D(3)
lpcp is dominated by 2 F-additions and by 2

F-multiplications. V(3)
lpcp has degree (d, 2).

Succinct NIZK Arguments from Span Programs and Linear ECCs 19

A similar result was proven in [15] (though without using the terminology of
linear PCPs) in the case of conscientious gate checkers. We only require the
dummy gates to be conscientious.

In [15], it was only shown that ĥ(X) can be computed by using multipoint
evaluation and polynomial interpolation in time Θ(d log2 d). Moreover, the com-
putation of D was Θ(n) due to a different extraction technique.

10 From Non-Adaptive Linear PCP to Adaptive NIZK

Given the 3-query linear PCP of Thm. 8, one can use the transformation [2] to
construct first a non-adaptive NIZK argument for Circuit-SAT. See the full
version. The The non-adaptive NIZK argument can be made adaptive by using
universal circuits [25], see [15] for details.

We will provide more details in the full version [20]. There, we will also
provide a direct construction of the non-adaptive NIZK argument. The latter
has a (quite complex) soundness proof related to the soundness proof from [15]
that results in the use of a weaker security assumption. Here, we state only the
following straightforward corollary of Thm. 9 and the transformations from [2].

Theorem 10. Assume d is a power of 2. There exists a non-adaptive NIZK
Circuit-SAT argument, s.t. the prover and the CRS generation take Θ(d log d)
cryptographic operations, the verification time is dominated by Θ(1) pairings,
and the communication is a Θ(1) group elements.

Acknowledgements. We thank Andris Ambainis, Aleksandrs Belovs, Vitaly
Skachek, Hendri Tan, and anonymous reviewers for useful comments and dis-
cussions. The author was supported by the Estonian Research Council, and
European Union through the European Regional Development Fund.

References

1. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From Extractable Collision Re-
sistance to Succinct Non-Interactive Arguments of Knowledge, And Back Again.
In: Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM Press

2. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct Non-
interactive Arguments via Linear Interactive Proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg

3. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Appli-
cations. In: STOC 1988. pp. 103–112. ACM Press

4. Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Sciences 37(2), 156–189 (1988)

5. Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-Interactive Range Proof with Con-
stant Communication. In: Keromytis, A. (ed.) FC 2012. LNCS, vol. 7397, pp.
179–199. Springer, Heidelberg

20 Helger Lipmaa

6. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability As-
sumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Computability
in Europe, CIE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg

7. Dodunekov, S., Landgev, I.: On Near-MDS Codes. Journal of Geometry 54(1–2),
30–43 (1995)

8. Dwork, C., Naor, M.: Zaps and Their Applications. In: FOCS 2000. pp. 283–293.
IEEE Computer Society Press

9. Elkin, M.: An Improved Construction of Progression-Free Sets. Israel J. of Math.
184, 93–128 (2011)

10. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient Modular NIZK Arguments from Shift
and Product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. ?, pp. ?–? Springer, Heidelberg

11. Gál, A.: A Characterization of Span Program Size and Improved Lower Bounds
for Monotone Span Programs. Computational Complexity 10(4), 277–296 (2001)

12. Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press,
2 edn. (2003)

13. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg

14. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs. Tech. Rep. 2012/215, IACR (Apr 19, 2012), avail-
able at http://eprint.iacr.org/2012/215, last retrieved version from June 18, 2012

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg

16. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidel-
berg

17. Hoover, H.J., Klawe, M.M., Pippenger, N.: Bounding Fan-out in Logical Networks.
Journal of the ACM 31(1), 13–18 (1984)

18. Karchmer, M., Wigderson, A.: On Span Programs. In: Structure in Complexity
Theory Conference 1993. pp. 102–111. IEEE Computer Society Press

19. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg

20. Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Pro-
grams and Linear Error-Correcting Codes. Tech. Rep. 2013/121, IACR (Feb 28,
2013), available at http://eprint.iacr.org/2013/121

21. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. In: Visconti, I., Prisco, R.D. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg

22. Micali, S.: CS Proofs. In: Goldwasser, S. (ed.) FOCS 1994. pp. 436–453. IEEE,
IEEE Computer Society Press

23. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly Practical Veri-
fiable Computation. In: IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society

24. Reichardt, B.: Reflections for Quantum Query Algorithms. In: Randall, D. (ed.)
SODA 2011. pp. 560–569. SIAM

25. Valiant, L.G.: Universal Circuits (Preliminary Report). In: STOC 1976. pp. 196–
203. ACM

	Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and Linear Error-Correcting Codes

