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Abstract. In [18] Goyal et al. introduced the bounded player model for
secure computation. In the bounded player model, there are an a pri-
ori bounded number of players in the system, however, each player may
execute any unbounded (polynomial) number of sessions. They showed
that even though the model consists of a relatively mild relaxation of
the standard model, it allows for round-efficient concurrent zero knowl-
edge. Their protocol requires a super-constant number of rounds. In this
work we show, constructively, that there exists a constant-round concur-
rent zero-knowledge argument in the bounded player model. Our result
relies on a new technique where the simulator obtains a trapdoor corre-
sponding to a player identity by putting together information obtained
in multiple sessions. Our protocol is only based on the existence of a
collision-resistance hash-function family and comes with a “straight-line”
simulator.
We note that this constitutes the strongest result known on constant-
round concurrent zero knowledge in the plain model (under well accepted
relaxations) and subsumes Barak’s constant-round bounded concurrent
zero-knowledge result. We view this as a positive step towards getting
constant round fully concurrent zero-knowledge in the plain model, with-
out relaxations.
Keywords: concurrent zero knowledge, straight-line simulation, bounded
player model.

1 Introduction

The notion of a zero-knowledge proof [17] is central in cryptography, both for
its conceptual importance and for its wide ranging applications to the design of
secure cryptography protocols. Initial results for zero-knowledge were in the so
called stand-alone setting where there is a single protocol execution happening
in isolation.

The fact that on the Internet an adversary can control several players mo-
tivated the notion of concurrent zero knowledge [15] (cZK). Here the prover is
simultaneously involved in several sessions and the scheduling of the messages is
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coordinated by the adversary who also keeps control of all verifiers. Concurrent
zero knowledge is much harder to achieve than zero knowledge. Indeed, while we
know how to achieve zero-knowledge in 4 rounds, a sequence of results [21,33,6]
increased the lower bound on the round complexity of concurrent zero-knowledge
with black-box simulation to almost logarithmic in the security parameter. In
the meanwhile, the upper bound has been improved and now almost matches
the logarithmic lower bound [31,20,30]. After almost a decade of research on
this topic, the super-logarithmic round concurrent zero-knowledge protocol of
Prabhakaran et al. [30] remains the best known in terms of round complexity.

Some hope for a better round complexity started from the breakthrough re-
sult of Barak [1] where non-black-box simulation under standard assumptions
was proposed. His results showed how to obtain bounded-concurrent zero knowl-
edge in constant rounds. This refers to the setting where there is an a priori
fixed bound on the total number of concurrent executions (and the protocol
may become completely insecure if the actual number of sessions exceed this
bound). Unfortunately, since then, the question of achieving sub-logarithmic
round complexity with unbounded concurrency using non-black-box techniques
has remained open, and represents one of the most challenging open questions
in the study of zero-knowledge protocols. 6

Bounded player model. Recently, Goyal, Jain, Ostrovsky, Richelson and Visconti
[18] introduced the so called bounded player model. In this model, it is only
assumed that there is an a-priori (polynomial) upper-bound on the total number
of players that may ever participate in protocol executions. There is no setup
stage, or, trusted party, and the simulation must be performed in polynomial
time. While there is a bound on the number of players, any player may join in
at any time and may be subsequently involved in any unbounded (polynomial)
number of concurrent sessions. Since there is no a priori bound on the number of
sessions, it is a strengthening of the bounded-concurrency model used in Barak’s
result. The bounded player model also has some superficial similarities to the
bare-public-key model of [5] which is discussed later in this section.

As an example, if we consider even a restriction to a single verifier that
runs an unbounded number of sessions, the simulation strategy of [1] breaks
down completely. Goyal et al. [18] gave a ω(1)-round concurrent zero knowledge
protocol in the bounded player model. The technique they proposed relies on the
fact that the simulator has several choices in every sessions on where to spend
computation trying to extract a trapdoor, and, its running time is guaranteed
to be polynomial as long as the number of such choices is super-constant. Their
technique fails inherently if constant round-complexity is desired.

We believe the eventual goal of achieving round efficient concurrent zero-
knowledge (under accepted assumptions) is an ambitious one. Progress towards

6 In this paper, we limit our discussion to results which are based on standard
complexity-theoretic and number-theoretic assumptions. We note that constant
round concurrent zero-knowledge is known to exist under non-standard assump-
tions such as a variation of the (non-falsifiable) knowledge of exponent assumption
[19] or the existence of P-certificates [8].
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this goal would not only impact how efficiently one can implement zero-knowledge
(in the network setting), but also, will improve various secure computation pro-
tocol constructions in this setting (as several secure computation protocols use,
e.g., PRS preamble [30] for concurrent input extraction). Bounded player model
is somewhere between the standard model (where the best known protocols re-
quire super-logarithmic number of rounds), and, the bounded concurrency model
(where constant round protocols are known). We believe the study of round com-
plexity of concurrent zero-knowledge in the bounded player model might shed
light on how to construct such protocols in the standard model as well.

Our Results. In this work, we give a constant-round protocol in the bounded
player (BP) model. Our constructions inherently relies on non-black-box simu-
lation. The simulator for our protocol does not rely on rewinding techniques and
instead works in a “straight-line” manner (as in Barak [1]). Our construction is
only based on the existence of a collision-resistant hash-function family.

Theorem 1. Assuming the existence of a collision-resistance hash-function fam-
ily, there exists a constant round concurrent zero-knowledge argument system
with concurrent soundness in the bounded player model.

We note that this constitutes the strongest result known on constant-round
zero-knowledge in the concurrent setting (in the plain model). It subsumes
Barak’s result: now the total number of sessions no longer needs to be bounded;
only the number of new players starting the interaction with the prover is
bounded. A player might join in at anytime and may subsequently be involved
in any unbounded (polynomial) number of sessions.

We further note that, as proved by Goyal et al. [18], unlike previously studied
relaxations of the standard model (e.g., bounded number of sessions, timing
assumptions, super- polynomial simulation), concurrent-secure computation is
still impossible to achieve in the bounded player model. This gives evidence
that the BP model is “closer” to the standard model than previously studied
models, and study of this model might shed light on constructing constant-round
concurrent zero-knowledge in the standard model as well. Moreover, despite
the impossibility of concurrent-secure computation, techniques developed in the
concurrent zero-knowledge literature have found applications in other areas in
cryptography, including resettable security [5], non-malleability [14], and even
in proving black-box lower bounds [27].

1.1 Technical Overview

In this section, first, we recall some observations by Goyal et al [18] regarding why
simple approaches to extend the construction of Barak [1] to the bounded player
model are bound to fail. We also recall the basic idea behind the protocol of [18].
Armed with this background, we then proceed to discuss the key technical ideas
behind our constant round cZK protocol in the bounded player model. Initial
parts of this section are borrowed verbatim from [18].
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Why natural approaches fail. Recall that in the bounded player model, the only
assumption is that the total number of players that will ever be present in the
system is a priori bounded. Then, as observed by Goyal et al [18], the black-box
lower-bound of Canetti et al. [6] is applicable to the bounded player model as
well. Thus, it is clear that we must resort to non-black-box techniques. Now, a
natural approach to leverage the bound on the number of players is to associate
with each verifier Vi a public key pki and then design an FLS-style protocol [16]
that allows the ZK simulator to extract, in a non-black-box manner, the secret
key ski of the verifier and then use it as a “trapdoor” for “easy” simulation.
The key intuition is that once the simulator extracts the secret key ski of a
verifier Vi, it can perform easy simulation of all the sessions associated with Vi.
Then, since the total number of verifiers is bounded, the simulator will need
to perform non-black-box extraction only an a priori bounded number of times
(once for each verifier), which can be handled in a manner similar to the setting
of bounded-concurrency [1].

Unfortunately, as observed by Goyal et al. [18], the above intuition is mis-
leading. In order to understand the problem with the above approach, let us
first consider a candidate protocol more concretely. In fact, it suffices to focus
on a preamble phase that enables non-black-box extraction (by the simulator)
of a verifier’s secret key since the remainder of the protocol can be constructed
in a straightforward manner following the FLS approach. Now, consider the fol-
lowing candidate preamble phase (using the non-black-box extraction technique
of [3]): first, the prover and verifier engage in a coin-tossing protocol where the
prover proves “honest behavior” using a Barak-style non-black-box ZK protocol
[1]. Then, the verifier sends an encryption of its secret key under the public key
that is determined from the output of the coin-tossing protocol [18].

In order to analyze this protocol, we will restrict our discussion to the simpli-
fied case where only one verifier is present in the system (but the total number of
concurrent sessions are unbounded). At this point, one may immediately object
that in the case of a single verifier identity, the problem is not interesting since
the bounded player model is identical to the bare-public key model, where one
can construct four-round cZK protocols using rewinding based techniques. How-
ever, simulation techniques involving rewinding do not “scale” well to the case of
polynomially many identities (unless we use a large number of rounds) and fail.
In contrast, our simulation approach is “straight-line” for an unbounded number
of sessions and scales well to a large bounded number of identities. Therefore, in
the forthcoming discussion, we will restrict our discussion to straight-line simu-
lation. In this case, we find it instructive to focus on the case of a single identity
to explain the key issues and our ideas to resolve them.

We now turn to analyze the candidate protocol. Now, following the intuition
described earlier, one may think that the simulator can simply cheat in the
coin-tossing protocol in the “inner-most” session in order to extract the secret
key, following which all the sessions can be simulated in a straight-line manner,
without performing any additional non-black-box simulation. Consider, however,
the following adversarial verifier strategy: the verifier schedules an unbounded
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number of sessions in such a manner that the coin-tossing protocols in all of these
sessions are executed in a “nested” manner. Furthermore, the verifier sends the
ciphertext (containing its secret key) in each session only after all the coin-tossing
protocols across all sessions are completed. Note that in such a scenario, the
simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not
know how to solve.

The approach of Goyal et al. [18]. In an effort to bypass the above problem,
Goyal et al. use multiple (ω(1), to be precise) preamble phases (instead of only
one), such that the simulator is required to “cheat” in only one of these pream-
bles. This, however, immediately raises a question: in which of the ω(1) pream-
bles should the simulator cheat? This is a delicate question since if, for example,
we let the simulator pick one of preambles uniformly at random, then with
non-negligible probability, the simulator will end up choosing the first preamble
phase. In this case, the adversary can simply perform the same attack as it did
earlier playing only the first preamble phase, but for many different sessions so
that the simulator will still have to cheat in many of them. Indeed, it would seem
that any randomized oblivious simulation strategy can be attacked in a similar
manner by simply identifying the first preamble phase where the simulator would
cheat with a non-negligible probability.

The main idea in [18] is to use a specific probability distribution such that
the simulator cheats in the first preamble phase with only negligible probabil-
ity, while the probability of cheating in the later preambles increases gradually
such that the “overall” probability of cheating is 1 (as required). Further, the
distribution is such that the probability of cheating in the ith preamble is less
than a fixed polynomial factor of the total probability of cheating in one of the
previous i − 1 blocks. This allows them (by a careful choice of parameters) to
ensure that the probability of the simulator failing in more than a given poly-
nomially bounded number of sessions w.r.t. any given verifier is negligible (and
then rely on the techniques from the bounded-concurrency model [1] to handle
the bounded number of non-black-box simulations).

Our Construction. The techniques used in our work are quite different and un-
related to the techniques in the work of Goyal et al. [18]. As illustrated in the
discussion above, the key issue is the following. Say that a slot of the protocol
completes. Then, the simulator starts the non-black-box simulation and com-
putes the first “heavy” universal argument message, and, sends it across. How-
ever, before the simulator can finish this simulation successfully (and somehow
learn a trapdoor from the verifier which can then be used to complete other ses-
sions without non-black-box simulation), the verifier switches to another session.
Then, in order to proceed, the simulator would have to perform non-black-box
simulation and the heavy computation again (resulting in the number of ses-
sions where non-black-box simulation is performed becoming unbounded). So
overall, the problem is the “delay” between the heavy computation, and, the
point at which the simulator extracts the verifier trapdoor (which can then be
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used to quickly pass through other sessions with this particular verifier without
any heavy computation or non-black-box simulation).

Our basic approach is to “construct the trapdoor slowly as we go along”: have
any heavy computation done in any session (with this verifier) contribute to the
construction of a trapdoor which can then be used to quickly pass through other
sessions. To illustrate our idea, we shall focus on the case of a single verifier as
before. The description below is slightly oversimplified for the sake of readability.

To start with, in the very first session, the verifier is supposed to choose a
key pair of a signature scheme (this key pair remains the same across all sessions
involving this verifier). As in Barak’s protocol [1], we will just have a single slot
followed by a universal argument (UA). However, now once a slot is complete,
the verifier is required to immediately send a signature7 on the transcript of
the slot (i.e., on the prover commitment, and, the verifier random string) to the
prover. This slot now constitutes a “hard statement” certified by the verifier:
it could be used by the prover in any session (with this verifier). If the prover
could prove that he has a signed slot such that the machine committed to in
this slot could output the verifier random string in this slot, the verifier would
be instructed to accept. Thus, the simulator would now simply take the first
slot that completes (across all sessions), and, would prove the resulting “hard
statement” in the universal arguments of all the sessions. This would allow him
to presumably compute the required PCP only once and use it across all sessions.
Are we done? Turns out that the answer is no.

Even if the prover is executing the UA corresponding to the same slot (on
which he has obtained a signature) in every session, because of the interactive
nature of UAs, the (heavy) computation the prover does in a session cannot
be entirely used in another session. This is because the challenge of the verifier
would be different in different sessions. To solve this problem and continue the
construction of a single trapdoor (useful across all sessions), we apply our basic
idea one more time. The prover computes and sends the first UA message. The
verifier is required to respond with a random challenge and a signature on the
UA transcript so far. The prover can compute the final UA message, and, the
construction of the trapdoor is complete: the trapdoor constitutes of a signed
slot, an accepting UA transcript (proving that the machine committed to in
the slot indeed outputs the random string in that slot), and, a signature on
the first two UA messages (proving that the challenge was indeed generated by
the verifier after getting the first UA message). To summarize, the simulator
would use the following two sessions for the construction of the trapdoor: the
first session where a slot completes, and, the first session where the verifier sends
the UA random challenge.

The above idea indeed is oversimplified and ignores several problems. Firstly,
since an honest prover executes each concurrent session oblivious of others, any
correlations in the prover messages across different sessions (in particular, send-

7 Signatures of committed messages computed by a verifier where previously used
in [12] to allow the simulator to get through rewindings one more signature in order
to cheat in the main thread. Here instead we insist with straight-line simulation.
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ing the same UA first message) would lead to the simulated transcript being
distinguishable from the real one. Furthermore, the prover could be proving a
different overall statement to the verifier in every session (and hence even a UA
first message cannot be reused across different sessions). The detailed description
of our construction is given in Section 3.

1.2 Related Work

Bare public key and other related models. The bare public key model was pro-
posed in [5] where, before any interaction starts, every player is required to
declare a public key and store it in a public file (which never changes once
the sessions start). In this model it is known how to obtain constant-round
concurrent zero knowledge with concurrent soundness under standard assump-
tions [13,35,36,34]. This model has also been used for constant-round concurrent
non-malleable zero knowledge [25] and various constant-round resettable and
simultaneously resettable protocols [22,39,11,9,10,38,37,7].

As discussed in [18], the crucial restriction of the BPK model is that all
players who wish to ever participate in protocol executions must be fixed during
the preprocessing phase, and new players cannot be added “on-the-fly” during
the proof phase. We do not make such a restriction in our work and, despite
superficial resemblance, the techniques useful in constructing secure protocols
in the BPK model have limited relevance in our setting. In particular, constant
round cZK is known to exist in the BPK model using only black-box simula-
tion, while in our setting, non-black-box techniques are necessary to achieve
sublogarithmic-round cZK.

In light of the above discussion, since the very premise of the BPK model
(that all players are fixed ahead of time and declare a key) does not hold in the
bounded player model, we believe that the bounded player model is much closer
in spirit (as well as technically) to the bounded concurrency model of Barak.
The bounded player model is a strict generalization of the bounded concurrency
model. Thus, our constant-round construction is the first strict improvement
to Barak’s bounded concurrent ZK protocol. We stress that we improve the
achieved security under concurrent composition, still under standard assump-
tions and without introducing any setup/weakness. Summing up, ours is a con-
struction which is the closest known to achieving constant-round concurrent zero
knowledge in the plain model.

Round efficient concurrent zero-knowledge is known in a number of other
models as well (which do not seem to be directly relevant to our setting) such
as the common-reference string model, the super-polynomial simulation model,
etc. We refer the reader to [18] for a more detailed discussion.

2 Preliminaries and Definitions

Notation. We will use the symbol “||” to denote the concatenation of two strings
appearing respectively before and after the symbol.
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2.1 Bounded Player Model

We first recall the bounded player model for concurrent security, as introduced
in [18]. In the bounded player model, there is an a-priori (polynomial) upper
bound on the total number of player that will ever be present in the system.
Specifically, let n denote the security parameter. Then, we consider an upper
bound N = poly(n) on the total number of players that can engage in concurrent
executions of a protocol at any time. We assume that each player Pi (i ∈ N) has
an associated unique identity idi, and that there is an established mechanism to
enforce that party Pi uses the same identity idi in each protocol execution that it
participates in. Note, however, that such identities do not have to be established
in advance. In particular, new players can join the system with their own (new)
identities, as long as the number of players does not exceed N . We stress that
there is not bound on the number of protocol executions that can be started by
each party.

The bounded player model is formalized by means of a functionality FN
bp

that registers the identities of the player in the system. Specifically, a player
Pi that wishes to participate in protocol executions can, at any time, register
an identity idi with the functionality FN

bp . The registration functionality does
not perform any checks on the identities that are registered, except that each
party Pi can register at most one identity idi, and that the total number of
identity registrations are bounded by N . In other words, FN

bp refuses to register
any new identities once N number of identities have already been registered.
The functionality FN

bp is formally defined in Figure 1.

Functionality FN
bp

FN
bp initializes a variable count to 0 and proceeds as follows.

– Register commands: Upon receiving a message (register, sid, idi) from some
party Pi, the functionality checks that no pair (Pi, id

′
i) is already recorded and

that count < N . If this is the case, it records the pair (Pi, idi) and sets count =
count + 1. Otherwise, it ignores the received message.

– Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some
party Pj or the adversary A, the functionality checks if some pair (Pi, idi) is
recorded. If this the case, it sends (sid, Pi, idi) to Pj (or A). Otherwise, it returns
(sid, Pi,⊥).

Fig. 1. The Bounded Player Functionality FN
bp .

In our constructions we will explicitly work in the setting where the identity
of each party is a tuple (h, vk), where h← Hn is a hash function chosen from a
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family Hn of collision resistant hash functions, and vk is a verification key for a
signature scheme.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the bounded
player model. The definition given below, is an adaptation of the one of [30] to
the bounded player model, by also considering non-black-box simulation. Some
of the text below is taken verbatim from [30].

Let ppt denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive
argument for a language L. Consider a concurrent adversarial verifier V ∗ that,
given input x ∈ L, interacts with an unbounded number of independent copies
of P (all on the same common input x and moreover equipped with a proper
witness w), without any restriction over the scheduling of the messages in the
different interactions with P . In particular, V ∗ has control over the scheduling
of the messages in these interactions. Further, we say that V ∗ is an N -bounded
concurrent adversary if it assumes at most N verifier identities during its (un-
bounded) interactions with P .8

The transcript of a concurrent interaction consists of the common input x,
followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by viewP

V ∗(x, z,N) the random variable describing the
content of the random tape of the N -bounded concurrent adversary V ∗ with
auxiliary input z and the transcript of the concurrent interaction between P
and V ∗ on common input x.

Definition 1 (Concurrent Zero Knowledge in Bounded Player Model).
Let 〈P, V 〉 be an interactive argument system for a language L. We say that
〈P, V 〉 is concurrent zero-knowledge in the bounded player model if for every
N -bounded concurrent non-uniform ppt adversary V ∗, there exists a ppt algo-
rithm S, such that the following ensembles are computationally indistinguishable,
{viewP

V ∗(x, z,N)}x∈L,z∈{0,1}∗ and {S(x, z,N)}x∈L,z∈{0,1}∗ .

As a final note, we remark that following previous work in the BPK model and
in the BP model, we will consider the notion of concurrent soundness where the
malicious prover is allowed to play any concurrent number of sessions with the
same verifier. Indeed, this is notion is strictly stronger than sequential soundness.

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK
construction.

8 Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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Statistically binding commitment schemes. In our constructions, we will make
use of a statistically binding string commitment scheme, denoted Com. For sim-
plicity of exposition, we will make the simplifying assumption that Com is a
non-interactive perfectly binding commitment scheme. In reality, Com would
be taken to be a standard 2-round commitment scheme, e.g. [24]. Unless stated
otherwise, we will simply use the notation Com(x) to denote a commitment
to a string x, and assume that the randomness (used to create the commit-
ment) is implicit. We will denote by Com(x; r) a commitment to a string x with
randomness r.

Witness indistinguishable arguments of knowledge. We will also make use of a
witness-indistinguishable proof of knowledge (WIPOK) for all of NP in our con-
struction. Such a scheme can be constructed, for example, by parallel repetition
of the 3-round Blum’s protocol for Graph Hamiltonicity [4]. We will denote such
an argument system by 〈PWI, VWI〉.

The universal argument of [2]. In our construction, we will use the 4-round
universal argument system (UA), denoted pUA presented in [2] and based on
the existence of collision-resistant hash functions. We will assume without loss
of generality that the initial commitment of the PCP sent by the prover in
the second round also contains a commitment of the statement. We notice that
such an argument system is still sound when the prover is required to open the
commitment of the statement in the very last round.

Signature schemes. We will use a signature scheme (KeyGen,Sign,Verify)
that is unforgeable against chosen message attacks. Note that such signatures
schemes are known based on one way functions [32].

3 A Constant-Round Protocol

In this section, we describe our constant-round concurrent zero-knowledge pro-
tocol in the bounded player model.

Relation Rsim. We first recall a slight variant of Barak’s [1] NTIME(T (n))
relation Rsim, as used previously in [28]. Let T : N → N be a “nice” function
that satisfies T (n) = nω(1). Let {Hn}n be a family of collision-resistant hash
functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be
a perfectly binding commitment scheme for strings of length n, where for any
α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. The relation Rsim

is described in Figure 2.

Remark 1. The relation presented in Figure 2 is slightly oversimplified and
will make Barak’s protocol work only when {Hn}n is collision-resistant against
“slightly” super-polynomial sized circuits. For simplicity of exposition, in this
manuscript, we will work with this assumption. We stress, however, that as dis-
cussed in prior works [2,26,29,28,18], this assumption can be relaxed by using
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Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈ {0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) = r within T (n) steps.

Fig. 2. Rsim - A variant of Barak’s relation [28]

a “good” error-correcting code ECC (with constant distance and polynomial-time
encoding and decoding procedures), and replacing the condition c = Com(h(Π); s)
with c = Com(ECC(h(Π)); s).

Our protocol. We are now ready to present our concurrent zero knowledge proto-
col, denoted 〈P, V 〉. Let P and V denote the prover and verifier respectively. Let
N denote the bound on the number of verifiers in the system. In our construction,
the identity of a verifier Vi corresponds to a verification key vki of a secure signa-
ture scheme and a hash function hi ∈ Hn from a family Hn of collision-resistant
hash functions. Let (KeyGen,Sign,Verify) be a secure signature scheme. Let
〈PWI, VWI〉 be a witness-indistinguishable argument of knowledge system. Let
pUA be the universal argument (UARG) system of [2] that we discussed pre-
viously; the transcript is composed by four messages (h, β, γ, δ) where h is a
collision-resistant hash function.

The protocol 〈P, V 〉 is described in Figure 3. For our purposes, we set the
length parameter `(N) = N ·P (n)+n, where P (n) is a polynomial upper bound
on the total length of the prover messages in the UARG pUA plus the output
length of a hash function h ∈ Hn. For simplicity we omit some standard checks
(e.g., the prover needs to check that vk and h are recorded, the prover needs to
check that the signatures is valid).

The completeness property of 〈P, V 〉 follows immediately from the construc-
tion. Next, in Section 3.2, we prove concurrent soundness of 〈P, V 〉, i.e., we
show that a computationally-bounded adversarial prover who engages in multi-
ple concurrent executions of 〈P, V 〉 (where the scheduling across the sessions is
controlled by the adversary) can not prove a false statement in any of the ex-
ecutions, except with negligible probability. As observed in [18], “stand-alone”
soundness does not imply concurrent soundness in the bounded player model.
Informally speaking, this is because the standard approach of reducing concur-
rent soundness to stand-alone soundness by “internally” emulating all but one
verifier does not work since the verifier’s keys are private.9

9 Indeed, Micali and Reyzin [23] gave concrete counter-examples to show that stand-
alone soundness does not imply concurrent soundness in the bare public key model.
It is not difficult to see that their results immediately extend to the bounded player
model.
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Parameters: Security parameter n, number of players N = N(n), length parameter
`(N).

Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.

Private Input to V : A key pair (sk, vk)
R← KeyGen(1n), and a hash function

h
R← Hn.

Stage 1 (Preamble Phase):
V → P : Send vk, h.
P → V : Send c = Com(0n).

V → P : Send r
R← {0, 1}`(N), and σ = Signsk(c‖r).

P → V : Send c′ = Com(0n).

V → P : Send γ
R← {0, 1}n, and σ′ = Signsk(c′‖γ).

Stage 2 (Proof Phase):
P ↔ V : An execution of WIPOK 〈PWI, VWI〉 to prove the OR of the following

statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈c, r, σ〉, and 〈β, γ, δ, c′, t, σ′〉 s.t.

– Verifyvk(c‖r;σ) = 1, and
– c′ = Com(β; t), and Verifyvk(c′‖γ;σ′) = 1, and
– (h, β, γ, δ) is an accepting transcript for a UARG pUA proving the

following statement: ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Fig. 3. Protocol 〈P, V 〉

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in
the bounded player model.

3.1 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is con-
current zero-knowledge in the bounded player model. Towards this end, we will
construct a non-black-box (polynomial-time) simulator and then prove that the
concurrent adversary’s view output by the simulator is indistinguishable from
the real view. We start by giving an overview of the proof and then proceed to
give details.

Overview. Recall that unlike the bounded concurrency model, the main chal-
lenge in the bounded player model is that the total number of sessions that a
concurrent verifier may schedule is not a priori bounded. Thus, one can not di-
rectly employ Barak’s simulation strategy of committing to a machine that takes
only a bounded-length input y (smaller than the challenge string r) and outputs
the next message of the verifier. Towards this end, the crucial observation in
[18] is that in the bounded player model, once the simulator is able to “solve”
the identity of a specific verifier, then it does not need to be perform any more
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“expensive” (Barak-style) non-black-box simulation for that identity. Then, the
main challenge remaining is to ensure that the expensive non-black-box sim-
ulations that need to be performed before the simulator can solve a particular
identity, can be a-priori bounded, regardless of the number of concurrent sessions
opened by the verifier. Indeed, [18] use a randomized simulation strategy (that
crucially relies on a super-constant number of rounds) to achieve this effect.

In our case, we also build on the same set of observations. However, we cru-
cially follow a different strategy to a-priori bound the number of expensive non-
black-box simulations that need to performed in order to solve a given identity.
In particular, unlike [18], where the “trapdoor” for a given verifier simply corre-
sponds to its secret key, in our case, the trapdoor consists of a signed statement
and a corresponding universal argument proof transcript (where the signature
is computed by the verifier using the signing key corresponding to its identity).
Further, and more crucially, unlike [18], where the simulator makes a “disjoint”
effort in each session corresponding to a verifier to extract the trapdoor, in our
case, the simulator gradually builds the trapdoor by making “joint” effort across
the sessions. In fact, our simulator only performs one expensive non-black-box
simulation per identity; as such, the a-priori bound on the number of identities
immediately yields us the desired effect. Indeed, this is why we can perform
concurrent simulation in only a constant number of rounds.

The Simulator. We now proceed to describe our simulator S. Let N denote the
a priori bound on the number of verifiers in the system. Then, the simulator S
interacts with an adversary V ∗ = (V ∗1 , . . . , V

∗
N ) who controls verifiers V1, . . . , VN .

V ∗ interacts with S in m sessions, and controls the scheduling of the messages.
S is given non-black-box access to V ∗.

The simulator S consists of two main subroutines, namely, Seasy and Sheavy. As
the name suggests, the job of Sheavy is to perform the “expensive” non-black-box
simulation operations, namely, constructing the transcripts of universal argu-
ments, which yield a trapdoor for every verifier Vi. On the other hand, Seasy

computes the actual (simulated) prover messages in both the preamble phase
and the proof phase, by using the trapdoors. We now give more details.

Simulator S. Throughout the simulation, S maintains the following three data
structures, each of which is initialized to ⊥:

1. a list π = (π1, . . . , πN ), where each πi is either ⊥ or is computed to be
hi(Π). Here, hi is the hash function corresponding to Vi and Π is the aug-
mented machine code that is used for non-black-box simulation. We defer
the description of Π to below.

2. a list trapheavy = (trapheavy
1 , . . . , trapheavy

N ), where each trapheavy
i corresponds to

a tuple 〈hi, c, r,Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

3. a list trapeasy = (trapeasy
1 , . . . , trapeasy

N ), where each trapeasy
i corresponds to a

tuple 〈c, r, σ, β, γ, δ, c′, t, σ′〉 s.t.

– Verifyvki
(c‖r;σ) = 1, and

– c′ = Com(β; t), and Verifyvki
(c′‖γ;σ′) = 1, and
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– (hi, β, γ, δ) is an accepting transcript for a UARG pUA proving the fol-
lowing statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Augmented machine Π. The augmented machine code Π simply consists of the
code of the adversarial verifier V ∗ and the code of the subroutine Seasy (with a
sufficiently long random tape hardwired, to compute the prover messages in each
session) , i.e., Π = (V ∗,Seasy). The input y to the machine Π consists of the lists
π and trapeasy, i.e., y = (π, trapeasy). Note that it follows from the description
that |y| ≤ `(N)− n.

We now describe the subroutines Seasy and Sheavy, and then proceed to give
a formal description of S. For simplicity of exposition, in the discussion below,
we assume that the verifier sends the first message in the WIPOK 〈PWI, VWI〉.
Algorithm Seasy(i,msgVj ,π, trap

easy; z). The algorithm Seasy prepares the (simu-
lated) messages of the prover P in the protocol. More specifically, when executed
with input (i,msgVj ,π, trap

easy; z), Seasy does the following:

1. If msgVj is the first verifier message of the preamble phase from Vi in a session,
then Seasy parses π as π1, . . . , πN . It computes and outputs c = Com(πi; z).

2. If msgVj is the second verifier message of the preamble phase from Vi in a
session, then Seasy computes and outputs c = Com(β; z), where β is the
corresponding (i.e., fourth) entry in trapeasy

i ∈ trapeasy.
3. If msgVj is a verifier message of the WIPOK from Vi in the proof phase of

a session, then if trapeasy
i = ⊥, then Seasy aborts and outputs ⊥, otherwise

Seasy simply runs the code of the honest PWI to compute the response using
randomness z and the trapdoor witness trapeasy

i .

Algorithm Sheavy(i, j, γ, trapheavy). The algorithm Sheavy simply prepares one
UARG transcript for every verifier Vi, which in turn is used as a trapdoor by
the algorithm Seasy. More concretely, when executed with input (i, j, γ, trapheavy),
Sheavy does the following:

1. If j = 1, then Sheavy parses the ith entry trapheavy
i in trapheavy as (hi, c, r,Π, y, s).

It runs the honest prover algorithm PUA and computes the first message β of
a UARG for the statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1. Sheavy

saves its internal state as statei and outputs β.10

2. If j = 2, then Sheavy uses statei and γ to honestly compute the final prover
message δ for the UARG with prefix (hi, β, γ). It outputs δ.

Algorithm S. Given the above subroutines, the simulator S works as follows.
We assume that every time S updates the lists π and trapeasy, it also auto-
matically updates the entry corresponding to y (i.e., the fifth entry) in each

trapheavy
i ∈ trapheavy. For simplicity of exposition, we do not explicitly mention

this below.

Preamble phase:

10 For simplicity of exposition, we describe Sheavy as a stateful algorithm.
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1. On receiving the first message msgV1 = (vki, hi) from V ∗ on behalf of Vi in
the preamble phase of a session, S first checks whether πi = ⊥ (where πi is
the ith entry in the list π); if the check succeeds, then S updates πi = hi(Π).
Next, S samples fresh randomness s from its random tape and runs Seasy on
input (i,msgV1 ,π, trap

easy; s). S sends the output string c from Seasy to V ∗.

Further, S adds (hi, c, ·, Π, y, s) to trapheavy
i and (c, ·, ·, ·, ·, ·, ·, ·, ·) to trapeasy

i .
2. On receiving the second message message msgV2 = (r, σ) from V ∗ on behalf

of Vi in the preamble phase of a session, S first verifies the validity of the
signature σ w.r.t. vki. If the check fails, S considers this session aborted (as
the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to r and σ (i.e., 2nd
and 3rd entries) in trapeasy

i are ⊥. If the check succeeds, then:
– S sets r as 3rd entry of trapheavy

i and r, σ as second and third entries of
trapeasy

i .
– Further, S runs Sheavy on input11 (i, 1,⊥, trapheavy) to compute the mes-

sage β of a UARG for the statement: ∃〈Π, y, s〉 s.t.Rsim(〈hi, c, r〉, 〈Π, y, s〉) =

1. Here hi, c, r,Π, y, s are such that trapheavy
i = 〈hi, c, r,Π, y, s〉.

– On receiving the output message β, S sets to β the fourth slot of trapeasy
i .

Next, S samples fresh randomness t and runs Seasy on input (i,msgV2 ,π, trap
easy; t).

On receiving the output string c′ from Seasy, S forwards it to V ∗. Further, S
sets to (c′, t) the 7th and 8th slot of trapeasy

i .
3. Finally, on receiving the last message msgVfin = (γ, σ′) from V ∗ on behalf

of Vi in the preamble phase of a session, S first verifies the validity of the
signature σ′ w.r.t. vki. If the check fails, S considers this session aborted
(as the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to γ and σ′ in trapeasy

i

are ⊥. If the check succeeds, then:
– S sets to γ and σ′ the 5th and 9th slot of trapeasy

i .
– Further, S runs Sheavy on input (i, 2, γ, trapheavy) to compute the final

prover message δ of the UARG with prefix (hi, β, γ), where (β, γ) are
the corresponding entries in trapeasy

i .
– On receiving the output message δ, S sets to δ the 6th slot of trapeasy

i .

Proof phase: On receiving any message msgVj from V ∗ on behalf of Vi, S runs

Seasy on input (i,msgVj ,π, trap
easy) and fresh randomness. S forwards the output

message of Seasy to V ∗.
This completes the description of S and the subroutines Seasy, Sheavy. It fol-

lows immediately from the above description that S runs in polynomial time
and outputs ⊥ with probability negligibly close to an honest prover.

We now show through a series of hybrid experiments the simulator’s output is
computationally indistinguishable from the output of the adversary when inter-
acting with honest provers. Our hybrid experiments will be Hi for i = 0, . . . , 3.
We write Hi ≈ Hj if no V ∗ can distinguish (except with negligible probability)
between its interaction with Hi and Hj .

11 For simplicity of exposition, we assume that randomness is hardwired in Sheavy and
do not mention it explicitly.
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Hybrid H0. Experiment H0 corresponds to the honest prover. That is, in every
session j ∈ [m], H0 sends c and c′ as commitments to the all zeros string in
the preamble phase. We provide H0 with a witness that x ∈ L which it uses to
complete the both executions of the WIPOK 〈PWI, VWI〉 played in each session.

Hybrid H1. Experiment H1 is similar to H0, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the commitment c in the
preamble phase is prepared as a commitment to πi = hi(Π), where hi is the
hash function in the identity of Vi and Π is the augmented machine code as
described above.

The computational hiding property of Com ensures that H1 ≈ H0.

Hybrid H2. Experiment H2 is similar to H1, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the commitment c′ in the
preamble phase is prepared as a commitment to the string β with randomness
t, where β is the first prover message of a UARG computed by Sheavy, in the
manner as described above.

The computational hiding property of Com ensures that H2 ≈ H1.

Hybrid H3. Experiment H3 is similar to H2, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the WIPOK 〈PWI, VWI〉 in
the proof phase is executed using the trapdoor witness trapeasy

i , in the manner
as described above. Note that this is our simulator S.

The witness indistinguishability property of 〈PWI, VWI〉 ensures thatH3 ≈ H2.

3.2 Proof of Concurrent Soundness

Consider the interaction between a cheating P ∗ and an honest V . Suppose that
P ∗ fools V into accepting a false proof in some session with non-negligible prob-
ability. We show how to reduce P ∗ to an adversary that breaks the security of
one of the used ingredients. We will first consider P ∗ as a sequential malicious
prover. We will discuss the issues deriving from a concurrent attack later.

First of all, notice that by the proof of knowledge property of the sec-
ond WIPOK, we have that with non-negligible probability, an efficient adver-
sary E can simply run as a honest verifier and extract a witness from that
WIPOK of session l where the false statement is proved. Since the statement
is false, the witness extracted will therefore be (c, r, σ, β, γ, δ, c′, t, σ′) such that
Verifyvk(c‖r;σ) = 1, c′ = Com(β; t), Verifyvk(c′‖γ;σ′) = 1, and (h, β, γ, δ)
is an accepting transcript for a UARG pUA proving the statement ∃〈Π, y, s〉
s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1, and h is the hash function corresponding to the
verifier run by E in session l.

By the security of the signature scheme, it must be the case that signatures
σ and σ′ were generated and sent by E during the experiment (the reduction is
standard and omitted).

Therefore we have that with non-negligible probability there is a session i
where h and γ were played honestly by E, (h, β, γ, δ) is an accepting transcript
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for the UARG for Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1, and a commitment to β was given
before γ was sent. Moreover, there is a session j where c and r were played as
commitment and challenge. Remember that the session l is the one where the
false statement is proved.

We can now complete the proof by relying almost verbatim on the same
analysis of [1,2]. Indeed, by rewinding the prover and changing the challenge r
in session j, with another random string, we would have an execution identically
distributed with respect to the previous one. Therefore it will happen with non-
negligible probability that the prover succeeds in session l, still relying on the
information obtained in sessions i and j. The analysis of [1,2] by relying on
the weak proof of knowledge property of the UA, shows that this event can be
reduced to finding a collision that contradicts the collision resistance of h.

We finally discuss the case of a concurrent adversarial prover. Such an at-
tack is played by a prover aiming at obtaining from concurrent sessions some
information to be used in the target session where the false theorem must be
proved. In previous work in the BPK model and in the BP model this was a
major problem because the verifier used to give a proof of knowledge of its se-
cret key, and the malleability of such a proof of knowledge could be exploited
by the malicious prover. Our protocol however bypasses this attack because our
verifier does not give a proof of knowledge of the secret key of the signature
scheme, but only gives signatures of specific messages. Indeed the only point in
which the above proof of soundness needs to be upgraded is the claim that by
the security of the signature scheme, it must be the case that signatures σ and
σ′ where generated and sent by E during the experiment. In case of sequential
attack, this is true because running the extractor of the WIPOK in session l
does not impact on other sessions since they were played in full either before
or after session l. Instead, in case of a concurrent attack, while rewinding the
adversarial prover, new sessions could be started and more signatures could be
needed. As a result, it could happen that in such new sessions the prover would
ask precisely the same signatures that are then extracted from the target session.
We can conclude that this does not impact on the proof for the following two
reasons. First, in the proof of soundness it does not matter if those signatures
appear in the transcript of the attack, or just in the transcript of a rewinded
execution. Second, the reduction on the security of the signature scheme works
for any polynomial number of signatures asked to the oracle, therefore still holds
in case of a concurrent attack. Indeed, the work of E is performed in polynomial
time even when rewinding a concurrent malicious prover, therefore playing in
total (i.e., summing sessions in the view of the prover and sessions played during
rewinds) a polynomial number of sessions, and therefore asking a polynomial
number of signatures only to the signature oracle.

Further details on the proof of soundness. Given a transcript (h, UA1, UA2, UA3)
for the universal argument of [2], we stress that soundness still works when the
prover sends the statement to the verifier only at the 4th round, opening a com-
mitment played in the second round. The proof of concurrent soundness of our
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protocol goes through a reduction to the soundness of the universal argument of
[2] and goes as follows.

Let P ∗ua be the adversarial prover that we construct against the universal
argument of [2], by making use of the adversary P ∗ of our protocol. Let Vua be
the honest verifier of the universal argument of [2]. P ∗ua gets “h” from Vua and
plays it in a random session s of the experiment (it could therefore be played in
a rewinding thread) with P ∗. Later on, since by contradiction P ∗ is successful,
UA messages (UA1, UA2, UA3) are extracted and with noticeable probability
they correspond to session s. Therefore P ∗ua sends UA1 to Vua and gets back
UA2′. Then P ∗ua rewinds P* to the precise point where UA2 was played. Now
P ∗ua plays UA2′. Again, later on, since by contradiction P ∗ is successful, P ∗ua will
again extract from P ∗ and with noticeable probability (still because the number
of sessions played in the experiment is polynomial), it will get an accepting
transcript (UA1, UA2′, UA3∗) for the same statement (this is guaranteed by the
security of the signature scheme and the binding of the commitment). Then P ∗ua
can send UA3∗ to Vua therefore proving a false statement.
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