
How to Construct an Ideal Cipher
from a Small Set of Public Permutations

Rodolphe Lampe1? and Yannick Seurin2??

1 University of Versailles, France
2 ANSSI, Paris, France

rodolphe.lampe@gmail.com,yannick.seurin@m4x.org

Abstract. We show how to construct an ideal cipher with n-bit blocks
and n-bit keys (i.e. a set of 2n public n-bit permutations) from a small
constant number of n-bit random public permutations. The construc-
tion that we consider is the single-key iterated Even-Mansour cipher,
which encrypts a plaintext x ∈ {0, 1}n under a key k ∈ {0, 1}n by al-
ternatively xoring the key k and applying independent random public
n-bit permutations P1, . . . , Pr (this construction is also named a key-
alternating cipher). We analyze this construction in the plain indiffer-
entiability framework of Maurer, Renner, and Holenstein (TCC 2004),
and show that twelve rounds are sufficient to achieve indifferentiability
from an ideal cipher. We also show that four rounds are necessary by
exhibiting attacks for three rounds or less.

Keywords: block cipher, ideal cipher, iterated Even-Mansour cipher, key-alter-
nating cipher, indifferentiability.

1 Introduction

Block Ciphers. Block ciphers are one of the most important classes of prim-
itives in cryptography. They are mainly used to provide confidentiality and au-
thenticity to communication channels or local data storage means, but also to
construct hash functions and in other more advanced cryptographic tasks. Syn-
tactically, a block cipher E with message space {0, 1}n and key space {0, 1}m is
a mapping from {0, 1}m × {0, 1}n to {0, 1}n such that for each key k ∈ {0, 1}m,
E(k, ·) is an (efficiently invertible) permutation. Block cipher designs (virtually
all of which rely on the iteration of some key-dependent round function) can be
roughly split into two families (with some rare exceptions such as IDEA):
1) Feistel networks [23] and their generalizations, where the round function is

given by (x, y) 7→ (y, x ⊕ F (ki, y)), where x and y are the left and right
n/2 bits of the state, and ki is the round key; prominent examples include
DES, Blowfish, KASUMI, and Camellia for “classical” Feistel networks, and
CAST-256 and MARS for generalized Feistel networks;

? This author is partially supported by the French Direction Générale de l’Armement.
?? This author is partially supported by the French National Agency of Research: ANR-

11-INS-011.



2) substitution-permutation networks (SPNs), where one round generally con-
sists of the composition of a round-key addition, a non-linear mixing layer,
and a linear diffusion layer; notable examples include AES, SAFER, CRYP-
TON, SERPENT, PRESENT, and LED.

At an even higher design level, SPNs can be described (by collapsing the non-
linear mixing layer and the linear diffusion layer at i-th round into a single n-bit
permutation Pi) as successive applications of round-key additions and permuta-
tions Pi. Such a structure was named a key-alternating cipher by the designers
of AES [17,18].

The traditional security notion for a block cipher is pseudorandomness, i.e.
indistinguishability from a random permutation [41]: namely, no distinguisher
with reasonable resources and having black-box access to a permutation (and
also to its inverse in a more stringent variant of the security notion) should be
able to distinguish whether it is interacting with the block cipher E(k, ·) for a
randomly chosen key k, or with a truly random permutation. In an asymptotic
and more theoretical language, a family of block ciphers indexed by a security
parameter meeting this security notion is called a pseudorandom permutation
(PRP), or a strong pseudorandom permutation (SPRP) when the distinguisher
has also access to the inverse permutation. The classical example of a construc-
tion for which we have some provable security results with respect to indis-
tinguishability is the Feistel network. Starting from the seminal Luby-Rackoff
paper [42] which showed that the Feistel construction with three rounds yields a
PRP when its round functions are pseudorandom [28], and followed by a paper
by Patarin [49] showing that four rounds yield a SPRP (which was stated in [42]
without proof), a long series of works established refined results in the same
vein, such as [43,44,59,50] to name a few.

The Ideal Cipher Model. Though there are numerous examples where the
standard pseudorandomness assumption is sufficient to prove (in a reductionist
sense) the security of a cryptographic scheme (e.g. for building a symmetric en-
cryption scheme [3] or a MAC scheme [4]), there are also some settings where
it might not be strong enough to derive a security proof. Indeed, in some situa-
tions, the adversary has more abilities than merely querying in a black-box way
an encryption/decryption oracle. For example, there are some cases where the
attacker might have access to a more powerful “related-key” oracle [9,5,1], i.e.
it can ask encryption and decryption queries for keys that are related (in some
limited and attack-dependent way) to the main key of the system.

Ideally, the ultimate security goal for a block cipher would be that it “be-
haves” as a random and independent permutation for each possible key. This
naturally leads to the so-called ideal cipher model (ICM), the origin of which
can be traced back to Shannon [56]. In the ICM, a block cipher E with n-bit
blocks and m-bit keys is drawn at random from the set of (2n!)2m possible block
ciphers of this form, and made available through oracle queries (for both encryp-
tion and decryption) to all parties (including the adversary). This is very similar
in spirit to the random oracle model (ROM) [24,8] used to model a perfect hash



function. To the best of our knowledge, this model was first formally used in a
security proof by Winternitz [60] and later by Merkle [47] to show respectively
the pre-image and collision resistance of the Davies-Meyer compression function.
The ICM became increasingly popular after Black et al. [12] used it to extensively
analyze the security of the PGV block cipher-based compression functions [51].
Since then, the ICM has been used to prove the security of a variety of other
block cipher-based hash functions [30,31,58,40,46], of key length extension meth-
ods for block ciphers [35,21,7,25,26], of symmetric encryption schemes [33], and
even of some public-key protocols such as signature schemes [29], ring signature
schemes [53], public-key encryption [34], and key exchange protocols [6]. Despite
these numerous successful applications, one must not lose from sight that the
ICM only gives heuristic insurance just as the ROM [14]. In particular, Black [11]
exhibited an (arguably artificial) block cipher-based hash function which is prov-
ably collision resistant in the ICM, but becomes insecure when the ideal cipher
is instantiated with any concrete block cipher.

With the ICM at hand, the question now becomes: is it possible to argue
that a given block cipher design is as close as possible to an ideal cipher? In
the standard model, one immediately faces the problem that, unlike for pseudo-
randomness, it even seems hard to come with a satisfactory definition of what
this formally means, without running into impossibility results (similarly to [14]
and [11]) following from the fact that a concrete block cipher has a short de-
scription, whereas an ideal cipher does not. This unfortunate state of affairs
has not prevented cryptanalysts from disproving that a concrete block cipher
behaves as an ideal cipher by exhibiting some non-random behavior, i.e. some
non-trivial3 relation between inputs and outputs of the block cipher that can
be found faster than for an ideal cipher, in a setting where the key is random
and given to the attacker (known-key attacks), or when the attacker can freely
choose the key(s) (chosen-key attacks). A classical example is the complementa-
tion property of DES which, despite being often viewed as a “benign” undesirable
property, implies that DES does not behave as an ideal cipher. For AES, no such
non-random properties were known until Biryukov et al. [10] showed that so-
called q-multicollisions can be found faster for AES-256 than for an ideal cipher.
Known-key and chosen-key attacks were first put forward as an important crypt-
analysis goal by Knudsen ans Rijmen [36], and have since then become an active
area of research [48,27,54].

Indifferentiability. Though we cannot hope to formalize (not to say prove)
that a concrete block cipher behaves as an ideal cipher in any reasonable sense in
the standard model, it is possible to obtain positive results in idealized models,
i.e. by viewing some subcomponent of the block cipher as perfectly random. This
perfect subcomponent is made available to all parties as a public oracle, which
makes this setting formally distinct from classical indistinguishability. In order
to assess whether a cryptographic construction based on an ideal subcomponent
3 We stress that because of the lack of a rigorous definition, the meaning of non-trivial
here is somehow subjective.



is secure, one has to employ the formalism of indifferentiability, introduced by
Maurer et al. [45]. A construction C (e.g. a block cipher), based on some ideal
primitive F (e.g. a random permutation), is said to be indifferentiable from
some target ideal primitive G (e.g. an ideal cipher) if there exists an efficient
simulator S (with black-box access to the primitive G) such that the two systems
(CF ,F ) and (G,SG) are indistinguishable. Informally, the goal of the simulator
is to provide answers which are consistent with what a distinguisher can obtain
from G, without deviating too much from the distribution of answers of F . An
indifferentiability result can be interpreted as a way to make sure that the high-
level design of the construction C has no structural defect. More importantly, a
composition theorem [45] asserts that if CF is indifferentiable from G, then any
cryptosystem proved secure when used with G remains secure when used with
CF , therefore allowing modular proofs of security in idealized models.4

Soon after its introduction, Coron et al. [15] used the indifferentiability frame-
work to revisit the design of a hash function from an ideal cipher: namely they
showed that a number of variants of the Merkle-Damgård domain extension
method [19,47], used with an ideal cipher in Davies-Meyer mode, are indiffer-
entiable from a random oracle. The converse direction, i.e. proving that it is
possible to construct an ideal cipher from a random oracle, turned out to be
harder to achieve. A first attempt to prove that the Feistel construction with
public random round functions is indifferentiable from a random permutation
(and hence from an ideal cipher by prepending the key to each input to the
random round functions) was made by Coron et al. for six rounds [16], and later
by Seurin for ten rounds [55], but serious flaws were found in both proofs [37,32].
The situation was corrected with a proof by Holenstein et al. [32] that the 14-
round Feistel construction with public random round functions is indifferentiable
from a random permutation. This must be contrasted with the classical Luby-
Rackoff result stating that the 4-round Feistel construction with pseudorandom
round functions yield a SPRP.

Our Contribution. The indifferentiability result for the Feistel construction
mentioned above is fundamentally about how to obtain a random permutation
from a random (function) oracle. The step to obtain an ideal cipher (i.e. an
exponential number of independent permutations) is trivially achieved through
domain separation of the underlying primitive (namely by prepending the key to
each call to the random function oracles). However, it does not tell us anything
about how the key should be concretely mixed into the state. In a departure from
this approach, we ask the following question: given a small number of objects with
n-bit inputs (e.g. n-bit permutations P1, . . . , Pr), is there a way to “combine”
them together with an m-bit key in order to obtain a construction which is
close to an n-bit block and m-bit key ideal cipher, i.e. a set of 2m independent
permutations, without appealing to a trivial domain separation argument? This

4 Care has to be taken with this composition result when the security definition for
the cryptosystem puts some limitations on the adversary, such as an upper bound
on its memory [52,20]



naturally prompts us to turn our attention towards the second class of designs,
namely key-alternating ciphers.5 More formally, we consider the construction of
a block cipher with n-bit blocks andm-bit keys from r public n-bit permutations
P1, . . . , Pr defined as follows: derive (r+ 1) n-bit round keys (k0, . . . , kr) from a
master key K through some key derivation function, and encrypt the plaintext
x ∈ {0, 1}n by computing the ciphertext y defined as:

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · · )) .

When r = 1 and two independent n-bit keys (k0, k1) are used, so that the ci-
phertext is simply y = k1 ⊕P1(k0 ⊕ x), one obtains the so-called Even-Mansour
cipher [22]. When P1 is modeled as a public random permutation (that the ad-
versary can query in a black-box way), Even and Mansour [22] showed that the
resulting block cipher is a SPRP, with security ensured up to O(2n/2) distin-
guisher queries. The indistinguishability of the general construction for r > 1
with independent keys (k0, . . . , kr) was later studied for two rounds by Bog-
danov et al. [13], for three rounds by Steinberger [57], and for any number r of
rounds (with non-tight security bounds) by Lampe et al. [38]. Unsurprisingly,
the number of adversarial queries up to which the key-alternating cipher is indis-
tinguishable from a random permutation increases with the number of rounds.
Following [38], and to emphasize that we work in the random permutation model
for P1, . . . , Pr, we will use the naming r-round iterated Even-Mansour cipher to
designate the idealized key-alternating cipher where the permutations P1, . . . ,
Pr are public and perfectly random permutations oracles.

In this paper, we consider the iterated Even-Mansour cipher from the point
of view of indifferentiability, and ask whether this construction is indifferentiable
from an ideal cipher for a sufficient number of rounds when the permutations
P1, . . . , Pr are public and random. A first simple observation is that the con-
struction with r + 1 independent n-bit keys (k0, . . . , kr) (resulting in a total
key space {0, 1}m = {0, 1}(r+1)n) is never indifferentiable (for any r) from an
ideal cipher with n-bit blocks and (r + 1)n-bit keys (this had already been in-
formally observed by [13]). In a sense, independent keys offer too much freedom
to the attacker, enabling to easily find related-key relations. There are two pos-
sible approaches to solve this problem. The first one is to derive the round keys
(k0, . . . , kr) from the master key using some cryptographic function (modeled
as a random oracle for the indifferentiability proof). This was considered in an
earlier and independent work by Andreeva et al. [2] (see below for a discussion of
their result). The second possibility (not relying on any cryptographic assump-
tion about the key derivation function) is to “correlate” the round keys. This is
the approach we adopt: namely, we consider the iterated Even-Mansour cipher
where the n-bit round keys (k0, . . . , kr) are obtained by applying efficiently in-
vertible n-bit permutations (γ0, . . . γr) to the n-bit master key k (see Figure 1
on page 10). As will appear clearly in view of its proof, the fact that the master
key length is equal to the block length is crucial for our result. To insist on this
5 One could certainly undertake the same study for Feistel-based block ciphers, but
this seems more complicated.



particular point, we call this construction the single-key iterated Even-Mansour
cipher. Our main result is the following one.

Theorem. The 12-round single-key iterated Even-Mansour cipher with twelve
independent random public n-bit permutations (P1, . . . , P12) and any efficiently
invertible (public) n-bit permutations (γ0, . . . , γ12) for the key schedule is indif-
ferentiable from an ideal cipher with n-bit blocks and n-bit keys.

In fact, the key derivation permutations γi will not play any role in the proof,
so that we will focus on the simple case where they are all equal to the identity.
Additionally, we show that at least four rounds are necessary by describing
attacks (using only a constant number of queries) for three rounds or less (see
the full version of the paper [39]).

Together with the result of [2] discussed below, our main theorem validates
the design strategy underlying SPNs and more generally key-alternating ciphers
as a sound way to ensure security beyond pseudorandomness: it (theoretically)
enables to achieve resistance against related-key, known-key and chosen-key at-
tacks (that an ideal cipher can withstand). We stress that our result cannot be
used as is to take concrete design decisions: first, our bounds (as is often the
case with indifferentiability results) are extremely loose.6 More importantly, the
permutations Pi used in concrete block ciphers such as AES are often too simple
to be deemed close to random permutations (not to say independent: they are
often the same).

Our Techniques. The techniques used to prove our main theorem are very
similar to the ones introduced in [16,55,32] for the Feistel construction (while
the formalism we adopt is very close to [32]). We simply give a very cursory
overview of the main ideas here (assuming all γi’s are the identity). The simu-
lator works by detecting and completing “partial chains” created by the queries
of the distinguisher. Define the computation path for a plaintext x and a key
k as the sequence of pairs (x1, y1), . . . , (x12, y12) of corresponding input and
output values for the simulated permutations P1, . . . , P12. It must hold that the
value y obtained through this computation path matches the value E(k, x) ob-
tained from the ideal cipher, otherwise one could straightforwardly distinguish
the “simulated” world from the “real” world. Hence, simply answering the dis-
tinguisher queries randomly will not work: the simulator must somehow “adapt”
the computation path to match the ideal cipher E. Observe now the following
important property of the single-key iterated Even-Mansour cipher: given only
two consecutive values yi and xi+1 of the computation path (i.e. the output
value of permutation Pi and the input value to permutation Pi+1), it is possi-
ble to deduce the corresponding key k = yi ⊕ xi+1, and hence to move forward
and backward along the path. Note that this property essentially relies on the
fact that the master key length is equal to the block length of the permutations
(would the master key be larger, then it could not be uniquely determined by
6 Since the proof is already quite involved, we favored simplicity rather than tightness,
but the bounds can probably be improved at some places.



yi and xi+1). Note also that this is the exact analogue of the property of the
Feistel network that the input and output values to two consecutive round func-
tions enable to uniquely move forward and backward inside the construction.
With this in mind, the strategy of the simulator will be to detect partial chains
in computation paths created by queries of the distinguisher to two consecutive
permutations, and “complete” them by moving forward and backward inside the
iterated Even-Mansour construction (randomly setting undefined permutation
values encountered along the way, and making a call to the ideal cipher to “wrap
around”) until the input x` and the output y` for one particular permutation
P` are obtained (but still undefined inside P` history). This permutation is then
“adapted” by setting P`(x`) := y` so that the corresponding input and output
for the simulated Even-Mansour cipher and for the ideal cipher match. A mo-
ment of thinking should make clear that the simulator cannot complete each and
every partial chain created in its history, since this would create a “chain reac-
tion” leading to an exponential running time and an exponential number of ideal
cipher queries from the simulator. Hence, one must make a careful and parsimo-
nious choice of “detection zones” for deciding which partial chains to complete.
In addition, one must ensure that the simulator never overwrites an entry when
adapting permutation P`, thereby rendering a previously completed chain in-
consistent. How exactly this is done is very similar to the case of the Feistel
construction [55,32], and we refer to Section 3.1 for a more detailed overview.

As a retrospective afterthought, we note that the Feistel and the iterated
Even-Mansour indifferentiability results are not that far apart: they both tell
how to construct a “big object” (which in both cases has some specific syntactic
constraints which are relevant only from a cryptographic perspective) taking 2n
bits of input (the left and right n-bit halves of the input in the case of the Feistel
network, and the key and the plaintext in the case of the iterated Even-Mansour
cipher) from smaller objects with only n bits of input (fourteen n-bit to n-bit
functions for the Feistel network, and twelve n-bit permutations for the iterated
Even-Mansour cipher).

Related Work. In a prior and independent work [2], Andreeva et al. proved
a result which is close and complementary to ours: they showed that the iter-
ated Even-Mansour construction with five rounds and a key derivation function
modeled as a random oracle is indifferentiable from an ideal cipher. Though sig-
nificantly reducing the number of rounds required for the proof to go through,
and lifting the restriction that the master key length be equal to the block length
of the permutations, their technique puts a strong burden on the key derivation
function, which can hardly be seen as close to a random oracle in most con-
crete block ciphers. In fact, most key schedules, such as the one of AES, are
“lightweight” and invertible, which makes our result (where the key derivation
function has no cryptographic role) more relevant to practice. On the other
hand, the bounds obtained by [2] are better: the number of queries, the running
time, and the indistinguishability bound achieved by their simulator are respec-
tively O(q2), O(q3), and O(q10/2n), while for our simulator they are respectively
O(q4), O(q6), and O(q12/2n).



Taken together, the two results indicate, not too surprisingly, that using
a cryptographically strong key schedule, though not being necessary, enables
to lower the number of rounds needed to obtain an ideal cipher (however this
interpretation must be taken cautiously: it may well be that, say, the iterated
Even-Mansour cipher with four rounds is indifferentiable from an ideal cipher,
independently of the cryptographic strength of the key schedule).

Regarding the purely theoretical question of the minimal number of n-bit
permutations needed to construct an n-bit block and n-bit key ideal cipher, it
was additionally showed in [2] that six independent permutations is sufficient, by
using a 5-round key-alternating cipher and an independent random permutation
P0 to build a key derivation function k 7→ P0(k)⊕ k.

2 Preliminaries

2.1 Notation and Definitions

Given a finite non-empty set S, we write s←$ S to mean that a value is sampled
uniformly at random from S and assigned to s. The security parameter will be
denoted n and will be identified with the block length of permutations in the
Even-Mansour construction. We will write f ∈ poly(n) to denote a polynomially
bounded function and f ∈ negl(n) to denote a negligible function. For δ ∈
{+,−}, we denote δ̄ the opposite of δ.

In the following, we will use calligraphic fonts (A,B, . . .) to denote interactive
Turing machines, and typewriter fonts to denote Procedures attached to these
machines. A distinguisher is an oracle Turing Machine D which takes as input a
security parameter 1n, has access to a set of oraclesO1, . . . , Om, and outputs a bit
b, an experiment we denote DO1,...,Om = b. We will always consider distinguishers
that are deterministic and computationally unbounded, and restricted only with
respect to the number of oracle queries they make.

An ideal primitive is a probability distribution on some set of functions, and
will be denoted with bold fonts. In the corresponding model, a function is drawn
at random from the corresponding distribution (say F ) and all parties (sayM)
involved in the security experiment are given oracle access to the corresponding
function, which we simply denote MF . In the following we will consider the
following two ideal primitives:
– a random permutation Pi on {0, 1}n, which is a permutation drawn at ran-

dom from the set of all permutations on {0, 1}n, and which can be ac-
cessed in the two directions Pi(x) and P−1

i (y); we will use the notation
P = (P1, . . . ,Pr) to denote a tuple of independent random permutations;

– an ideal cipher E with message space and key space {0, 1}n, which is drawn
at random from the set of all block ciphers of this form, and which can be
accessed in encryption, denoted E(k, x), and decryption, denoted E−1(k, y).

2.2 Indifferentiability

We recall the usual definition of indifferentiability.



Definition 1. Let q, σ, t : N→ N and ε : N→ R be four functions of the security
parameter n. A Turing machine C with oracle access to an ideal primitive F
is said to be statistically and strongly (q, σ, t, ε)-indifferentiable from an ideal
primitive G if there exists an interactive Turing machine S with oracle access
to G such that for any distinguisher D making at most q queries, S makes at
most σ oracle queries, runs in time at most t, and the following holds:∣∣∣Pr

[
DG,SG

= 1
]
− Pr

[
DC

F ,F = 1
]∣∣∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any
q ∈ poly(n), the above definition is fulfilled with σ, t ∈ poly(n) and ε ∈ negl(n).

This definition does not refer to the running time of D. When only polynomial-
time distinguishers are considered, indifferentiability is said to be computational.
Weak indifferentiability is defined as above, but the order of quantifiers for the
distinguisher and the simulator are switched (for all distinguisher, there is a
simulator. . . ).

In this paper, and similarly to [32], we will slightly tweak the definition
of strong indifferentiability as follows: we will describe a simulator which, for
any distinguisher D making a polynomial number q of queries, runs in time at
most t and makes at most σ queries with overwhelming probability (rather than
probability one) in system DG,SG . This is not a big concern since any such
simulator S can be transformed into a simulator S ′ for weak indifferentiability
(which is sufficient for the composition theorem of [45] to hold) which takes the
maximal number of queries q of D as input, and aborts when its number of
queries becomes larger than σ (computed as a function of q), hence making at
most σ queries with probability one.

2.3 The Iterated Even-Mansour Cipher

Fix an integer r ≥ 1. Let P = (P1, . . . , Pr) be a tuple of permutations on {0, 1}n.
The r-round iterated Even-Mansour construction associated with P , denoted C̄Pr ,
is the block cipher with message space {0, 1}n and key space ({0, 1}n)r+1 which
maps a message x and a key (k0, . . . , kr) to the ciphertext defined by:

C̄Pr ((k0, . . . , kr), x) = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · · )) .

Let γ = (γ0, . . . , γr) be a tuple of efficiently invertible permutations on
{0, 1}n. The single-key r-round iterated Even-Mansour construction associated
with P and γ, denoted CP,γr , is the block cipher with message space {0, 1}n and
key space {0, 1}n which maps a message x and a key k to the ciphertext defined
by (see Figure 1):

CP,γr (k, x) = γr(k)⊕ Pr(γr−1(k)⊕ Pr−1(· · ·P2(γ1(k)⊕ P1(γ0(k)⊕ x)) · · · )) .

In all the following, we will focus on the case where all permutations γi are the
identity, and simply denote CPr the resulting cipher, namely:

CPr (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )) .



We stress that our main result (Theorem 1) holds for arbitrary permutations γi
as long as they are efficiently invertible.

x P1

γ0

k

P2

γ1

k

Pr y

γr

k

Fig. 1. The single-key iterated Even-Mansour cipher with r rounds CP,γr . We focus in
this paper on the special case γi = Id for i = 0, . . . , r.

3 Indifferentiability for Twelve Rounds

In this section we prove the main result of this paper, which is the following
theorem.

Theorem 1. For any q, the 12-round single-key iterated Even-Mansour cipher
CP ,γ

12 with twelve independent random n-bit permutations P = (P1, . . . ,P12), and
fixed, efficiently invertible n-bit permutations γ = (γ0, . . . , γ12) for the key sched-
ule, is strongly and statistically (q, σ, t, ε)-indifferentiable from an ideal cipher E
with n-bit blocks and n-bit keys, where:

σ = 27 × q4, t = O(q6), and ε = 291 × q12

2n .

To prove this, we will describe an efficient simulator S, and show that the two
systems (CP ,γ

12 ,P ) and (E,SE) are indistinguishable. For simplicity we focus on
the case where all γi’s are the identity, but the generalization is straightforward.

Notational convention. In all this section, we will use the following useful
notational convention: we will interchangeably denote the input to the ideal
cipher or the iterated Even-Mansour cipher x or y0, and the output y or x13.

3.1 Informal Description of the Simulator

We start with a high-level view of the simulator (see also Figure 2). It offers
an interface to the distinguisher for querying the simulated permutations, which
formally takes the form of a public procedure Query(i, δ, z), where i ∈ {1, . . . , 12}
names the permutation, δ ∈ {+,−} tells whether this is a direct or indirect query,
and z ∈ {0, 1}n is the actual value queried. The simulator maintains an history
for the simulated permutations under the form of hash tables P1, . . . , P12. Each



such table maps entries (δ, z) ∈ {+,−} × {0, 1}n to values z′ ∈ {0, 1}n. We
denote P+

i , resp. P−i , the (time-dependent) sets of strings z ∈ {0, 1}n such that
Pi(+, z), resp. Pi(−, z), is defined. When the simulator receives a query (i, δ, z),
it looks in hash table Pi to see whether the corresponding answer Pi(δ, z) is
already defined. When this is the case, it outputs the answer and waits for the
next query. Otherwise, it draws a uniformly random answer z′ and defines in hash
table Pi(δ, z) := z′, as well as the answer to the opposite query Pi(δ̄, z′) := z
(note that this last assignment may overwrite an entry in Pi).

Additionally, before outputting the answer z′, and for some specific values
of (i, δ), the simulator triggers a chain detection mechanism followed by a chain
completion mechanism to ensure consistency of its answers with the ideal cipher
E. An essential point to notice about the iterated Even-Mansour cipher in order
to understand these mechanisms is that given an output value yi for permutation
Pi and an input value xi+1 for permutation Pi+1, it is possible to compute the
corresponding key k = yi ⊕ xi+1, and therefore to move forward and backward
in the construction up and down to the corresponding input x and output y
to the cipher. Hence, any tuple (yi, xi+1, i) (a so-called partial chain later in
the reasoning) defines a unique computation path inside the whole construction.
This is the exact analogue of the property of the Feistel construction that the
input values to two consecutive round functions uniquely define the computation
path inside the Feistel network.

There are exactly six such values of (i, δ) for which the simulator performs
additional steps: (2,+), (6,+), (6,−), (7,+), (7,−), and (11,−). The cases (2,+)
and (11,−) are similar. When receiving a query (2,+, x2) for which the answer
is still undefined, the simulator, after having drawn a random answer y2 to
this query, considers all values y1 ∈ P−1 , computes the corresponding key k :=
y1⊕x2, and moves backward in the iterated Even-Mansour cipher by computing
x1 := P1(−, y1), y0 := x1 ⊕ k, x13 := E(k, y0) (hence making a query to the
ideal cipher), and y12 := x13 ⊕ k, and checks whether y12 ∈ P−12. When this is
the case, it enqueues in a queue Queue the tuple (y0, x1, 0, 4). The first three
elements (y0, x1, 0) specify the partial chain that must be completed, while the
last element ` = 4 specifies which permutation will be adapted during completion
of the chain to ensure consistency with E. The behavior of the simulator when
receiving a query (11,−, y11) is symmetric: after having drawn a random answer
x11, for all x12 ∈ P+

12, it moves forward in the iterated Even-Mansour cipher
to check whether the corresponding value x1 is in P+

1 , and if so enqueues the
corresponding tuple (y0, x1, 0, 9) (note that in this case adaptation will take place
at permutation P9).

The four remaining cases (i, δ) = (6,+), (6,−), (7,+), and (7,−) are similar,
except that there is no check: the simulator enqueues a tuple (y6, x7, 6, `) for
each newly generated pair (y6, x7) ∈ P−6 × P

+
7 . If this was a query with i = 6,

then adaptation will take place at ` = 4, while if this was a query with i = 7,
adaptation will take place at ` = 9. Assume for a concrete example that the
simulator receives a query (6,+, x6) whose answer is undefined yet. Then it draws
a random answer y6 ←$ {0, 1}n, and enqueues (y6, x7, 6, 4) for all x7 ∈ P+

7 .



Immediately after having enqueued newly created chains (yi, xi+1, i, `), the
simulator starts completing the partial chains, by dequeuing tuples from Queue.
For this, when dequeuing (yi, xi+1, i, `), it computes the key k := yi ⊕ xi+1,
and moves forward and backward in the iterated Even-Mansour cipher, possibly
defining missing permutations values Pi(+, ·) or Pi(−, ·), and making a query
to E(k, ·) to “wrap around”, until it reaches the input value x` for P` (when
moving forward) and the corresponding output y` (when moving backward). It
finally “adapts” permutation P` by setting P`(+, x`) := y` and P`(−, y`) := x`
in order to ensure consistency of the entire chain with E. It also adds chains
that have been completed in a set Completed in order to avoid completing
them twice. While completing a chain and adding possibly missing permutation
values, the simulator uses the same chain detection mechanism as when receiving
a direct query from the distinguisher. Hence new tuples may be enqueued while
dequeuing and completing a chain, and the simulator keeps dequeuing tuples
until the queue is empty. When this is the case, it returns the answer to the
original query of the distinguisher.

As in the indifferentiability proof of the Feistel construction, there will be two
crucial points to show: first, that the recursive chain completion mechanism ter-
minates in polynomial time (except maybe with negligible probability); second,
that the simulator can always adapt, i.e. that it never has (or only with negligi-
ble probability) to overwrite previously defined entries when adapting a chain,
which would render previously completed chains inconsistent with the ideal ci-
pher E. Permutations P3, P5, P8, and P10 (i.e. the permutations surrounding
the two adaptation rounds P4 and P9) will play a key role while proving this
last point: they will ensure that no bad collisions occur at the input or output
of the two permutations used for adapting chains.

We defer the formal definition of the simulator to the full version of the
paper [39].

3.2 Sketch of the Proof of Theorem 1

We sketch the main ideas of the proof of Theorem 1. The detailed proof is
deferred to the full version of the paper [39].

We use intermediate systems that are depicted on Figure 3. System Σ1 is
the simulated world (E,SE), while Σ4 is the real world (CP

12,P ). In system Σ2,
the ideal cipher E is replaced with a so-called keyed two-sided random function
F(η) which offers the same interface for encryption and decryption as the ideal
cipher. However, when asked for an encryption query (k, x) or a decryption
query (k, y), F first checks (by maintaining a hash table denoted E) whether
this value appeared in a previous query, and if so answers consistently. Otherwise
it draws a uniformly random answer (the randomness is made explicit through a
uniformly random table η) and updates E. Besides, F has an additional interface
F .Check(k, x, y) (only used by the simulator) which returns true if and only if
E(+, k, x) = y or E(−, k, y) = x (in particular, if neither (k, x) was queried
for encryption nor (k, y) for decryption, Check(k, x, y) returns false). In Σ2, the
simulator S is slightly modified into a new simulator T which queries Check



x/y0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

y/x13

k

k

k

k

k

k

k

k

k

k

k

k

k

Detect chain

Set uniform

Adapt
permutation

Set uniform

Detect chain

Set uniform

Adapt
permutation

Set uniform

Detect chain

Ek

Fig. 2. Detection and adaptation zones used by the simulator.



D

0/1

SE

D

0/1

TF

ϕη

D

0/1

TC̃12

π

D

0/1

PC12

Σ1 Σ2 Σ3 Σ4

Fig. 3. Systems used in the indifferentiability proof.

rather than the encryption or decryption interface when deciding whether a
tuple (y0, x1, 0, `) must be enqueued. Moreover the randomness of T is made
explicit with uniformly random tables ϕ = (ϕ1, . . . , ϕ12). In system Σ3, the
keyed two-sided random function is replaced with an iterated Even-Mansour
cipher using uniformly random permutations π = (π1, . . . , π12), enhanced with
a Check procedure similarly to F . The simulator T now uses tables π as well for
its random draws.

To prove Theorem 1, we will upper bound the statistical distance between
successive worlds Σi. Additionally, we must show that S makes a polynomial
number of oracle queries and runs in polynomial time in Σ1 with overwhelming
probability. We start the analysis in Σ2: namely we show that in this system, T
will always complete at most q chains of the form (y0, x1, 0, `). The reason for this
is quite simple: since T uses interface F .Check to decide whether such a tuple
must be enqueued, such a chain can be detected and enqueued only if (k, y0)
with k = y0⊕x1 appeared in the queries (or the answers) of the distinguisher to
F . Since by assumption the distinguisher makes at most q queries, this implies
the result. Starting from this observation, one can then upper bound the size of
the hash tables Pi maintained by the simulator as well as the number of queries
of T to F .

We then upper bound the statistical distance between Σ1 and Σ2. For this,
we appeal to a previous result from [32] to obtain the following lemma.

Lemma 1. For any distinguisher D which makes at most q queries in total, we
have: ∣∣∣Pr

[
DΣ1 = 1

]
− Pr

[
DΣ2(η,ϕ) = 1

]∣∣∣ ≤ 222 × q12

2n .



As a side result, this directly implies that with overwhelming probability,
S runs in polynomial time and makes a polynomial number of queries to E in
system Σ1, as captured by the following lemma.

Lemma 2. Assume that the distinguisher D makes at most q queries in total.
Then with probability greater than 1 − 221 × q12/2n over an execution of DΣ1 ,
the simulator S makes at most 27 × q4 queries to E or E−1 (assuming S never
repeats a query), and runs in time at most O(q6).

We then move to the hard part of the proof, which is to upper bound the
statistical distance between Σ2 and Σ3. For this, an important first step is to
show that in Σ2, the simulator never (more precisely only with negligible prob-
ability) overwrites an entry in hash tables Pi during a call to ForceVal (i.e. the
procedure which adapts chains by forcing the value of permutation P4 or P9).
To reason about the behavior of system Σ2, we introduce the concept of partial
chain, which is simply a tuple (yi, xi+1, i) for i ∈ {1, . . . , 12}. Considering, at
some point in the execution, hash tables P1, . . . , P12 maintained by the distin-
guisher and the hash table E maintained by F , we define for any partial chain
C = (yi, xi+1, i) and any ` ∈ {1, . . . , 12} the functions val+

` (C) and val−` (C)
as follows: val+

` (C) is defined as the direct input value x` to permutation P`
obtained when moving forward in the Even-Mansour construction (possibly look-
ing in hash table E to wrap around), or ⊥ is at some point the computation
stops because the necessary value was missing in some hash table (including E).
Similarly val−` (C) is defined as the indirect input value y` to permutation P`
obtained when moving backward in the Even-Mansour construction, or ⊥ if the
computation stops at some point.

As a preliminary step, we need to exclude some bad events that lead to a
pathological behavior of Σ2. These bad events correspond to the draw of bad
values when the simulator randomly defines the value of some permutation Pi
or when F draws a random answer. More precisely, the bad values are exactly
those that can be written as the bitwise xor of up to five values in the history,
where the history includes all n-bit strings appearing in hash tables Pi and E
at the moment where the random answer is drawn. Since the size of the history
remains polynomial, the probability of these bad events is negligible.

Then, the proof that the simulator never overwrites an entry in hash tables
Pi during a call to ForceVal roughly consists of two steps. First, we show that
just before the query which leads to some partial chain C being enqueued to
be adapted at position `, one has val+

`−1(C) = ⊥ and val−`+1(C) = ⊥, unless
an equivalent chain B (where equivalent means that one can obtain B from C
by moving forward or backward in the Even-Mansour construction) has been
previously enqueued. This crucially relies on fact that the two chain detection
zones (“border” and “center”) are “protecting” each other. For example, consider
the case where some chain C = (y0, x1, 0) is enqueued to be adapted at position
` = 4 due to a query for P2(x2). Then clearly, before P2(x2) is defined, one has
val+

3 (C) = ⊥. On the other side, if val−5 (C) 6= ⊥, then this means that C is
equivalent to some partial chain B = (y6, x7, 6) with y6 ∈ P−6 and x7 ∈ P+

7 , so
that D would have been enqueued previously due to some query to P6 or P7.



The second step is to show that between the moment where C is enqueued,
and the moment where C is dequeued, the completion of other chains (possi-
bly) in the queue will not lead to val+

`−1(C) ∈ P+
`−1 or val−`+1(C) ∈ P−`+1. In

particular this requires to show that C cannot collision with another, previously
enqueued chain D at round `−1 or `+1. This is carried out via a careful analysis
of all the ways this could happen, which would all imply the occurrence of the
bad event previously discussed. Once this is done, it is easy to show that no
entry is overwritten during the call to ForceVal when adapting C. To finalize
the reasoning, we use a randomness mapping argument similar to the one that
was introduced in [32], and obtain the following lemma.

Lemma 3. For any distinguisher D which makes at most q queries in total, we
have: ∣∣∣Pr

[
DΣ2(η,ϕ) = 1

]
− Pr

[
DΣ3(π) = 1

]∣∣∣ ≤ 289 × q12

2n .

Finally, upper bounding the statistical distance between Σ3 and Σ4 is easily
handled, and yields the following lemma.

Lemma 4. For any distinguisher D which makes at most q queries in total, we
have: ∣∣∣Pr

[
DΣ3(π) = 1

]
− Pr

[
DΣ4 = 1

]∣∣∣ ≤ 289 × q12

2n .

Combining Lemmas 1, 2, 3, and 4 finally enables to prove Theorem 1.

Remark 1. Our choice to use a keyed two-sided random function and a simulator
T accessing random function tables ϕ in system Σ2 allows to handle uniformly
random values, which slightly simplifies the computation of various bounds in the
proof. It is however possible (and conceptually more satisfying) to use an ideal
cipher enhanced with a Check procedure rather than a keyed two-sided random
function, and random permutation tables rather than random function tables.
This would have some nice effects in the analysis of system Σ2, in particular this
would exclude some bad events such as potential overwrites in the hash table
E when F defines an answer by reading table η or in hash tables Pi when T
defines an answer by reading tables ϕi. This kind of approach was taken in [2].

Remark 2. If one contents oneself with weak indifferentiability (where the sim-
ulator is allowed to depend on the distinguisher), one can slightly simplify the
simulator by having it abort when it is about to complete more than q chains of
the form (y0, x1, 0); this allows to get rid of the intermediate system Σ2 where
the Check procedure is added to the keyed two-sided random function (or the
ideal cipher) in order to ensure that the simulator makes a polynomial number
of queries and runs in polynomial time with probability 1. Such a simplification
does not seem to be possible if one wants to define a universal simulator which
does not depend on q.



References

1. M. R. Albrecht, P. Farshim, K. G. Paterson, and G. J. Watson. On Cipher-
Dependent Related-Key Attacks in the Ideal-Cipher Model. In A. Joux, editor,
Fast Software Encryption - FSE 2011, volume 6733 of Lecture Notes in Computer
Science, pages 128–145. Springer, 2011.

2. E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On
the Indifferentiability of Key-Alternating Ciphers. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 (Proceedings, Part I), volume
8042 of Lecture Notes in Computer Science, pages 531–550. Springer, 2013. Full
version available at http://eprint.iacr.org/2013/061.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption. In Symposium on Foundations of Computer Science -
FOCS ’97, pages 394–403. IEEE Computer Society, 1997.

4. M. Bellare, J. Kilian, and P. Rogaway. The Security of the Cipher Block Chain-
ing Message Authentication Code. Journal of Computer and System Sciences,
61(3):362–399, 2000.

5. M. Bellare and T. Kohno. A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In E. Biham, editor, Advances in Cryptology
- EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
491–506. Springer, 2003.

6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In B. Preneel, editor, Advances in Cryptology - EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155.
Springer, 2000.

7. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In X. Lai and K. Chen, editors, Advances in Cryptology
- ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages
299–314. Springer, 2006.

8. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

9. E. Biham. New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology, 7(4):229–246, 1994.

10. A. Biryukov, D. Khovratovich, and I. Nikolić. Distinguisher and Related-Key At-
tack on the Full AES-256. In S. Halevi, editor, Advances in Cryptology - CRYPTO
2009, volume 5677 of Lecture Notes in Computer Science, pages 231–249. Springer,
2009.

11. J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function. In M. J. Robshaw, editor, Fast Software Encryption - FSE ’06,
volume 4047 of Lecture Notes in Computer Science, pages 328–340. Springer, 2006.

12. J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In M. Yung, editor, Advances in
Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 320–335. Springer, 2002.

13. A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert, J. P. Steinberger, and
E. Tischhauser. Key-Alternating Ciphers in a Provable Setting: Encryption Using
a Small Number of Public Permutations - (Extended Abstract). In D. Pointcheval
and T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 45–62. Springer, 2012.

http://eprint.iacr.org/2013/061


14. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revis-
ited (Preliminary Version). In Symposium on Theory of Computing - STOC ’98,
pages 209–218. ACM, 1998. Full version available at http://arxiv.org/abs/cs.
CR/0010019.

15. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård Revisited:
How to Construct a Hash Function. In V. Shoup, editor, Advances in Cryptology -
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

16. J.-S. Coron, J. Patarin, and Y. Seurin. The Random Oracle Model and the Ideal
Cipher Model Are Equivalent. In D. Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2008.

17. J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In B. Honary, editor,
Cryptography and Coding 2001, volume 2260 of Lecture Notes in Computer Science,
pages 222–238. Springer, 2001.

18. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

19. I. Damgård. A Design Principle for Hash Functions. In G. Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

20. G. Demay, P. Gazi, M. Hirt, and U. Maurer. Resource-Restricted Indifferentiabil-
ity. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 664–683.
Springer, 2013. Full version available at http://eprint.iacr.org/2012/613.

21. A. Desai. The Security of All-or-Nothing Encryption: Protecting against Exhaus-
tive Key Search. In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 359–375. Springer, 2000.

22. S. Even and Y. Mansour. A Construction of a Cipher from a Single Pseudorandom
Permutation. Journal of Cryptology, 10(3):151–162, 1997.

23. H. Feistel. Cryptography and computer privacy. Scientific American, 228(5):15–23,
1973.

24. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer, 1986.

25. P. Gazi and U. M. Maurer. Cascade Encryption Revisited. In M. Matsui, editor,
Advances in Cryptology - ASIACRYPT 2009, volume 5912 of Lecture Notes in
Computer Science, pages 37–51. Springer, 2009.

26. P. Gazi and S. Tessaro. Efficient and Optimally Secure Key-Length Extension for
Block Ciphers via Randomized Cascading. In D. Pointcheval and T. Johansson,
editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 63–80. Springer, 2012.

27. H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In S. Hong and T. Iwata, editors, Fast Software Encryption
- FSE 2010, volume 6147 of Lecture Notes in Computer Science, pages 365–383.
Springer, 2010.

28. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

29. L. Granboulan. Short Signatures in the Random Oracle Model. In Y. Zheng,
editor, Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 364–378. Springer, 2002.

http://arxiv.org/abs/cs.CR/0010019
http://arxiv.org/abs/cs.CR/0010019
http://eprint.iacr.org/2012/613


30. S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model. In C. Park and S. Chee, editors, Information Security and Cryptology -
ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 330–342.
Springer, 2004.

31. S. Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions.
In M. J. Robshaw, editor, Fast Software Encryption - FSE 2006, volume 4047 of
Lecture Notes in Computer Science, pages 210–225. Springer, 2006.

32. T. Holenstein, R. Künzler, and S. Tessaro. The Equivalence of the Random Oracle
Model and the Ideal Cipher Model, Revisited. In L. Fortnow and S. P. Vadhan,
editors, Symposium on Theory of Computing - STOC 2011, pages 89–98. ACM,
2011. Full version available at http://arxiv.org/abs/1011.1264.

33. É. Jaulmes, A. Joux, and F. Valette. On the Security of Randomized CBC-MAC
Beyond the Birthday Paradox Limit: A New Construction. In J. Daemen and
V. Rijmen, editors, Fast Software Encryption - FSE 2002, volume 2365 of Lecture
Notes in Computer Science, pages 237–251. Springer, 2002.

34. J. Jonsson. An OAEP Variant With a Tight Security Proof. IACR Cryptology
ePrint Archive Report 2002/034, 2002. Available at http://eprint.iacr.org/
2002/034.

35. J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search. In
N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture
Notes in Computer Science, pages 252–267. Springer, 1996.

36. L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some Block Ciphers.
In K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833
of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

37. R. Künzler. Are the random oracle and the ideal cipher models equivalent? Mas-
ter’s thesis, ETH Zurich, Switzerland, 2009.

38. R. Lampe, J. Patarin, and Y. Seurin. An Asymptotically Tight Security Analysis
of the Iterated Even-Mansour Cipher. In X. Wang and K. Sako, editors, Advances
in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Science, pages 278–295. Springer, 2012.

39. R. Lampe and Y. Seurin. How to Construct an Ideal Cipher from a Small Set of
Public Permutations. Full version of this paper. Available from http://eprint.
iacr.org/2013/255.

40. J. Lee, M. Stam, and J. P. Steinberger. The Collision Security of Tandem-DM in
the Ideal Cipher Model. In P. Rogaway, editor, Advances in Cryptology - CRYPTO
2011, volume 6841 of Lecture Notes in Computer Science, pages 561–577. Springer,
2011.

41. M. Luby and C. Rackoff. Pseudo-random Permutation Generators and Crypto-
graphic Composition. In Symposium on Theory of Computing - STOC ’86, pages
356–363. ACM, 1986.

42. M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM Journal on Computing, 17(2):373–386, 1988.

43. U. M. Maurer. A Simplified and Generalized Treatment of Luby-Rackoff Pseudo-
random Permutation Generator. In R. A. Rueppel, editor, Advances in Cryptology
- EUROCRYPT ’92, volume 658 of Lecture Notes in Computer Science, pages
239–255. Springer, 1992.

44. U. M. Maurer and K. Pietrzak. The Security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. In E. Biham, editor, Advances in Cryptology - EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 544–561.
Springer, 2003.

http://arxiv.org/abs/1011.1264
http://eprint.iacr.org/2002/034
http://eprint.iacr.org/2002/034
http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2013/255


45. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology. In
M. Naor, editor, Theory of Cryptography Conference- TCC 2004, volume 2951 of
Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

46. B. Mennink. Optimal Collision Security in Double Block Length Hashing with
Single Length Key. In X. Wang and K. Sako, editors, Advances in Cryptology
- ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
526–543. Springer, 2012.

47. R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances
in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 428–446. Springer, 1989.

48. M. Minier, R. C.-W. Phan, and B. Pousse. Distinguishers for Ciphers and Known
Key Attack against Rijndael with Large Blocks. In B. Preneel, editor, Progress in
Cryptology - AFRICACRYPT 2009, volume 5580 of Lecture Notes in Computer
Science, pages 60–76. Springer, 2009.

49. J. Patarin. Pseudorandom Permutations Based on the DES Scheme. In G. D.
Cohen and P. Charpin, editors, EUROCODE ’90, volume 514 of Lecture Notes in
Computer Science, pages 193–204. Springer, 1990.

50. J. Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In M. K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 106–122. Springer, 2004.

51. B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In D. R. Stinson, editor, Advances in Cryptology
- CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 368–378.
Springer, 1993.

52. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with Composition: Limi-
tations of the Indifferentiability Framework. In K. G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 487–506. Springer, 2011.

53. R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In C. Boyd,
editor, Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 552–565. Springer, 2001.

54. Y. Sasaki and K. Yasuda. Known-Key Distinguishers on 11-Round Feistel and Col-
lision Attacks on Its Hashing Modes. In A. Joux, editor, Fast Software Encryption
- FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 397–415.
Springer, 2011.

55. Y. Seurin. Primitives et protocoles cryptographiques à sécurité prouvée. PhD thesis,
Université de Versailles Saint-Quentin-en-Yvelines, France, 2009.

56. C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28(4):656–715, 1949.

57. J. Steinberger. Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance. IACR Cryptology ePrint Archive Report 2012/481, 2012. Avail-
able at http://eprint.iacr.org/2012/481.

58. J. P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model.
In M. Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of
Lecture Notes in Computer Science, pages 34–51. Springer, 2007.

59. S. Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal of
Cryptology, 16(4):249–286, 2003.

60. R. S. Winternitz. A Secure One-Way Hash Function Built from DES. In IEEE
Symposium on Security and Privacy, pages 88–90, 1984.

http://eprint.iacr.org/2012/481

	How to Construct an Ideal Cipher from a Small Set of Public Permutations
	Introduction
	Preliminaries
	Notation and Definitions
	Indifferentiability
	The Iterated Even-Mansour Cipher

	Indifferentiability for Twelve Rounds
	Informal Description of the Simulator
	Sketch of the Proof of Theorem 1

	References


