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Abstract. We introduce explicit schemes based on the polarization phe-
nomenon for the task of secret-key agreement from common information
and one-way public communication as well as for the task of private chan-
nel coding. Our protocols are distinct from previously known schemes in
that they combine two practically relevant properties: they achieve the
ultimate rate—defined with respect to a strong secrecy condition—and
their complexity is essentially linear in the blocklength. However, we are
not able to give an efficient algorithm for code construction.
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1 Introduction

Consider two parties, Alice and Bob, connected by an authentic but otherwise
fully insecure communication channel. It has been shown that without having
access to additional resources, it is impossible for them to communicate privately,
with respect to an information-theoretic privacy condition [1,2]. In particular
they are unable to generate an unconditionally secure key with which to encrypt
messages transmitted over the public channel. However, if Alice and Bob have
access to correlated randomness about which an adversary (Eve) has only partial
knowledge, the situation changes completely: information-theoretically secure
secret-key agreement and private communication become possible. Alternatively,
if Alice and Bob are connected by a noisy discrete memoryless channel (DMC)
to which Eve has only limited access—the so-called wiretap channel scenario of
Wyner [3], Csiszár and Körner [4], and Maurer [2]—private communication is
again possible.

In this paper, we present explicit schemes for efficient one-way secret-key
agreement from common randomness and for private channel coding in the wire-
tap channel scenario. As discussed in Section 2.5, we improve previous work that
requires extra assumptions about the structure of the wiretap channel or/and
do not achieve strong secrecy. Our schemes are based on polar codes, a family of
capacity-achieving linear codes, introduced by Arıkan [5], that can be encoded
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and decoded efficiently. Previous work in a quantum setup [6] already implies
that practically efficient one-way secret-key agreement and private channel cod-
ing in a classical setup is possible, where a practically efficient scheme is one
whose computational complexity is essentially linear in the blocklength. The
aim of this paper is to explain the schemes in detail and give a purely classi-
cal proof that the schemes are reliable, secure, practically efficient and achieve
optimal rates.

This paper is structured as follows. Section 2 introduces the problems of
performing one-way secret-key agreement and private channel coding. We sum-
marize known and new results about the optimal rates for these two problems
for different wiretap channel scenarios. In Section 3, we explain how to obtain
one-way secret-key agreement that is practically efficient, strongly secure, reli-
able, and achieves the one-way secret-key rate. However, we are not able to give
an efficient algorithm for code construction as discussed in Section 3.3. Section 4
introduces a similar scheme that can be used for strongly secure private chan-
nel coding at the secrecy capacity. Finally we conclude in Section 5 and state
an open problem that is of interest in the setup of this paper as well as in the
quantum mechanical scenario introduced in [6].

2 Background and Contributions

2.1 Notation and Definitions

Let rks “ t1, . . . , ku for k P Z`. For x P Zk2 and I Ď rks we have xrIs “ rxi :
i P Is, xi “ rx1, . . . , xis and xij “ rxj , . . . , xis for j ď i. The set Ac denotes
the complement of the set A. The uniform distribution on an arbitrary random
variable X is denoted by PX . For distributions P and Q over the same alpha-
bet X , the variational distance is defined by δpP,Qq :“ 1

2

ř

xPX |P pxq ´Qpxq|.
Let X and Y be two (possibly correlated) random variables. We use standard
information theoretic notation, such as HpXq for the (Shannon) entropy of X,
HpX,Y q for the joint entropy of pX,Y q, HpX|Y q for the conditional entropy of
X given Y , and IpX;Y q for the mutual information between X and Y .1 The
notation X´̋´Y ´̋´Z means that the random variables X,Y, Z form a Markov
chain in the given order.

In this setup we consider a discrete memoryless wiretap channel (DM-WTC)
W : X Ñ Y ˆZ, which is characterized by its transition probability distribution
PY,Z|X .2 We assume that the variable X belongs to Alice, Y to Bob and Z to
Eve.

According to Körner and Marton [8], a DM-WTC W : X Ñ Y ˆZ is termed
more capable if IpX;Y q ě IpX;Zq for every possible distribution on X. The

1 These quantities are properly defined in [7].
2 Recall that a discrete channel is defined as a system consisting of an input alphabet

(here X ), an output alphabet (here Y ˆZ) and a transition probability distribution
(here PY,Z|X) between the input and the output. A channel is said to be memoryless
if the probability distribution of the output depends only on the input at that time
and is conditionally independent of previous channel inputs or outputs.
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channel W is termed less noisy if IpU ;Y q ě IpU ;Zq for every possible distribu-
tion on pU,Xq where U has finite support and U ´̋´X´̋´pY,Zq form a Markov
chain. If X´̋´Y ´̋´Z form a Markov chain, W is called degraded.3 It has been
shown [8] that being more capable is a strictly weaker condition than being less
noisy, which is a strictly weaker condition than being degraded. Hence, having a
DM-WTC W which is degraded implies that W is less noisy, which again implies
that W is also more capable.

2.2 Polarization Phenomenon

Let XN be a vector whose entries are i.i.d. Bernoulli(p) distributed for p P r0, 1s
and N “ 2n where n P Z`. Then define UN “ GNX

N , where GN denotes the
polarization (or polar) transform which can be represented by the matrix

GN :“

ˆ

1 1
0 1

˙b logN

, (1)

where Abk denotes the kth Kronecker power of an arbitrary matrix A. Note that
it turns out that GN is its own inverse. Furthermore, let Y N “ WNXN , where
WN denotes N independent uses of a DMC W : X Ñ Y. For ε P p0, 1q we may
define the two sets

RN
ε pX|Y q :“

 

i P rN s : H
`

Ui
ˇ

ˇU i´1, Y N
˘

ě 1´ ε
(

and (2)

DN
ε pX|Y q :“

 

i P rN s : H
`

Ui
ˇ

ˇU i´1, Y N
˘

ď ε
(

. (3)

The former consists of outputs Uj which are essentially uniformly random, even
given all previous outputs U j´1 as well as Y N , while the latter set consists
of the essentially deterministic outputs. The polarization phenomenon is that
essentially all outputs are in one of these two subsets, and their sizes are given
by the conditional entropy of the input X given Y .

Theorem 1 (Polarization Phenomenon [5,9]) For any ε P p0, 1q
ˇ

ˇRN
ε pX|Y q

ˇ

ˇ “ NHpX|Y q ´ opNq and (4)
ˇ

ˇDN
ε pX|Y q

ˇ

ˇ “ N p1´HpX|Y qq ´ opNq. (5)

Based on this theorem it is possible to construct a family of linear error cor-
recting codes, called polar codes. The logical bits are encoded into the Ui for
i P DN

ε pX|Y q, whereas the inputs to Ui for i P DN
ε pX|Y q

c are fixed.4 It has
been shown that polar codes have several desirable attributes [5,10,11,12]: they
provably achieve the capacity of any DMC; they have an encoding and decoding
complexity that is essentially linear in the blocklength N ; the error probability
decays exponentially in the square root of the blocklength.

3 To call a DM-WTC W : X Ñ Y ˆ Z more capable is an abbreviation meaning that
the main channel W1 : X Ñ Y is more capable than the eavesdropping channel
W2 : X Ñ Z. The same convention is used for less noisy and degraded DM-WTCs.

4 These are the so-called frozen bits.
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Non-binary random variables can be represented by a sequence of corre-
lated binary random variables, which are then encoded separately. Correlated se-
quences of binary random variables may be polarized using a multilevel construc-
tion, as shown in [10].5 Given M i.i.d. instances of a sequence X “ pXp1q, Xp2q,
. . . , XpKqq and possibly a correlated random variable Y , the basic idea is to first

polarize XM
p1q relative to YM , then treat XM

p1qY
M as side information in polariz-

ing XM
p2q, and so on. More precisely, defining UM

pjq “ GMX
M
pjq for j “ 1, . . . ,K,

we may define the random and deterministic sets for each j as

RM
ε,pjqpXpjq|Xpj´1q, ¨ ¨ ¨ , Xp1q, Y q

“ ti P rM s : H
´

Upjq,i

ˇ

ˇ

ˇ
U i´1
pjq , X

M
pj´1q, ¨ ¨ ¨ , X

M
p1q, Y

M
¯

ě 1´ εu, and (6)

DM
ε,pjqpXpjq|Xpj´1q, ¨ ¨ ¨ , Xp1q, Y q

“ ti P rM s : H
´

Upjq,i

ˇ

ˇ

ˇ
U i´1
pjq , X

M
pj´1q, ¨ ¨ ¨ , X

M
p1q, Y

M
¯

ď εu. (7)

In principle we could choose different ε parameters for each j, but this will not
be necessary here. Now, Theorem 1 applies to the random and deterministic
sets for every j. The sets RM

ε pX|Y q “ tRM
ε,pjqpXpjq|Xpj´1q, . . . , Xp1q, Y qu

K
j“1 and

DM
ε pX|Y q “ tDM

ε,pjqpXpjq|Xpj´1q, . . . , Xp1q, Y qu
K
j“1 have sizes given by

|RM
ε pX|Y q| “

K
ÿ

j“1

ˇ

ˇ

ˇ
RM
ε,pjqpXpjq|Xpj´1q, . . . , Xp1q, Y q

ˇ

ˇ

ˇ
(8)

“

K
ÿ

j“1

MH
`

Xpjq
ˇ

ˇXp1q, . . . , Xpj´1q, Y
˘

´ opMq (9)

“MHpX|Y q ´ opKMq, (10)

and

|DM
ε pX|Y q| “

K
ÿ

j“1

ˇ

ˇ

ˇ
DM
ε,pjqpXpjq|Xpj´1q, . . . , Xp1q, Y q

ˇ

ˇ

ˇ
(11)

“

K
ÿ

j“1

M
`

1´H
`

Xpjq
ˇ

ˇXp1q, . . . , Xpj´1q, Y
˘˘

´ opMq (12)

“M pK ´HpX|Y qq ´ opKMq. (13)

In the following we will make use of both the polarization phenomenon in its
original form, Theorem 1, and the multilevel extension. To simplify the presen-
tation, we denote by rGKM the K parallel applications of GM to the K random
variables XM

pjq.

5 An alternative approach is given in [13,14], where the polarization phenomenon has
been generalized for arbitrary finite fields. We will however focus on the multilevel
construction in this paper.
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2.3 One-Way Secret-Key Agreement

At the start of the one-way secret-key agreement protocol, Alice, Bob, and Eve
share N “ 2n, n P Z` i.i.d. copies pXN , Y N , ZN q of a triple of correlated
random variables pX,Y, Zq which take values in discrete but otherwise arbitrary
alphabets X , Y, Z.6

Alice starts the protocol by performing an operation τA : XN Ñ pSJ , Cq
on XN which outputs both her secret key SJA P SJ and an additional random
variable C P C which she transmits to Bob over an public but noiseless public
channel. Bob then performs an operation τB : pYN , Cq Ñ SJ on Y N and the
information C he received from Alice to obtain a vector SJB P SJ ; his secret key.
The secret-key thus produced should be reliable, i.e., satisfy the

reliability condition: lim
NÑ8

Pr
“

SJA ‰ SJB
‰

“ 0, (14)

and secure, i.e., satisfy the

(strong) secrecy condition: lim
NÑ8

∥∥∥PSJA,ZN ,C ´ PSJA ˆ PZN ,C∥∥∥1 “ 0, (15)

where PSJA denotes the uniform distribution on random variable SJA.

Historically, secrecy was first characterized by a (weak) secrecy condition of
the form

lim
NÑ8

1

N
I
`

SJA;ZN , C
˘

“ 0. (16)

Maurer and Wolf showed that (16) is not a sufficient secrecy criterion [15,16]
and introduced the strong secrecy condition

lim
NÑ8

I
`

SJA;ZN , C
˘

“ 0, (17)

where in addition it is required that the key is uniformly distributed, i.e.,

lim
NÑ8

δ
´

PSJA , PSJA

¯

“ 0. (18)

In recent years, the strong secrecy condition (17), (18) has often been replaced by
(15), since (half) the L1 distance directly bounds the probability of distinguishing
the actual key produced by the protocol with an ideal key. This operational
interpretation is particularly helpful in the finite blocklength regime. In the limit
N Ñ 8, the two secrecy conditions (15) and (17) are equivalent, which can be
shown using Pinskser’s and Fano’s inequalities.

Since having weak secrecy is not sufficient, we will only consider strong se-
crecy in this paper. It has been proven that each secret-key agreement protocol
which achieves weak secrecy can be transformed into a strongly secure protocol
[16]. However, it is not clear whether the resulting protocol is guaranteed to be
practically efficient.

6 The correlation of the random variables pX,Y, Zq is described by their joint proba-
bility distribution PX,Y,Z .
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For one-way communication, Csiszár and Körner [4] and later Ahlswede and
Csiszár [17] showed that the optimal rate R :“ limNÑ8

J
N of generating a secret

key satisfying (14) and (17), called the secret-key rate SÑpX;Y |Z q, is charac-
terized by a closed single-letter formula.

Theorem 2 (One-Way Secret-Key Rate [4,17]) For triples pX,Y, Zq de-
scribed by PX,Y,Z as explained above,

SÑpX;Y |Z q “

$

’

&

’

%

max
PU,V

HpU |Z, V q ´HpU |Y, V q

s.t. V ´̋´U ´̋´X´̋´pY, Zq,
|V| ď |X |, |U | ď |X |2.

(19)

The expression for the one-way secret-key rate given in Theorem 2 can be
simplified if one makes additional assumptions about PX,Y,Z .

Corollary 3 For PX,Y,Z such that the induced DM-WTC W described by PY,Z|X
is more capable,

SÑpX;Y |Z q “

$

’

&

’

%

max
PV

HpX|Z, V q ´HpX|Y, V q

s.t. V ´̋´X´̋´pY,Zq,
|V| ď |X |.

(20)

Proof. In terms of the mutual information, we have

HpU |Z, V q ´HpU |Y, V q

“ IpU ;Y |V q ´ IpU ;Z|V q (21)

“ IpX,U ;Y |V q ´ IpX,U ;Z|V q ´ pIpX;Y |U, V q ´ IpX;Z|U, V qq (22)

ď IpX,U ;Y |V q ´ IpX,U ;Z|V q (23)

“ IpX;Y |V q ´ IpX;Z|V q , (24)

using the chain rule, the more capable condition, and the Markov chain prop-
erties, respectively. Thus, the maximum in SÑpX;Y |Zq can be achieved when
omitting U . [\

Corollary 4 For PX,Y,Z such that the induced DM-WTC W described by PY,Z|X
is less noisy,

SÑpX;Y |Z q “ HpX|Z q ´HpX|Y q . (25)

Proof. Since W being less noisy implies W being more capable, we know that
the one-way secret key rate is given by (20). Using the chain rule we obtain

HpX|Z, V q ´HpX|Y, V q

“ IpX;Y |V q ´ IpX;Z|V q (26)

“ IpX,V ;Y q ´ IpX,V ;Zq ´ IpV ;Y q ` IpV ;Zq (27)

“ IpX;Y q ´ IpX;Zq ´ pIpV ;Y q ´ IpV ;Zqq (28)

ď IpX;Y q ´ IpX;Zq . (29)

Equation (28) follows from the chain rule and the Markov chain condition. The
inequality uses the assumption of being less noisy. [\
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Note that (25) is also equal to the one-way secret-key rate for the case where
W is degraded, as this implies W being less noisy. The proof of Theorem 2 does
not imply that there exists an efficient one-way secret-key agreement protocol.
A computationally efficient scheme was constructed in [18], but is not known to
be practically efficient.7

For key agreement with two-way communication, no formula comparable to
(19) for the optimal rate is known. However, it has been shown that the two-
way secret-key rate is strictly larger than the one-way secret-key rate. It is also
known that the intrinsic information IpX;Y ÓZq :“ minPZ1|Z IpX;Y |Z 1 q is an

upper bound on SpX;Y |Zq, but is not tight [17,19,20].

2.4 Private Channel Coding

Private channel coding over a wiretap channel is closely related to the task of one-
way secret-key agreement from common randomness (cf. Section 2.5). Here Alice
would like to transmit a message MJ PMJ privately to Bob. The messages can
be distributed according to some arbitrary distribution PMJ . To do so, she first
encodes the message by computing XN “ encpMJq for some encoding function
enc : MJ Ñ XN and then sends XN over the wiretap channel to Bob (and
to Eve), which is represented by pY N , ZN q “ WNXN . Bob next decodes the
received message to obtain a guess for Alice’s message M̂J “ decpY N q for some
decoding function dec : YN Ñ MJ . As in secret-key agreement, the private
channel coding scheme should be reliable, i.e., satisfy the

reliability condition: lim
JÑ8

Pr
”

MJ ‰ M̂J
ı

“ 0, for all MJ PMJ (30)

and (strongly) secure, i.e., satisfy the

(strong) secrecy condition: lim
JÑ8

∥∥PMJ ,ZN ,C ´ PMJ ˆ PZN ,C
∥∥
1
“ 0. (31)

The variable C denotes any additional information made public by the protocol.

As mentioned in Section 2.3, in the limit J Ñ8 this strong secrecy condition
is equivalent to the historically older (strong) secrecy condition

lim
JÑ8

I
`

MJ ;ZN , C
˘

“ 0. (32)

The highest achievable rate R :“ limNÑ8
J
N fulfilling (30) and (31) is called the

secrecy capacity.

Csiszár and Körner showed [4, Corollary 2] that there exists a single-letter
formula for the secrecy capacity.8

7 As defined in Section 1, we call a scheme practically efficient if its computational
complexity is essentially linear in the blocklength.

8 Maurer and Wolf showed that the single-letter formula remains valid considering
strong secrecy [16].
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Theorem 5 (Secrecy Capacity [4]) For an arbitrary DM WTC W as intro-
duced above,

Cs “

$

’

&

’

%

max
PV,X

HpV |Z q ´HpV |Y q

s.t. V ´̋´X´̋´pY, Zq,
|V| ď |X |.

(33)

This expression can be simplified using additional assumptions about W.

Corollary 6 ([8]) If W is more capable,

Cs “ max
PX

HpX|Z q ´HpX|Y q . (34)

Proof. A proof can be found in [8] or [21, Section 22.1]. [\

2.5 Previous Work and Our Contributions

In Section 3, we present a one-way secret-key agreement scheme based on polar
codes that achieves the secret-key rate, is strongly secure, reliable and whose
implementation is practically efficient, with complexity OpN logNq for block-
length N . Our protocol improves previous efficient secret-key constructions [22],
where only weak secrecy could be proven and where the eavesdropper has no
prior knowledge and/or degradability assumptions are required. Our protocol
also improves a very recent efficient secret-key construction [23], which requires
to have a small amount of shared key between Alice and Bob and only works for
binary degraded (symmetric) discrete memoryless sources. However, we note that
a possible drawback of our scheme compared to [23] is that its code construction
may be more difficult.

In Section 4, we introduce a coding scheme based on polar codes that prov-
ably achieves the secrecy capacity for arbitrary discrete memoryless wiretap
channels. We show that the complexity of the encoding and decoding opera-
tions is OpN logNq for blocklength N . Our scheme improves previous work on
practically efficient private channel coding at the optimal rate [24], where only
weak secrecy could be proven under the additional assumption that the channel
W is degraded.9 Recently, Bellare et al. introduced a polynomial-time coding
scheme that is strongly secure and achieves the secrecy capacity for binary sym-
metric wiretap channels [25].10 Several other constructions of private channel
coding schemes have been reported [26,27,28], but all achieve only weak secrecy.
Very recently, Şaşoğlu and Vardy introduced a new polar coding scheme that

9 Note that Mahdavifar and Vardy showed that their scheme achieves strong secrecy
if the channel to Eve (induced from W) is noiseless. Otherwise their scheme is not
provably reliable [24].

10 They claim that their scheme works for a large class of wiretap channels. However,
this class has not been characterized precisely so far. It is therefore not clear whether
their scheme requires for example degradability assumptions. Note that to obtain
strong secrecy for an arbitrarily distributed message, it is required that the wiretap
channel is symmetric [25, Lemma 14].
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can be used for private channel coding being strongly secure [29]. However, it
still requires the assumption of having a degraded wiretap channel which we
do not need for our scheme. In [30], an explicit construction that achieves the
secrecy capacity for wiretap channel coding is introduced, but efficiency is not
considered.

The tasks of one-way secret-key agreement and private channel coding ex-
plained in the previous two subsections are closely related. Maurer showed how
a one-way secret-key agreement can be derived from a private channel coding
scenario [2]. More precisely, he showed how to obtain the common randomness
needed for one-way secret-key agreement by constructing a “virtual” degraded
wiretap channel from Alice to Bob. This approach can be used to obtain the
one-way secret-key rate from the secrecy capacity result in the wiretap channel
scenario [21, Section 22.4.3]. One of the main advantages of the two schemes in-
troduced in this paper is that they are both practically efficient. However, even
given a practically efficient private coding scheme, it is not known that Maurer’s
construction will yield a practically efficient scheme for secret key agreement. For
this reason, as well as simplicity of presentation, we treat the one-way secret-key
agreement and the private channel coding problem separately in the two sections
to follow.

3 One-Way Secret-Key Agreement Scheme

Our key agreement protocol is a concatenation of two subprotocols, an inner
and an outer layer, as depicted in Figure 1. The protocol operates on blocks
of N i.i.d. triples pX,Y, Zq, which are divided into M sub-blocks of size L for
input to the inner layer. At the outer layer, we use the multi-level construction
introduced in Section 2.2. In the following we assume X “ t0, 1u, which however
is only for convenience; the techniques of [10] and [31] can be used to generalize
the schemes to arbitrary alphabets X .

The task of the inner layer is to perform information reconciliation and that
of the outer layer is to perform privacy amplification. Information reconciliation
refers to the process of carrying out error correction to ensure that Alice and
Bob obtain a shared bit string, and here we only allow communication from
Alice to Bob for this purpose. On the other hand, privacy amplification refers to
the process of distilling from Alice’s and Bob’s shared bit string a smaller set of
bits whose correlation with the information available to Eve is below a desired
threshold.

Each subprotocol in our scheme is based on the polarization phenomenon.
For information reconciliation of Alice’s random variable XL relative to Bob’s
information Y L, Alice applies a polar transformation to XL and forwards the
bits of the complement of the deterministic set DL

ε1pX|Y q to Bob over a public
channel, which enables him to recover XL using the standard polar decoder [5].
Her remaining information is then fed into a multilevel polar transformation and
the bits of the random set are kept as the secret key.
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Let us now define the protocol more precisely. For L “ 2`, ` P Z`, let
V L “ GLX

L where GL is as defined in (1). For ε1 ą 0, we define

EK :“ DL
ε1pX|Y q, (35)

with K :“ |DL
ε1pX|Y q|. Then, let Tpjq “ V LrEKsj for j “ 1, . . . ,K and Cpjq “

V LrEcKsj for j “ 1, . . . , L ´K so that T “ pTp1q, . . . , TpKqq and C “ pCp1q, . . . ,

CpL´Kqq. For ε2 ą 0 and UM
pjq “ GMT

M
pjq for j “ 1, . . .K (or, more briefly,

UM “ rGKMT
M ), we define

FJ :“ RM
ε2 pT |CZ

Lq, (36)

with J :“ |RMε2 pT |CZ
Lq|.

Protocol 1: One-way secret-key agreement

Given: Index sets EK and FJ (code construction)
Notation: Alice’s input: xN P ZN2 (a realization of XN )

Bob’s / Eve’s input: pyN , zN q (realizations of Y N and ZN )
Alice’s output: sJA
Bob’s output: sJB

Step 1: Alice computes vi`Li`1 “ GLx
i`L
i`1 for all i P t0, L, 2L, . . . , pM ´ 1qLu.

Step 2: Alice computes ti “ vi`Li`1 rEKs for all i P t0, L, 2L, . . . , pM ´ 1qLu.

Step 3: Alice sends ci “ vi`Li`1 rE
c
Ks for all i P t0, L, 2L, . . . , pM ´ 1qLu over a pub-

lic channel to Bob.

Step 4: Alice computes uM “ rGKM t
M and obtains sJA “ uM rFJ s.11

Step 5: Bob applies the standard polar decoder [5,12] to pci, y
i`L
i`1 q to obtain v̂i`Li`1

and t̂i “ v̂i`Li`1 rEKs, for i P t0, L, 2L, . . . , pM ´ 1qLu.

Step 6: Bob computes ûM “ G̃KM t
M and obtains sJB “ ûM rFJ s.

3.1 Rate, Reliability, Secrecy, and Efficiency
Theorem 7 Protocol 1 allows Alice and Bob to generate a secret key SJA re-
specitvely SJB using public one-way communication CM such that for any β ă 1

2 :

Reliability: Pr
“

SJA ‰ SJB
‰

“ O
´

M2´L
β
¯

(37)

Secrecy:
∥∥∥PSJA,ZN ,C ´ PSJA ˆ PZN ,C∥∥∥1 “ O

´?
N2´

Nβ

2

¯

(38)

Rate: R :“
J

N
“ HpX|Z q ´

1

L
H
`

V LrEc
Ks

ˇ

ˇZL
˘

´
opNq

N
. (39)

11 The expression uM rFJ s is an abuse of notation, as FJ is not a subset of [M]. The
expression should be understood to be the union of the random bits of uMpjq, for all

j “ 1, . . . ,K, as in the definition of RM
ε2 pT |CZ

L
q.
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PA

rGKM

IR

GL

IR

GL

dec

dec

rGKM

§

đ

Ĳ

İ

§ : ÛKM rFJ s ” SJB

đ : ÛKM rF c
J s

Ĳ : SJA ” UKM rFJ s

İ : UKM rF c
J s

V LrEc
Ks

V LrEKs

VML
L`1rEKs

VML
L`1rEc

Ks

V̂ML
L`1rEKs

V̂ LrEKs

Source

XN pY N , ZN q

τA τB

C1

C2

Fig. 1. The secret-key agreement scheme for the setup N “ 8, L “ 4, M “ 2, K “ 2,
and J “ 2. We consider a source that produces N i.i.d. copies pXN , Y N , ZN q of a
triple of correlated random variables pX,Y, Zq. Alice performs the operation τA, sends
pV LrEc

Ksq
M over a public channel to Bob and obtains SJA, her secret key. Bob then

performs the operation τB which results in his secret key SJB .

All operations by both parties may be performed in OpN logNq steps.

Proof. The reliability of Alice’s and Bob’s key follows from the standard polar
decoder error probability and the union bound. Each instance of the decoding

algorithm employed by Bob has an error probability which scales as Op2´L
β

q for
any β ă 1

2 [9]; application of the union bound gives the prefactor M . Since GL

as defined in (1) is its own inverse, rGKM is its own inverse as well.

The rate of the scheme is

R “
|FJ |
N

(40)

“
1

L
H
`

V LrEKs
ˇ

ˇV LrEc
Ks, Z

L
˘

´
opNq

N
(41)

“
1

L

`

H
`

V L
ˇ

ˇZL
˘

´H
`

V LrEc
Ks

ˇ

ˇZL
˘˘

´
opNq

N
(42)

“ HpX|Z q ´
1

L
H
`

V LrEc
Ks

ˇ

ˇZL
˘

´
opNq

N
, (43)

where (41) uses the polarization phenomenon stated in Theorem 1.
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To prove the secrecy statement requires more effort. Using Pinsker’s inequal-
ity we obtain

δ
´

PSJA,ZN ,CM , PSJA ˆ PZN ,CM
¯

ď

c

ln 2
2 D

´

PSJA,ZN ,CM
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
PSJA ˆ PZN ,CM

¯

(44)

“

b

ln 2
2

`

J ´H
`

SJA|Z
N , CM

˘˘

, (45)

where the last step uses the chain rule for relative entropies and that PSJA denotes
the uniform distribution. We can simplify the conditional entropy expression
using the chain rule

H
`

SJA
ˇ

ˇZN , CM
˘

“ H
`

UM rFJ s
ˇ

ˇZN , pV LrEc
Ksq

M
˘

(46)

“

K
ÿ

j“1

H
´

UMpjqrFpjqs
ˇ

ˇ

ˇ
UMp1qrFp1qs, . . . , U

M
pj´1qrFpj´1qs, Z

N , pV LrEc
Ksq

M
¯

(47)

“

K
ÿ

j“1

|Fpiq|
ÿ

i“1

H

ˆ

UMpjqrFpjqsi
ˇ

ˇ

ˇ

ˇ

UMpjqrFpjqs
i´1,

!

UMplq rFplqs
)j´1

l“1
, ZN, pV LrEc

Ksq
M

˙

(48)

ě

K
ÿ

j“1

ÿ

iPFj

H
´

Upjqi

ˇ

ˇ

ˇ
U i´1
pjq , U

M
p1qrFp1qs, . . . , U

M
pj´1qrFpj´1qs, Z

N , pV LrEc
Ksq

M
¯

(49)

ě J p1´ ε2q , (50)

where the first inequality uses the fact that that conditioning cannot increase
the entropy and the second inequality follows by the definition of FJ . Recall
that we are using the notation introduced in Section 2.2. For FJ as defined in

(36), we have FJ “
 

Fpjq
(K

j“1
where Fpjq “ RM

ε2

`

Tpjq
ˇ

ˇTpj´1q, . . . , Tp1q, C, Z
L
˘

.

The polarization phenomenon, Theorem 1, implies J “ OpNq, which together

with (45) proves the secrecy statement of Theorem 7, since ε2 “ Op2´N
β

q for
any β ă 1

2 .
It remains to show that the computational complexity of the scheme is

OpN logNq. Alice performs the operation GL in the first layer M times, each
requiring OpL logLq steps [5]. In the second layer she performs G̃KM , or K paral-
lel instances of GM , requiring OpKM logMq total steps. From the polarization
phenomenon, we have K “ OpLq, and thus the complexity of Alice’s operations
is not worse than OpN logNq. Bob runs M standard polar decoders which can be
done in OpML logLq complexity [5,12]. Bob next performs the polar transform
rGKM , whose complexity is not worse than OpN logNq as justified above. Thus,
the complexity of Bob’s operations is also not worse than OpN logNq. [\

In principle, the two parameters L and M can be chosen freely. However,
to maintain the reliability of the scheme (cf.(37)), M may not grow exponen-
tially fast in L. A reasonable choice would be to have both parameters scale
comparably fast, i.e., ML “ Op1q.
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Corollary 8 The rate of Protocol 1 given in Theorem 7 can be bounded as

R ě max

"

0, HpX|Z q ´HpX|Y q ´
opNq

N

*

. (51)

Proof. According to (43) the rate of Protocol 1 is

R “ HpX|Z q ´
1

L
H
`

V LrEc
Ks

ˇ

ˇZL
˘

´
opNq

N
(52)

ě max

"

0, HpX|Z q ´
|Ec
K |

L
´
opNq

N

*

(53)

“ max

"

0, HpX|Z q ´HpX|Y q ´
opNq

N

*

, (54)

where (54) uses the polarization phenomenon stated in Theorem 1. [\

3.2 Achieving the Secret-Key Rate of a Given Distribution

Theorem 7 together with Corollaries 4 and 8 immediately imply that Protocol 1
achieves the secret-key rate SÑpX;Y |Z q if PX,Y,Z is such that the induced DM
WTP W described by PY,Z|X is less noisy. If we can solve the optimization
problem (19), i.e., find the optimal auxiliary random variables V and U , our
one-way secret-key agreement scheme can achieve SÑpX;Y |Z q for a general
setup. We then make V public, replace X by U and run Protocol 1. Note that
finding the optimal random variables V and U might be difficult. It has been
shown that for certain distributions the optimal random variables V and U can
be found analytically [18].

An open problem discussed in Section 5 addresses the question if Protocol 1
can achieve a rate that is strictly larger than max t0, HpX|Z q ´HpX|Y qu if
nothing about the optimal auxiliary random variables V and U is known, i.e., if
we run the protocol directly for X without making V public.

3.3 Code Construction

To construct the code the index sets EK and FJ need to be determined. The set
EK can be computed approximately with a linear-time algorithm introduced in
[32], given the distributions PX and PY |X . Alternatively, Tal and Vardy’s older
algorithm [33] and its adaption to the asymmetric setup [12] can be used.

To approximately compute the outer index set FJ requires more effort. In
principle, we can again use the above algorithms, which require a description
of the “super-source” seen by the outer layer, i.e., the source which outputs
the triple of random variables pV LrEKs, pY L, V LrEc

Ksq, pZ
L, V LrEc

Ksqq. However,
its alphabet size is exponential in L, and thus such a direct approach will not
be efficient in the overall blocklength N . Nonetheless, due to the structure of
the inner layer, it is perhaps possible that the method of approximation by
limiting the alphabet size [33,32] can be extended to this case. In particular,
a recursive construction motivated by the decoding operation introduced in [6]
could potentially lead to an efficient computation of the index set FJ .
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4 Private Channel Coding Scheme

Our private channel coding scheme is a simple modification of the secret key
agreement protocol of the previous section. Again it consists of two layers, an
inner layer which ensures transmitted messages can be reliably decoded by the
intended receiver, and an outer layer which guarantees privacy from the unin-
tended receiver. The basic idea is to simply run the key agreement scheme in
reverse, inputting messages to the protocol where secret key bits would be out-
put in key agreement. The immediate problem in doing so is that key agreement
also produces outputs besides the secret key, so the procedure is not immediately
reversible. To overcome this problem, the encoding operations here simulate the
random variables output in the key agreement protocol, and then perform the
polar transformations rGKM and GL in reverse.12

The scheme is visualized in Figure 2 and described in detail in Protocol 2.
Not explicitly shown is the simulation of the bits UM rF c

J s at the outer layer
and the bits V LrEcKs at the inner layer. The outer layer, whose simulated bits
are nearly deterministic, makes use of the method described in [34, Definition
1], while the inner layer, whose bits are nearly uniformly-distributed, follows
[12, Section IV]. Both proceed by successively sampling from the individual bit
distributions given all previous values in the particular block, i.e., constructing
Vj by sampling from PVj |V j´1 . These distributions can be efficiently constructed,
as described in Section 4.3.

Note that a public channel is used to communicate the information reconcil-
iation information to Bob, enabling reliable decoding. However, it is possible to
dispense with the public channel and still achieve the same rate and efficiency
properties, as will be discussed in Section 4.3.

In the following we assume that the message MJ to be transmitted is uni-
formly distributed over the message set M “ t0, 1u

J
. As mentioned in Sec-

tion 2.4, it may be desirable to have a private coding scheme that works for an
arbitrarily distributed message. This can be achieved by assuming that the wire-
tap channel W is symmetric—more precisely, by assuming that the two channels
W1 : X Ñ Y and W2 : X Ñ Z induced by W are symmetric. We can de-
fine a super-channel W1 : T Ñ YLˆZLˆ C which consists of an inner encoding
block and L basic channels W. The super-channel W1 again induces two channels
W1

1 : T Ñ YLˆC and W1
2 : T Ñ ZLˆC. Arıkan showed that W1 respectively W2

being symmetric implies that W1
1 respectively W1

2 is symmetric [5, Proposition
13]. It has been shown in [24, Proposition 3] that for symmetric channels polar
codes remain reliable for an arbitrary distribution of the message bits. We thus
conclude that if W1 is assumed to be symmetric, our coding scheme remains reli-
able for arbitrarily distributed messages. Assuming having a symmetric channel
W2 implies that W1

2 is symmetric which proves that our scheme is strongly secure
for arbitrarily distributed messages.13

12 As it happens, GL is its own inverse.
13 This can be seen easily by the strong secrecy condition given in (31) using that W1

2

is symmetric.
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Protocol 2: Private channel coding

Given: Index sets EK and FJ (code construction)14

Notation: Message to be transmitted: mJ

Outer enc.: Let uM rFJ s “ mJ15 and uM rF c
J s “ rKM´J where rKM´J is (ran-

domly) generated as explained in [34, Definition 1]. Let tM “ rGKMu
M .

Inner enc.: For all i P t0, L, . . . , LpM ´ 1qu, Alice does the following: let v̄i`Li`1 rEKs
“ tpi{Lq`1 and v̄i`Li`1 rE

c
Ks “ si`L´Ki`1 where si`L´Ki`1 is (randomly) gen-

erated as explained in [12, Section IV]. Send Cpi{Kq`1 :“ si`L´Ki`1 over

a public channel to Bob. Finally, compute xi`Li`1 “ GLv̄
i`L
i`1 .

Transmis.: pyN , zN q “WNxN

Inner dec.: Bob uses the standard decoder [5,12] with inputs Cpi{Lq`1 and yi`Li`1

to obtain v̂i`Li`1 , and hence t̂pi{Lq`1 “ v̂i`Li`1 rEKs, for each
i P t0, L, . . . , LpM ´ 1qu.

Outer dec.: Bob computes ûM “ rGKM t̂
M and outputs a guess for the sent message

m̂J
“ ûM rFJ s.

4.1 Rate, Reliability, Secrecy, and Efficiency

Corollary 9 For any β ă 1
2 , Protocol 2 satisfies

Reliability: Pr
”

MJ ‰ M̂J
ı

“ O
´

M2´L
β
¯

(55)

Secrecy:
∥∥PMJ ,ZN ,C ´ PMJ ˆ PZN ,C

∥∥
1
“ O

´?
N2´

Nβ

2

¯

(56)

Rate: R “ HpX|Z q ´
1

L
H
`

V LrEc
Ks

ˇ

ˇZL
˘

´
opNq

N
(57)

and its computational complexity is OpN logNq.

Proof. Recall that the idea of the private channel coding scheme is to run Proto-
col 1 backwards. Since Protocol 2 simulates the nearly deterministic bits UM rFJ s
at the outer encoder as described in [34, Definition 1] and the almost random
bits V LrEc

Ks at the inner encoder as explained in [12, Section IV], it follows that
for large values of L and M the private channel coding scheme approximates
the one-way secret-key scheme setup,16 i.e., limNÑ8 δ

`

PTM , PpV LrEK sqM
˘

“ 0

and limLÑ8 δ
`

PXL , PX̂L
˘

“ 0, where PXL denotes the distribution of the vector
XL which is sent over the wiretap channel W and PX̂L denotes the distribution

of Alice’s random variable X̂L in the one-way secret-key agreement setup. We
thus can use the decoder introduced in [9] to decode the inner layer. Since we

14 By the code construction the channel input distribution PX is defined. PX should
be chosen such that it maximizes the scheme’s rate.

15 Again an abuse of notation. See the Footnote 11 of Protocol 1.
16 This approximation can be made arbitrarily precise for sufficiently large values of L

and M .
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outer

enc

inner

enc

W

W

W

W

inner

enc

W

W

W

W

inner

dec

inner

dec

outer

dec
M̂JMJ

XN pY N, ZN q

TM T̂M

C1

C2

Fig. 2. The private channel coding scheme for the setup N “ 8, L “ 4, M “ 2,
K “ 2, and J “ 2. The message MJ is first sent through an outer encoder which adds
some bits (simulated as explained in [12, Section IV]) and applies the polarization

transform rGKM . The output TM “ pTp1q, . . . , TpKqq
M is then encoded a second time

by M independent identical blocks. Note that each block again adds redundancy (as
explained in [34, Definition 1]) before applying the polarization transform GL. Each
inner encoding block sends the frozen bits over a public channel to Bob. Note that
this extra public communication can be avoided as justified in Section 4.3. The output
XN is then sent over N copies of the wiretap channel W to Bob. Bob then applies a
decoding operation as in the key agreement scheme, Section 3.

are using M identical independent inner decoding blocks, by the union bound
we obtain the desired reliability condition. The secrecy and rate statement are
immediate consequences from Theorem 7. [\

As mentioned after Theorem 7, to ensure reliability of the protocol, M may
not grow exponentially fast in L.

Corollary 10 The rate of Protocol 2 given in Corollary 9 can be bounded as

R ě max

"

0, HpX|Z q ´HpX|Y q ´
opNq

N

*

. (58)

Proof. The proof is identical to the proof of Corollary 8. [\

4.2 Achieving the Secrecy Capacity of a Wiretap Channel

Corollaries 6 and 10 immediately imply that our private channel coding scheme
achieves the secrecy capacity for the setup where W is more capable. If we can
find the optimal auxiliary random variable V in (33), Protocol 2 can achieve
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the secrecy capacity for a general wiretap channel scenario. We define a super-
channel W : V Ñ Y ˆZ which includes the random variable X and the wiretap
channel W. The super-channel W is characterized by its transition probability
distribution PY,Z|V where V is the optimal random variable solving (33). The
private channel coding scheme is then applied to the super-channel, achieving
the secrecy capacity. Note that finding the optimal random variable V might be
difficult.

In Section 5, we discuss the question if it is possible that Protocol 2 achieves
a rate that is strictly larger than max t0,maxPX HpX|Z q ´HpX|Y qu, if nothing
about the optimal auxiliary random variable V is known.

4.3 Code Construction & Public Channel Communication

To construct the code the index sets EK and FJ as defined in (35) and (36) need
to be computed. This can be done as explained in Section 3.3. One first chooses
a distribution PX that maximizes the scheme’s rate given in (57), before looking
for a code that defines this distribution PX .

We next explain how the communication CM P CM from Alice to Bob can
be reduced such that it does not affect the rate, i.e., we show that we can choose
|C| “ opLq. Recall that we defined the index set EK :“ DL

ε1pX|Y q in (35). Let G :“
RL
ε1pX|Y q using the noation introduced in (2) and I :“ rLszpEK Y Gq “ Ec

KzG.
As explained in Section 2.2, G consists of the outputs Vj which are essentially
uniformly random, even given all previous outputs V j´1 as well as Y L, where
V L “ GLX

L. The index set I consists of the outputs Vj which are neither
essentially uniformly random nor essentially deterministic given V j´1 and Y L.
The polarization phenomenon stated in Theorem 1 ensures that this set is small,
i.e., that |I| “ opLq. Since the bits of G are almost uniformly distributed, we can
fix these bits independently of the message—as part of the code construction—
without affecting the reliability of the scheme for large blocklengths.17 We thus
only need to communicate the bits belonging to the index set I.

We can send the bits belonging to I over a seperate public noiseless channel.
Alternatively, we could send them over the wiretap channel W that we are using
for private channel coding. However since W is assumed to be noisy and it is
essential that the bits in I are recieved by Bob without any errors, we need to
protect them using an error correcting code. To not destroy the essentially linear
computational complexity of our scheme, the code needs to have an encoder and
decoder that are practically efficient. Since |I| “ opLq, we can use any error
correcting code that has a non-vanishing rate. For symmetric binary DMCs,
polar coding can be used to transmit reliably an arbitrarily distributed message
[24, Proposition 3]. We can therefore symmetrize our wiretap channel W and use
polar codes to transmit the bits in I.18

17 Recall that we choose ε1 “ O
´

2´L
β
¯

for any β ă 1
2
, such that for LÑ8 the index

set G contains only uniformly distributed bits.
18 Note that the symmetrization of the channel will reduce its rate which however does

not matter as we need a non-vanishing rate only.
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As the reliability of the scheme is the average over the possible assignments of
the random bits belonging to I (or even Ec

K), at least one choice must be as good
as the average, meaning a reliable, efficient, and deterministic scheme must exist.
However, it might be computationally hard to find this choice. This means that
there exists a scheme for private channel coding (having the properties given in
Corollary 9) that does not require any extra communication from Alice to Bob,
i.e., C “ H, however its code construction might be computationally inefficient.

5 Conclusion and Open Problems

We have constructed practically efficient protocols (with complexity essentially
linear in the blocklength) for one-way secret-key agreement from correlated ran-
domness and for private channel coding over discrete memoryless wiretap chan-
nels. Each protocol achieves the corresponding optimal rate. Compared to pre-
vious methods, we do not require any degradability assumptions and achieve
strong (rather than weak) secrecy. Our scheme is formulated for arbitrary dis-
crete memoryless wiretap channels. Using ideas of Şaşoğlu et al. [10] the two
protocols presented in this paper can also be used for wiretap channels with
continuous input alphabets.

Finally, we want to describe an open problem which addresses the question of
whether rates beyond max t0, HpX|Z q ´HpX|Y qu can be achieved by our key
agreement scheme, even if the optimal auxiliary random variables V and U are
not given, i.e., if we run Protocol 1 directly for X (instead of U) without making
V public. The question could also be formulated in the private coding scenario,
whether rates beyond max t0,maxPX HpX|Z q ´HpX|Y qu are possible, but as
a positive answer in the former context implies a positive answer in the latter,
we shall restrict attention to the key agreement scenario for simplicity.

Question 1 Does for some distributions PX,Y,Z the rate of Protocol 1 satisfy

R ą max t0, HpX|Z q ´HpX|Y qu , for N Ñ8? (59)

An equivalent formulation of this question is whether inequality (53) is always
tight for large enough N , i.e.,

Question 1’ Is it possible that

lim
LÑ8

1

L
H
`

V LrEc
Ks

ˇ

ˇZL
˘

ă lim
LÑ8

1

L
|Ec
K | , for R ą 0? (60)

From the polarization phenomenon stated in Theorem 1 we obtain limLÑ8
1
L |E

c
K |

“ HpX|Y q, which together with (60) would imply that R ą max t0, HpX|Z q´
HpX|Y qu for N Ñ8 is possible. Relation (60) can only be satisfied if the high-
entropy set with respect to Bob’s side information, i.e., the set Ec

K , is not always
a high-entropy set with respect to Eve’s side information. Thus, the question of
rates in the key agreement protocol is closely related to fundamental structural
properties of the polarization phenomenon.
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A positive answer to Question 1 implies that we can send quantum infor-
mation reliable over a quantum channel at a rate that is beyond the coherent
information using the scheme introduced in [6].
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