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Abstract. The development of a leakage detection testing methodology
for the side-channel resistance of cryptographic devices is an issue that
has received recent focus from standardisation bodies such as NIST. Sta-
tistical techniques such as hypothesis and signi�cance testing appear to
be ideally suited for this purpose. In this work we evaluate the candi-
dacy of three such detection tests: a t-test proposed by Cryptography
Research Inc., and two mutual information-based tests, one in which data
is treated as continuous and one as discrete. Our evaluation investigates
three particular areas: statistical power, the e�ectiveness of multiplicity
corrections, and computational complexity. To facilitate a fair compar-
ison we conduct a novel a priori statistical power analysis of the three
tests in the context of side-channel analysis, �nding surprisingly that the
continuous mutual information and t-tests exhibit similar levels of power.
We also show how the inherently parallel nature of the continuous mu-
tual information test can be leveraged to reduce a large computational
cost to insigni�cant levels. To complement the a priori statistical power
analysis we include two real-world case studies of the tests applied to
software and hardware implementations of the AES.

1 Introduction

The evaluation of the resilience of cryptographic devices against side-channel
adversaries is an issue of increasing importance. The potential of side-channel
analysis (SCA) as an attack vector is driving the need for standards organisations
and governing bodies to establish an acceptance-testing methodology capable of
robustly assessing the vulnerability of devices; the National Institute of Stan-
dards and Technology (NIST) held a workshop in 2011 driving the requirements
[4] and recent papers have been published on this topic by industry [13,16].

Current evaluation methodologies such as Common Criteria [2], used by bod-
ies such as ANSSI [1] and BSI [3], consist of executing a battery of known side-
channel attacks on a device and considering whether the attack succeeds and, if
so, the quantity of resources expended by an adversary to break the device. This
methodology is likely to prove unsustainable in the long-term: the number and
type of Simple Power Analysis (SPA), and particularly Di�erential Power Anal-
ysis (DPA) attacks is steadily increasing year-on-year, lengthening the testing



process and forcing evaluation bodies to keep up-to-date with an increasingly
large, technically complex and diverse number of researched strategies.

A desirable complement or alternative to an attack-focused evaluation strat-
egy is to take a `black-box' approach; rather than attempting to assess security
by trying to �nd the data or computational complexity of an optimal adversary
against a speci�c device, we can attempt to quantify whether any side-channel
information is contained in power consumption data about underlying secrets
without having to precisely characterise and exploit leakage distributions. We
describe this as a detection strategy; the question any detection test answers is
whether any side-channel information is present, and not to precisely quantify
the exact amount or how much of it is exploitable. Detection-based strategies
can be used to support `pass or fail' type decisions about the security of a device
[13], or can be used to identify time points that warrant further investigation.

In practice we estimate information leakage, and so any reasonable detection
strategy should ideally incorporate a degree of statistical rigour. In this paper we
provide a comprehensive evaluation of three leakage detection hypothesis tests
in the context of power analysis attacks: a t-test proposed by [13], and two tests
for detecting the presence of zero mutual information (MI)�one in which power
traces are treated as continuous data (hereafter the CMI test) [10], and one as
discrete (hereafter the DMI test) [9].

Our contribution Previous work in the context of side-channel analysis has as-
sessed detection tests through practical experimentation only [13]. This approach
creates �awed comparisons of tests for reasons similar to those encountered in
the practical analysis of distinguishers in DPA [28]; the e�ects of sample size and
estimation error on detection test performance cannot be quanti�ed in a prac-
tical experiment and consequently it becomes di�cult to draw fair comparisons
that apply in a general context. To ensure a fair comparison in this work we
perform an a priori statistical power analysis1 of the three detection tests using
a variety of practically relevant side-channel analysis scenarios. The analysis al-
lows us to study the e�ects that sample size, leakage functions, noise and other
hypothesis testing criteria have on the performance of the detection tests in a fair
manner. In addition to statistical power, we also investigate the computational
complexity of the tests and the e�ectiveness of multiplicity corrections.

Related work An alternative to the black-box strategy is the `white-box' leakage
evaluation methodology proposed by Standaert et al. [26]. Their methodology re-
quires an estimation of the conditional entropy of a device's leakage distribution
using an estimated leakage model. This allows for a tighter bound on the amount
of information available to an adversary, but requires additional computational

1 The overlap in terminology of the statistical power analysis of hypothesis tests with
the entirely di�erent di�erential or simple power analysis technique is unfortunate.
To establish a reasonable separation of terminology we will use `DPA' or `SPA' to
address the latter technique, and `statistical power' when referencing the former
topic.



expense and the ability to pro�le a device, and bounding estimation error in the
results is non-trivial. The black-box detection approach outlined in this work
does not require any device pro�ling, trading-o� the ability to estimate the ex-
ploitable information leakage contained within the device for e�ciency gains and
the ability to increase robustness through statistical hypothesis testing. A de-
tection strategy may be used as a complement to the approach of Standaert et
al. by identifying a subset of time points that are known to leak information and
can be further explored in a white-box analysis.

There is no previous a priori power analysis study of these three tests in
the context of SCA. A generic analysis of the CMI test and additional non-
parametric hypothesis tests was conducted in [10], but does not consider the
in�uence of variables such as noise and leakage function in the context of side-
channel analysis, and cannot be used in comparison with the DMI or t-tests.

Organisation In Section 4 of this work we present the results of the �rst a priori
statistical power analysis of the three detection tests in the context of side-
channel analysis. To support the a priori analysis we also provide a case study
illustrating an example application of the tests to real-world traces acquired from
a software and a hardware implementation of the AES in Section 5. Section 6
discusses the computational complexity of the three tests.

2 Introduction to selected hypothesis tests

2.1 Side-channel analysis

We will consider a `standard' SCA scenario whereby the power consumption T of
a device is dependent on the value of some internal function fk(x) of plaintexts
and secret keys evaluated by the device. Using the random variable X ∈ X to
represent a plaintext and the random variable K ∈ K to represent a sub-key,
the power consumption T of the device can be modelled using T = L ◦ fk(x) +
ε, where L is a function that describes the data-dependent component of the
power consumption and ε represents the remaining component of the power
consumption modelled as additive random noise.

2.2 Candidate tests

There are many hypothesis tests that may be used to detect information leakage:
one can test for di�erences between particular moments (such as the mean) of
leakage distributions, or one can test for any general di�erences between leakage
distributions. In this work we consider three tests, one from the former category
and two from the latter. In the former category, the Welch t-test [27], used to
assess the di�erence between the means of two distributions, has been proposed
by Cryptography Research Inc. [13]. One can also analyse higher moments using
tests such as the F-test [20]. Information leakage solely occurring in a particular
higher moment is rare�to our knowledge, one example of this is in [20]�and so



a natural progression is to use a generic non-parametric test instead. Chatzikoko-
lakis et al. and Chothia et al. present hypothesis tests capable of detecting the
presence of discrete and continuous mutual information [9,10].

Whilst alternative non-parametric tests are available, mutual information-
based methods provide an intuitive measure and are frequently used in other
contexts [23,26]. There is a generic a priori power analysis comparing the CMI
test and additional non-parametric hypothesis tests in [10], �nding that the CMI
test compared favourably. The analysis does not discuss any of the side-channel
speci�c variables described in Section 2.1 and cannot be used in comparison
with the t-test, but does suggests that an MI-based test is a natural choice for
a generic test candidate. As such, we focus on the t-test and the two MI-based
methods, and note that our evaluation strategy can be easily applied to other
detection tests in the future.

The null hypothesis for any hypothesis testing procedure used in a detection
context is that there is no information leakage: using the t-test, any statistically
signi�cant di�erence of means is evidence for an information leak, and using
MI-based tests, any signi�cant non-zero mutual information is evidence.

The generic strategy followed by each test is to systematically evaluate each
individual time point in a set of traces in turn. This is a `univariate' approach,
and in many cases is likely to be su�cient; vulnerabilities arising from sub-
optimal security measures are likely to manifest themselves as leakage detectable
within a single time point. To detect leakage exploitable by n-th order attacks
would necessitate the joint comparison of n time points. This results in a con-
siderable increase on the the amount of computation required�the brute force
strategy would be to analyse the joint distribution of every possible n-tuple of
points�and additionally can substantially increase the complexity of the test
statistics, with multivariate mutual information in particular becoming costly.
Whilst an e�cient multivariate strategy would be desirable, it is beyond the
scope of this initial work.

2.3 Di�erence-of-means and the t-test

Exploiting the di�erence-of-means T1 − T2 between two sets of power traces T1
and T2 partitioned on a single bit of a targeted intermediate state was proposed
by Kocher et al. and is the canonical example of a generic DPA attack [17]. The
same di�erence-of-means can also be used to detect information leakage, and
was proposed as a candidate detection test in [13].

Welch's t-test is a hypothesis test that (in the two-tailed case) tests the
null hypothesis that the population means of two variables are equal, where the
variables have possibly unequal variances, yielding a p-value that may or may
not provide su�cient evidence to reject this hypothesis. The test statistic t is:

t =
T1 − T2√
s21
N1

+
s22
N2

, (1)



where Ti, s
2
i and Ni are the sample means, sample variances and sample size of

the i-th set Ti. Using this test statistic and the Welch-Satterthwaite equation2

to compute the degrees of freedom ν, a p-value can be computed to determine
whether there is su�cient evidence to reject the null hypothesis at a particular
signi�cance level 1 − α. Using the quantile function for the t distribution at a
signi�cance level α and with ν degrees of freedom, a con�dence interval for the
di�erence-of-means can also be computed.

Leveraging the t-test requires a partitioning of the traces based on the value
of a particular bit of an intermediate state with the targeted algorithm, and
therefore to comprehensively evaluate a device every single bit of every single
intermediate state must be tested. To assess the i-th bit of a particular state
for leakage (e.g. the output of SubBytes in a particular round), an evaluator
must compute the intermediate values for the chosen state, using a set of chosen
messages. Having recorded the encryption or decryption of the chosen messages,
the resulting traces can be partitioned into two sets T1 and T2, depending on
the value of the i-th bit of the intermediate state. The test statistic t and corre-
sponding p-values or con�dence intervals can then be used to determine whether
a di�erence between the means exists.

The t-test by design can only detect di�erences between subkeys that are
contained within the mean of the leakage samples, and assumes that the popu-
lations being compared are normally distributed. In practice univariate leakage
from unprotected devices is typically close enough to Gaussian for this condition
to not be too restrictive [7,8,17].

2.4 Mutual information

Given two random variables X and Y , the MI I(X;Y ) computes the average
information gained about X if we observe Y (and vice-versa). The application of
MI to detecting information leaks from a cryptographic device is straightforward:
any dependence between subkeys and the power consumed by the device, giving
I(K;T ) > 0, may be evidence for an exploitable information leak3.

The rationale for using MI to detect information leaks is that it compares
distributions in a general way, incorporating all linear and non-linear dependen-
cies between sub-keys and power values. Unfortunately, the estimation of MI
is well-known to be a di�cult problem. There are no unbiased estimators, and
it has been proven that there is no estimator that does not perform di�erently
depending on the underlying structure of the data [22].

Recent results on the behaviour of zero MI can help to alleviate this problem.
Chatzikokolakis et al. �nd the sampling distribution of MI between two discrete
random variables when it is zero, where the distribution of one of the variables
is known and the other unknown, and use this to construct a con�dence interval

2 Using Welch-Satterthwaite, the degrees of freedom ν for a t-distribution can be

calculated as ν =
(s21/N1+s

2
2/N2)

2

(s21/N1)2/(N1−1)+(s22/N2)2/(N2−1)
.

3 Under the assumption of the `equal images under di�erent sub-keys' property [24]
we can safely compute I(X;T ), if simpler.



test [9]. A second result from Chothia and Guha establishes a rate of convergence,
under reasonable assumptions, for the sampled estimate for zero MI between one
discrete random variable with a known distribution and one continuous random
variable with an unknown distribution [10]. This result is then used to construct a
non-parametric hypothesis test to assess whether sampled data provides evidence
of an information leak within a system.

Discrete mutual information As side-channel measurements are typically sam-
pled using digital equipment, it may be viable to treat the sampled data as
discrete. The most common way to make continuous data discrete is to split the
continuous domain into a �nite number of bins. Using the standard formula for
marginal and conditional entropy, the discrete MI estimate can be computed as

Î(K;T ) =
∑
k∈K

∑
t∈T

p̂(k, t) log2

(
p̂(k, t)

p(k)p̂(t)

)
. (2)

The test of Chatzikokolakis et al. is biased by (I − 1)(J − 1)/2n, where I and
J are the sizes of the distribution domains of two random variables in question,
and n is the number of samples acquired. In our context, I = |K|, the number of
possible sub-keys, and J = |T |, the number of possible power values as a result of
discretisation. Consequently, the point estimate e for MI is the estimated value
minus this bias: e = Î(K;T ) − (I − 1)(J − 1)/2n. We can use this to compute
100(1 − α)% con�dence intervals for zero and non-zero MI (full details can be
found in [9]).

As a result of the bias of the test, to be sure of good results it is necessary
to ensure that the number of traces sampled is larger than the product of the
number of sub-keys and the number of possible power values. The applicability
of this discrete test is then dictated by the ability of an evaluator to sample
enough traces to meet this condition.

Continuous mutual information The test of Chothia and Guha requires two
assumptions about the data to guarantee a convergence result for zero MI [10].
The �rst is that the power values are continuous, real-valued random variables
with �nite support. This may or may not hold theoretically, depending on the
distribution of the leakages, but in practice will be true; the sampling resolution
used dictates the range of the recorded power consumption. The second is that
for u = {0, 1}, the probability p(u, t) must have a continuous bounded second
derivative in t. This can be ful�lled with the leakage analysis of a single bit of a
key only. However, Chothia and Guha also demonstrate experimentally that the
test works well in cases of multiple inputs, often outperforming other two-sample
tests [10].

Under the assumption of a continuous leakage distribution, we are estimating
a hybrid version of the MI:

Î(K;T ) =
∑
k∈K

∫
T

p̂(k, t) log2

(
p̂(k, t)

p(k)p̂(t)

)
dt. (3)



To compute this estimate we are required to estimate a conditional probability
density function P̂r{t|k} using kernel density estimation. The assumptions un-
derlying the test's convergence result dictate the use of a function such as the
Epanechnikov kernel4 as the chosen kernel function, and a bandwidth function
such as Silverman's [25] general purpose bandwidth5.

Using this estimated density function, we can compute an estimate of the
MI, Î(K;T ). The following step of the hypothesis test is a permutation stage
requiring s permutations of the sampled data T ′: for each sampled power value,
we randomly assign a new sub-key to the value without replacement. The power
values contained in each permuted set should now have no relation with the sub-
keys, and so the MI of the s sets can now be computed Î1(K;T ′1), . . . , Îs(K;T ′s),
providing a baseline for zero MI.

An estimated p-value can be computed by computing the percentage of the
MI estimates Î1, . . . , Îs that have a value greater than the observed point estimate
Î(K;T ). The suggested number of shu�ed estimates to achieve useful baseline
results is given to be 100 by Chothia and Guha, but to increase the power of the
test and the precision of the estimated p-values a few thousand shu�es may be
required.

3 Evaluation methodology

3.1 Comparing detection tests

The most important notion in hypothesis testing is of the quanti�cation and
classi�cation of the error involved. The type I error rate α is de�ned as the
probability of incorrectly rejecting a true null hypothesis, usually termed the
signi�cance criterion. Tests are also associated with a type II error rate β: the
probability of failing to reject a false null hypothesis. The exact valuation as-
signed to these error rates is an important factor to balance; typically decreasing
one error rate will result in an increase in the other, and the only way to re-
duce both in tandem is to increase the sample size available to the test. The
statistical power of a test is de�ned as the probability of correctly rejecting a
false null hypothesis, π = 1 − β. This is the key factor for our detection tests:
higher statistical power indicates increased robustness and lessens reliance on
large sample sizes.

A common motivation for performing an a priori statistical power analysis6

is to compute or estimate the minimum sample size required to detect an e�ect
of a given size, or to determine the minimum e�ect size a test is likely to de-
tect when supplied with a particular sample size. The determination of sample
sizes required to achieve acceptable power has two-fold uses: �rstly, data acquisi-
tion from a cryptographic device is an expensive and time-consuming operation,

4 Epanechikov's kernel function is de�ned as K(u) = 3/4(1− u2)χ{|u|≤1}.
5 h = 1.06sTN

−1/5, where sT is the sample standard deviation of T and N is the
number of sampled traces.

6 For further discussion of statistical power analysis, see [11].



and so tests that are less data-hungry are likely to be preferable, and secondly,
knowledge of the sample sizes required to detect a particular e�ect can serve as a
guideline for evaluators to determine the number of trace acquisitions su�cient
for detecting an information leak.

3.2 Multiple testing

When considering the results of large numbers of simultaneously-computed hy-
pothesis tests, we must take into account that the probability a single test falsely
rejects the null hypothesis will increase in proportion with the number of tests
computed. A single test computed at signi�cance level α = 0.05 has a 5% chance
of incorrectly rejecting the null hypothesis; when conducting a large number
of simultaneous tests the probability of a false positive increases. The intuitive
solution is to control the overall false rejection rate by selecting a smaller signi�-
cance level for each test. There are two main classes of procedure: controlling the
familywise error rate (FWER) and controlling the false discovery rate (FDR).

Familywise error rate The FWER is de�ned as the probability of falsely rejecting
one or more true null hypotheses (one or more type I errors) across a family
of hypothesis tests. The FWER can be controlled, allowing us to bound the
number of false null hypothesis rejections we are willing to make�in our device
evaluation context this would allow the evaluator to control the probability a
device is falsely rejected. FWER controlling procedures are conservative, and
typically trade-o� FWER for increasing type II error.

False discovery rate Proposed by Benjamini and Hochberg in 2005, the FDR
is de�ned as the expected proportion of false positives (false discoveries) within
the hypothesis tests that are found to be signi�cant (all discoveries). Procedures
that control the FDR are typically less stringent than FWER-based methods,
and have a strong candidacy for situations where test power is important. The
Benjamini-Hochberg (BH) procedure is a `step-up' method that strongly con-
trols the FDR at a rate α [6]. Given m simultaneous hypothesis tests, the BH
procedure sorts the p-values and selects the largest k such that pk ≤ k

mα, where
all tests with p-values less than or equal to pk can be rejected. Many additional
FWER and FDR controlling methods exist, e.g. [14,15], but are beyond the scope
of this paper.

A trade-o� with multiplicity corrections that control the FWER is that gen-
erally decreasing the FWER results in an increase in type II error. As a conse-
quence the FDR approach may be more suitable if an evaluator is particularly
concerned with ensuring that the type II error rate is kept low�that the statisti-
cal power remains high. It may also serve a useful purpose by identifying a small
candidate set of time points that are likely to contain information leakage�the
evaluator can then perform further analysis on the set of points, for example by
inspecting the e�ect sizes reported for each of the points, re-sampling additional
data and performing new hypothesis tests, or even by trying to attack the points
using an appropriate method. We demonstrate an example application of the BH
procedure in Section 5.



3.3 Why perform an a priori power analysis?

Having established the importance of statistical power to our detection tests,
the motivation for performing an a priori power analysis for our three candidate
tests is that it is not possible to make generally true inferences based on practical
experiments alone; given that it is only possible to establish the vulnerability
of a time point by successfully attacking it, it becomes impossible to establish
whether a reported rejection of the null hypothesis is a false positive�in other
words, the type II error rate β cannot be estimated�and hence any a posteriori
(or post-hoc) power analysis is likely to be misleading.

To be able to perform an a priori statistical power analysis, we need to
be able to produce or simulate data, ideally with characteristics as close as
possible to those observed in practice, for which we are sure of the presence of
information leakage. The most straightforward way to do this is to simulate trace
data under the `standard' DPA model commonly used throughout the existing
body of literature, detailed in Section 2.1.

4 A priori power analysis

As all of the variables in the standard SCA model outlined in Section 2.1 have an
e�ect on detection test performance, to perform a useful a priori power analysis
we de�ned a variety of leakage scenarios that have relevance to practice, and then
estimated the power π of each of the detection tests under many combinations
of the di�erent parameters in the SCA model for each scenario. For each leakage
scenario, power was estimated under varying sample sizes, noise levels and using
two di�erent signi�cance criteria: α = 0.05 and α = 0.00001. The former provides
a general indication of test power with a common level of signi�cance, and the
intention with the latter level of signi�cance is to gain an understanding of how
much statistical power is degraded by the typical tightening of the signi�cance
criteria enforced by multiple testing corrections.

Leakage model We de�ned �ve di�erent practically-relevant leakage models L
under which to simulate trace data:

1. Hamming weight�a standard model under which the device leaks the
Hamming weight of the intermediate state;

2. Weighted sum�the device leaks an unevenly weighted sum of the bits of
the intermediate state, where the least signi�cant bit (LSB) dominates with
a relative weight of 10, as motivated by [5];

3. Toggle count�the power consumption of hardware implementations has
been shown to depend on the number of transitions that occur in the S-Box.
The model used here is computed from back-annotated netlists as in [19],
and creates non-linear leakage distributions;

4. Zero value�for this model we set the power consumption for every non-
zero intermediate value to be 1, and for the value zero we set the power
consumption to be 0; this will typically produce small amounts of information
leakage and should stress the data e�ciency of the tests;



5. Variance�the mean of the power consumption does not leak, and the
variance of the power consumption follows the distribution given in Maghrebi
et al. [18]. The t-test will not be able to detect any leakage, but the model
can be used to evaluate the relative performances of the MI tests.

A statistical power analysis would ideally be performed for each candidate
target function; given the limited space available we have focused on the AES.
For this comparison we targeted, without loss of generality, the �rst byte of the
key. For each leakage model, we simulated traces under a wide range of signal-to-
noise ratios (SNRs), ranging from 2−14 to 212, enabling us to assess the maximum
amount of noise a test can overcome when provided with a particular sample
size.

Estimation process The estimated power for the test is computed as the fraction
of times the test correctly7 rejects the null hypothesis for 1, 000 tests run. For
the CMI and t-tests we used the signi�cance criterion α to determine rejection
or acceptance, and for the DMI test we checked whether the corrected estimate
for the MI was inside the 100(1− α)% con�dence interval for zero MI.

In the following section we present the results of our a priori statistical power
analysis on the �ve leakage models in terms of the number of samples required
to achieve 80% power for each combination of model, SNR and sample size. We
performed 1, 000 permutations of the simulated traces for each CMI test, and
used the Epanechnikov kernel with Silverman's bandwidth for the kernel density
estimation. To enable a fair comparison between the bit and byte level tests, we
chose to represent the results for the t-test corresponding to the most leaky bit
of the state. Graphs illustrating the number of samples required by each test to
achieve 80% power for each leakage model and SNR are shown in Figure 1.

Hamming weight We can see that the t-test is the most powerful test in
general, as we would expect given the unbiased estimator for the mean values
and the Gaussian noise assumption holding true in the model. The CMI test
requires slightly more samples to achieve the requisite power in the presence of
high noise, and both tests seem to perform equivalently for mid-range and low
levels of noise.

The DMI test appears to be signi�cantly less powerful; this is unsurprising
given a loss of information from the treatment of continuous data as discrete is
to be expected, and we also see that the test struggles to cope with high levels
of noise�the lowest SNR for which we could detect an information leak with
up to 192,000 samples was 2−3. A closer inspection indicates that this is caused
by the bias correction required; the size of the input space for the AES often
necessitates a large sample size to minimise the size of the correction to within
manageable bounds.

7 Each of these scenarios contain information leakage; even for the extremely low
SNRs, given su�ciently large data an attacker will eventually be able to exploit the
leakage, and as a consequence candidate detection tests should, for some level of
sample size, be able to consistently detect information leakage.
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Fig. 1: Number of samples required for the t-test, CMI and DMI tests to achieve
estimated 80% power for a variety of leakage models and SNRs.

The stricter signi�cance criterion α = 0.00001 seems to have a small but
noticeable e�ect on the test power for the CMI and t-tests. Under the DMI test
we see little change in behaviour; the dominant factor in�uencing power is the
bias correction rather than the precise width of the con�dence intervals.



Weighted sum The relative dominance of the LSB in the leakage provides
an additional advantage for the t-test and we found as expected that the test
achieved its highest power when evaluating this bit. This results in a relative in-
crease in overall power compared to the CMI test than we observed in the Ham-
ming weight scenario and also allows for detection of leakage at lower SNRs. The
CMI test seems to exhibit performance consistent with that under the Hamming
weight model, and similarly for the DMI test. The e�ects of the stricter signi�-
cance criterion are also similar, with noticeable reductions in power observed for
each of the tests under the smaller α values save for the DMI test, where again
the bias correction is the predominant factor.

Toggle count An analysis of the underlying true distance of means for the
Toggle count model indicated that the largest information leakage was con-
tained within the second-least signi�cant bit, which was also twice the leakage in
the next most leaky bit. As with the Weighted sum model, the relative domi-
nance of this bit supplies the t-test with an advantage over the CMI test but in
this instance the advantage is by a smaller margin. We can also see that the CMI
test appears to be signi�cantly more robust to the stricter signi�cance criterion,
outperforming the more sensitive t-test in all of the high noise settings. Here
we also see the DMI test exhibiting an increased sensitivity to the signi�cance
criterion.

Zero value The size of the information leak present in a noise-free setting
for the Zero value model is small relative to those in the other models: the
true MI in a noise-free setting is 0.0369 and the true distance-of-means 0.0078.
As such it is interesting to note the stronger performance of the CMI test in
high noise settings relative to that of the t-test observed in these results�the
additional information on the non-linear dependencies contained in the estimated
MI values increases the power of the CMI test whereas the quantity of noise has a
stronger e�ect on the di�erence-in-means estimated by the t-test. The low power
estimates for the DMI test are consistent with the small size of the information
leak in the model coupled with the loss of information in the conversion process
of continuous to discrete data.

Variance By design the mean of the power consumption for all sub-key values
is equivalent in the Variance model, and so the t-test cannot be applied. As a
test for the applicability of the CMI and DMI to situations in which only higher-
order moments leak, the CMI test appears to be robust, so that small sample
sizes su�ce to achieve the requisite power at medium and low noise levels. The
true information leakage contained within the variances is strongly a�ected by
the amount of noise in the samples, which explains why both tests soon begin
to struggle as the SNR drops below 20.

Conclusion The t-test was generally shown by the a priori power analysis to
be the most powerful. This is not unexpected: the sample mean is a consistent,
unbiased estimator for the population mean and converges quickly to the true



value. The performance of the CMI test was close to that of the t-test in all
scenarios, indicating that it remains a robust, if slightly inferior alternative in
the majority of settings. The DMI test was expected to be less powerful due to
the loss of information by the conversion of continuous data to discrete, and this
was observed in our analysis; the results indicate that the test is a viable choice
only when supplied with large amounts of trace data and only when the SNR is
high.

Of note was the superior performance of the CMI test when detecting the
small leaks produced by our Zero value model, particularly in high-noise set-
tings. This suggests that the CMI test may be a better, or safer, choice when
applied to devices with these sorts of characteristics. The results obtained under
the Variance model indicate that the CMI test is su�ciently robust to han-
dle `tough' leakage scenarios in which the leakage is solely contained in higher
moments of the power consumption distribution.

5 Case studies

The a priori statistical power analysis is the primary method for comparison
of the detection tests. To complement the analysis, and to further explore the
e�ectiveness of multiplicity corrections, in the following section we demonstrate
the application of the three detection tests to the evaluation of two crypto-
graphic devices implementing the AES. The �rst device we analyse is an ARM7
microcontroller implementing the AES in software, with no countermeasures ap-
plied. This device would be expected to exhibit signi�cant information leakage
in Hamming-weight form, and hence is a good opportunity to analyse the ef-
�cacy of multiple testing correction procedures. The second device analysed is
a Sasebo-R evaluation board manufactured using a 90nm process implementing
AES in hardware with a Positive-Prime Reed-Muller (PPRM) based SubBytes
operation using single-stage AND-XOR logic [21]. This second case study is in-
tended to investigate the performance of the detection tests under increasingly
complex leakage distributions as well as acting as a further test for the multi-
plicity corrections.

5.1 ARM7 microcontroller

Our data set contained 32, 000 traces from the device and we chose to evaluate
the �rst key byte for information leakage. For the t-test we analysed the output
of the �rst SubBytes operation. Figure 2 illustrates the estimated MI values
and t-test statistics produced by the detection tests ran at a signi�cance level
α = 0.05 for each of the 200, 000 time points in our traces. For the CMI test we
performed 1, 000 permutations of the traces at each time point, and as we found
that all 8 of the bits in the intermediate state produced similar information
leakage we elected to display the results for the LSB.

At the initial signi�cance level α = 0.05, the CMI test identi�ed 9, 360 time
points consistent with information leakage, the discrete test 178, and the t-test
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Fig. 2: Estimated CMI and DMI values and t-test statistics produced using
32,000 traces during an evaluation of an ARM7 microcontroller implementing a
software version of the AES.

9, 713. These occur across the full range of the traces, and account for around
4.8% of the total in the CMI and t-test cases. Using our prior knowledge of
the device we could ascertain that many of these points are likely to be false
positives.

To gain an indication of how many of these time points actually contain
exploitable leakage, we conducted a battery of attacks on the output of the Sub-
Bytes operation on all of the time points using the same set of traces including
Brier et al.'s correlation (CPA) [7], Gierlichs et al.'s mutual information analysis
(MIA) [12], both using a Hamming weight power model, and Kocher et al.'s
di�erence of means [17]. Whilst we have argued that practical results should not
be used to perform a post hoc power analysis, the results of the DPA attacks can
be used to quantify under-performances of the three tests�time points that can
be successfully attacked that are missed by detection tests are indicative of low
statistical power given the available sample size. In this regard the only notable
false acceptances of time points occurred under the DMI test, with the CMI
and t-tests able to spot the vast majority of the vulnerable time points. These



results appear to be consistent with those observed under the Hamming-weight
scenario in the statistical a priori power analysis.

False discovery rate Applying any correction to the results produced by the
DMI test is redundant as the `raw' results are already highly unlikely to contain
falsely rejected null hypotheses. The FDR controlling procedures are likely to
be the most successful of the multiple testing corrections for our purposes, so
we applied the Benjamini-Hochberg correction to the results produced by the
CMI and t-tests, controlling the FDR at the levels 0.05 and 0.5. Using prior
knowledge of the device and the results of the DPA attacks we would not expect
to observe any information leaked about the �rst key byte after time 25,000.

The e�ect of increasing the value of the FDR on the type I error can be
observed by the larger number of false positives produced when the FDR is 0.5.
The t-test appears to react more e�ectively to the corrective procedure, eliminat-
ing larger numbers of the false positives previously observed at the time points
greater than 25, 000. An inspection of the p-values reported by the CMI test
indicates that the number of permutations performed is the proximate cause for
the under-performance: the 1, 000 executed do not appear to produce enough
precision in the estimated p-values to allow the step-up procedure to di�eren-
tiate between neighbouring tests. The procedures do not appear to result in a
signi�cant rise in type II error�the increase is lessened with the looser FDR of
0.5, but appears to be slight in both cases. As always, increasing the sample size
available would reduce the size of any increase in type II error.

5.2 Hardware AES with PPRM SubBytes implementation

The dataset contained 79, 360 traces from the device at 5 giga-samples per second
and we again chose to evaluate the �rst key byte for information leakage; for the
t-test we analysed the output of the �rst SubBytes operation. Figure 4 illustrates
the estimated MI values and t-test statistics produced by the detection tests run
at a signi�cance level α = 0.05 for each of the 50, 000 time points in our traces.
The �rst and last 10, 000 points are not displayed as they do not correspond to
any part of the full AES operation. For the CMI test we increased the number of
permutations to 10, 000 per time point in an attempt to gain additional precision
on the estimated p-values. Information leakage was found to occur to a varying
degree across all 8 bits of the intermediate state when using the t-test�as such,
we have elected to superimpose the results for all of the state bits on a single
graph. The DMI test was not able to identify any information leakage.

A visual inspection of the results produced by both the CMI test and t-tests
indicate that there are 10 groups of points within the power traces that contain
signi�cant amounts of information leakage. As would be expected the shape and
scale of the leakages di�er: the t-test is only assessing the SubBytes operation
and the leakage of individual bits. We were able to con�rm the vulnerability of
the device by successfully executing a reduced Bayesian template attack on the
intermediate values of the SubBytes operation at the time points the detection
tests indicated would be vulnerable. The hardware device exhibits less, but still
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Fig. 3: Plots of the time points consistent with information leakage after apply-
ing the Benjamini-Hochberg FDR controlling procedure to the results produced
by the t-test and CMI test.
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Fig. 4: Estimated Î(K;T ) values produced by the CMI test and t-test statistics
produced using 79, 360 traces taken from an evaluation of a hardware AES device
with the SubBytes operation using Positive-Prime-Reed-Muller (PPRM) logic.

signi�cant leaking behaviour when compared to the ARM7 microcontroller im-



plementation, as evidenced by the lower mutual information estimates and the
smaller t-test statistic scores.

The performance of the CMI and t-tests appears to be similar. The extra
de�nition in the CMI graph is likely due to the t-test assessing leakage from the
output of the SubBytes operation only. The DMI test could not identify any
information leakage, indicating that many more samples would be required to
begin to match the power of the CMI and t-tests.

False discovery rate The Benjamini-Hochberg correction was applied to the re-
sults produced by the CMI and t-tests, this time controlling the FDR at the levels
0.05 and 0.005. The previous FDR of 0.5 used in the analysis of the ARM7 device
yielded too many clear false rejections of the null hypothesis, possibly due to the
smaller number of time points, and as a consequence two stricter criteria were
used. Figure 5 shows the results of applying the two criteria to the results pro-
duced by the CMI and t-test. The e�ectiveness of the multiplicity corrections is
lessened in the hardware device evaluation. The t-test again reacts better to the
stricter corrective procedure, eliminating larger numbers of likely false positives.
Despite the increase of permutations per time point from 1, 000 to 10, 000 for
the CMI test, the e�ectiveness of the multiplicity correction is again dampened
by the lack of precision available in the estimated p-values. It is likely that a
di�erent, more complex approach may be required to e�ectively mitigate the
multiplicity problem under the CMI test.

6 Computational complexity

If we consider commercial and logistical pressures on the evaluation process then
we must also include the computational complexity of the detection tests as a
factor in our evaluation. In this regard, the CMI test is particularly expensive.
Under reasonable parameters of a data set of 80, 000 traces each consisting of
50, 000 sampled time points, and where the test computes 1, 000 permuted esti-
mates of the MI at each time point, a full run of the detection test on a single
key byte necessitates the evaluation of 50 million continuous MI values. If we
factor in the cost of �nding conditional probability density functions, then we
may expect to perform in total 2.05×1015 (≈ 251) evaluations of the kernel func-
tion used in the density estimation, at a total cost of roughly 1.64×1016 �oating
point operations.

This presents a signi�cant obstacle; we estimated that our naive single-CPU
implementation would take around a month to analyse a device. However the
problem is `embarrassingly parallel' and we implemented the test in parallel form
using OpenCL: using two AMD Radeon 7970 GPUs we were able to execute a
test with the above parameters in approximately 14 hours; a throughput of 300
GFLOPS. The addition of inexpensive GPUs decreases the running time linearly,
ensuring that the CMI test, even with large data set parameters, is feasible to
run. By comparison the DMI and t-tests are e�cient; a key byte can be fully
assessed for leakage in under 30 minutes.
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Fig. 5: Plots of the time points consistent with information leakage after apply-
ing the Benjamini-Hochberg FDR controlling procedure at levels 0.05 and 0.005
to the results produced by the t-test and CMI test for the hardware AES imple-
mentation.

7 Conclusion

Taking the perspective of a `black-box' evaluation, in which the evaluator may
have little knowledge about the leakage characteristics of the device, it would be
desirable to select a leakage detection test that is the most generally applicable
and that has the best all-round performance. In the majority of our a priori
analysis this was, by a small margin, the t-test. However we must also take into
account the inherent limitations in the t-test's inability to measure leakage in any
moment other than the mean. If an evaluator wished to gain the most coverage
over all possible leakage scenarios, then, given the signi�cant under-performance
of the discrete version in the a priori analysis, the CMI test is the only viable
candidate.

The complexity of the tests is an additional factor to consider. The t-test must
be re-run for every bit and every intermediate operation within the algorithm
implemented on the device, whereas the CMI and DMI tests need only to be run
once per bit or byte of key analysed. At �rst glance the computational cost of



the CMI test appears to be prohibitive, but we have demonstrated that using
relatively inexpensive GPUs and the inherently parallel nature of the problem,
the running time can easily and cheaply be reduced to insigni�cant levels.

In the absence of any general result that can translate MI, entropy or a dif-
ference of means into the trace requirements for an adversary, the interpretation
of the results of any standardised detection test becomes heavily reliant on the
tools provided by statistics. The large body of work on multiplicity corrections is
a rich resource to draw upon, and further research in this area may yield useful
results. In addition, a multivariate detection procedure capable of detecting any
higher-order information leakage warrants research e�ort.
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