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Abstract. This paper investigates the mathematical structure of the
“Isomorphism of Polynomial with One Secret” problem (IP1S). Our pur-
pose is to understand why for practical parameter values of IP1S most
random instances are easily solvable (as first observed by Bouillaguet et
al.). We show that the structure of the equations is directly linked to a
matrix derived from the polar form of the polynomials. We prove that
in the likely case where this matrix is cyclic, the problem can be solved
in polynomial time – using an algorithm that unlike previous solving
techniques is not based upon Gröbner basis computation.

1 Introduction

Multivariate cryptography is a sub area of cryptography the development of
which was initiated in the late 80’s [13] and was motivated by the search for
alternatives to asymmetric cryptosystems based on algebraic number theory.
RSA and more generally most existing asymmetric schemes based on algebraic
number theory use the difficulty of solving one univariate equation over a large
group (e.g. xe = y where e and y are known). Multivariate cryptography as for
it, aims at using the difficulty of solving systems of multivariate equations over
a small field.

A limited number of multivariate problems have emerged that can be rea-
sonably conjectured to possess intractable instances of relatively small size. Two
classes of multivariate problems are underlying most multivariate cryptosystems
proposed so far, the MQ problem of solving a multivariate system of m quadratic
equations in n variables over a finite field Fq - that was shown to be NP-complete
even over F2 for m ≈ n [10]- and the broad family of the so-called isomorphism
of polynomials (IP) problems.

Isomorphism of Polynomial problems can be roughly described as the equiv-
alence of multivariate polynomial systems of equations up to linear (or affine)
bijective changes of variables. Two separate subfamilies of IP problems can be
distinguished: isomorphism of polynomials with two secrets (IP2S for short) and
isomorphism of polynomials with one secret (IP1S for short). A little more in



detail, given two m-tuples a = (a1, . . . , am) and b = (b1, . . . , bm) of polyno-
mials in n variables over K = Fq, IP2S consists of finding two linear bijective
transformations S of Kn and T of Km, such that b = T ◦a◦S. Respectively, (com-
putational) IP1S consists of finding one linear bijective transformations S of Kn,
such that b = a ◦ S. Many variants of both problems can be defined depending
on the value of the triplet (n,m, q), the degree d of the polynomial equations of a
and b, whether these polynomials are homogeneous or not, whether S and T are
affine or linear, etc. It turns out that there are considerable security and simplic-
ity advantages in restricting oneself, for cryptographic applications, to instances
involving only homogeneous polynomials of degree d and linear transformations
S and T . For performance reasons, the quadratic case d = 2 is most frequently
encountered in cryptography. Due to the existence of an efficient canonical re-
duction algorithm for quadratic forms, instances such that m ≥ 2 must then be
considered. The cubic case d = 3 is also sometimes considered, then instances
such that m = 1 are generally encountered.

Many asymmetric cryptosystems whose security is related to the hardness
of special trapdoor instances of IP2S were proposed in which all or part of the
m-tuple of polynomials b plays the role of the public key and is related by secret
linear bijections S and T to a specially crafted, easy to invert multivariate poly-
nomial mapping a. Most of these systems, e.g. Matsumoto and Imai’s seminal
multivariate scheme C* [13], but also reinforced variants such as SFLASH and
HFE [18, 16] were shown to be weak because the use of trapdoor instances of
IP2S with specific algebraic properties considerably weakens the general IP2S
problem. A survey of the status of the IP2S problems and improved techniques
for solving homogeneous instances are presented in [1] and [4].

The IP1S problem was introduced in [16] by Patarin, who proposed in the
same paper a zero-knowledge asymmetric authentication scheme named the IP
identification scheme with one secret (IP1S scheme for short). This authenti-
cation scheme is inspired by the well known zero-knowledge proof for Graph
Isomorphism by Goldreich et al. [11]. It can be converted into a (less practical)
asymmetric signature scheme using the Fiat-Shamir transformation. The IP1S
problem and the related identification scheme were believed to possess several
attractive features:

– The conjecture that the IP1S problem is not solvable in polynomial time was
supported by the proof in [17] that the quadratic version of IP1S (QIP1S for
short) is at least as hard as the Graph Isomorphism problem (GI) 3 , one of
the most extensively studied problems in complexity theory. While the GI
problem is not believed to be NP-complete since it is NP and co-NP and
hard instances of GI are difficult to construct for small parameter values, GI
is generally believed not to be solvable in polynomial time.

– unlike the encryption or signature schemes based on IP2S mentioned above,
the IP1S scheme does not use special trapdoor instances of the IP1S problem

3 However as mentioned in the conclusion of this paper, if the flaw recently discovered
by the authors in the corresponding proof in [17] is confirmed, this casts some doubts
on the fact that Quadratic IP1S is indeed as hard as GI.



and therefore its security is directly related to the intractability of general
IP1S instances.

The IP1S problem also has some loose connections with the multivariate signa-
ture scheme UOV [12], that has until now remarkably well survived all advances
in the cryptanalysis of multivariate schemes. While in UOV the public quadratic
function b is related to the secret quadratic function by the equation b = a ◦ S,
both a and S are unknown whereas only S is unknown in the IP1S problem.

Former results. Initial assessments of the security of practical instances of
the IP1S problem suggested that relatively small public key and secret sizes -
typically about 256 bits - could suffice to ensure a security level of more than 264.
The IP1S scheme therefore appeared to favorably compare with many other zero-
knowledge authentication schemes, e.g [21, 22, 20]. Moreover, despite advances
in solving some particular instances of the IP1S problem, in particular Perret’s
Jacobian algorithm4 [19], the four challenge parameter values proposed in 1996
[16] (with q = 2 or 216, d = 2 and m = 2, or d = 3 and m = 1) remained
unbroken until 2011.

Significant advances on solving IP1S instances that are practically relevant
for cryptography were made quite recently [2, 1]. Dubois in [7] and the authors
of [2] were the first to notice that the IP1S problem induces numerous linear
equations in the coefficients of the matrix of S and of the inverse mapping T =
S−1. When m ≥ 3, the number mn2 of obtained linear equations is substantially
larger than the number 2n2 of variables. While the system cannot have full
rank since the dimension of the vector space of solutions is at least 1, it can
heuristically be expected to have a very small vector space of solutions that can
be tried exhaustively. The authors of [2] even state that they “empirically find
one solution (when the polynomials are randomly chosen)”.

Therefore the most interesting remaining case appears to be m = 2. It is
shown in [2] that the vector space of solutions of the linear equations is then
isomorphic to the commutant of a non-singular n × n matrix M and that its
dimension r is lower bounded by n in odd characteristic and 2n in even charac-
teristic. The reported computer experiments indicate that r is extremely likely
to be close to these lower bounds in practice. While for typical values of qn the
vector space of solutions is too large to be exhaustively searched, one can try
to solve the equation b = a ◦ S over this vector space. This provides a system
of quadratic equations in a restricted variable set of r ≈ n (resp. r ≈ 2n) coor-
dinates. The approach followed in [2] in order to solve this system consisted of
applying Gröbner basis algorithms such as Faugère’s F4 [8] and related computer
algebra tools such as FGLM [9]. This method turned out to be quite successful:
all the IP1S challenges proposed by Patarin were eventually broken in comput-
ing times ranging from less than 1 s to 1 month. This led the authors of [2] to
conclude that “[the] IP1S-Based identification scheme is no longer competitive

4 This algorithm recovers mn linear equations in the coefficients of S and is therefore
suited for solving IP1S instances such that m ≈ n.



with respect to other combinatorial-based identification schemes”. However, the
heuristic explanation suggested in [2], namely that the obtained system was so
massively over defined that a random system with the same number of random
quadratic equations would be efficiently solvable in time O(n9) with overwhelm-
ing probability, was later on shown to be false by one of the authors of [2], due
to an overestimate of the number of linearly independent quadratic equations.

This is addressed in Bouillaguet’s PhD dissertation [1] where the results of
[2] are revisited. The main discrepancy with the findings of [2] is the observa-
tion that in all the reported experiments in odd and even characteristic, the
number of linearly independent quadratic equations, that was supposed in [2]
to be close to n2, is actually bounded over by a small multiple of n and only
marginally larger than r. The author writes “This means that we cannot argue
that solving these equations is doable in polynomial time. An explanation of this
phenomenon has eluded us so far.” Despite of the surprisingly small number of
linearly independent quadratic equations, nearly all instances are confirmed to
be efficiently solvable for all practical values of n when the size q of the field
is sufficiently small (q=2 or 3) and still solvable efficiently up to values of n of
about 20. The author writes “For instance, when q = 2 and n = 128 we are
solving a system of 256 quadratic equations in 256 variables over F2. When the
equations are random this is completely infeasible. In our case, it just takes 3
minutes ! We have no clear explanation of this phenomenon.”

Our contribution. The lack of explanation for the success of the attack – more
precisely the puzzling fact that the number of linearly independent quadratic
equations is close to n in odd characteristic and to 2n in even characteristic and
the even more puzzling fact that nearly all instances are nevertheless solvable –
motivated our research on IP1S. We revisited the former analysis and eventually
found an algebraic explanation of why most random instances of the quadratic
IP1S problem are efficiently solvable that leads to a new method (not based
on Gröbner basis computations) to directly solve these instances. Our analysis
shows in particular that in the likely cases where the characteristic is odd and
the matrix M is cyclic or the characteristic is even and M is similar to a block-
wise diagonal matrix with two equal cyclic n

2 ×
n
2 diagonal blocks, the quadratic

equations split up in an appropriate base in small triangular quadratic systems
that can be solved efficiently in polynomial time. The highlighted structure of
the quadratic equations seems to be the essential reason why Gröbner basis
computations behave so well on most instances.

The rest of this paper is organized as follows. In Section 2, we present the
problem IP1S, its background and some major mathematical results used in
the following sections. We then discuss in Section 3 and 4 the resolution of the
problem over finite fieds of odd, resp. even characteristic.



2 The Isomorphism of Polynomial Problem with One
Secret

2.1 Notations and first definitions

Let K be a field; for practical considerations, we shall assume that K is the finite
field Fq with q elements, although most of the discussion is true in the general
case.

A (homogeneous) quadratic form in n variables over K is a homogeneous
polynomial of degree two, of the form q =

∑
i,j=1...n αi,jxixj , where the coef-

ficients αi,j belong to K. For simplicity, we write x = (xi) for the vector with
coordinates xi. The quadratic form q can be described by the matrix with general
term αi,j . Note that the matrix representation of a quadratic form is not unique:
two matrices represent the same linear form if, and only if, their difference is
skew-symmetric.

The polar form associated to a quadratic form q is the bilinear form b = P(q)
defined by b(x, y) = q(x + y) − q(x) − q(y). This is a symmetric bilinear form.
This can be used to give an intrinsic definition of bilinear forms (which is useful
to abstract changes of bases from some proofs below): given a vector space V , a
quadratic form over V is a function q : V → K such that

(i) for all x ∈ V and λ ∈ K, q(λx) = λ2q(x);

(ii) the polar form P(q) is bilinear.

For any matrix A, let tA be the transpose matrix of A and P(A) be the
symmetric matrix tA+A. Then if q is a quadratic form with matrix A, its polar
form has matrix P(A). The quadratic form q is regular if its polar form is not
singular, i.e. if it defines a bijection from V to its dual. In general, we define the
kernel of a quadratic form to be the kernel of its polar form.

From the definition of b = P(q) we derive the polarity identity

2q(x) = b(x, x). (1)

This identity obviously behaves very differently when 2 is a unit in K and
when 2 = 0 in K. This forces us to use some quite different methods in both
cases.

If 2 is invertible in K then the polarity identity (1) allows recovery of a
quadratic form from its polar bilinear form. In other words, quadratic forms in
n variables correspond to symmetric matrices.

Conversely, if 2 = 0, then the polarity identity reads as b(x, x) = 0; in other
words, the polar form is an alternating bilinear form. In this case, equality of
polar forms does not imply equality of quadratic forms. Define ∆(A) as the
matrix of diagonal entries of the matrix A. Then quadratic forms A and B are
equal if, and only if, P(A) = P(B) and ∆(A) = ∆(B).



2.2 The quadratic IP1S problem

We now state the quadratic IP1S problem and give an account of its current
status after the recent work of [2] and [1].

Problem 1 (Quadratic IP1S). Given two m-tuples a = (a1, . . . , am) and b =
(b1, . . . , bm) of quadratic homogeneous forms in n variables over K = Fq, find
a non-singular linear mapping S ∈ GLn(K) (if any) such that b = a ◦ S, i.e.
bi = ai ◦ S for i = 1, . . . ,m.

Remark 1. In order not to unnecessarily complicate the presentation, our def-
inition of the IP1S problem slightly differs5 from the initial statement of the
problem introduced in [16]. Though the name “quadratic homogeneous IP1S”
might be more accurate to refer to the exact class of instances we consider, we
will name it quadratic IP1S or IP1S in the sequel.

If we denote by Ai, resp. Bi any n×n matrices representing the ai, resp. the bi
and denote by X the matrix representation of S, the conditions for the equality
of two quadratic forms given in Section 2.1. allow to immediately translate the
quadratic IP1S problem into equivalent matrix equations.

– If the characteristic of K is odd: the problem is equivalent to finding an
invertible matrix X that satisfies the m polar equations: P(Bi) = tXP(Ai)X

– If the characteristic of K is even: the problem is equivalent to finding an
invertible matrix X that satisfies the polar and the diagonal equations:
P(Bi) = tXP(Ai)X; ∆(Bi) = ∆(tXAiX).

In the following sections we will consider IP1S instances such that m = 2, that
are believed to represent the most “interesting” instances of IP1S as reminded
above. Matrix pencils, that can be viewed as n × n matrices whose coefficients
are polynomials of degree 1 of K[λ] represent a convenient way to capture the
above equations in a more compact way. If we denote by A and B the matrix
pencils λA0+A1 and λB0+B1, and by extension P(A) and P(B) the symmetric
matrix pencils λP(A0) + P(A1) and λP(B0) + P(B1), the two polar equations
can be written in one equation: P(B) = tXP(A)X. However, as detailed in the
next section, the theory of pencils is far more powerful than just a convenient
notation for pairs of matrices. See for instance [3].

2.3 Mathematical background

In this Section we briefly outline a few known definitions and results related to
the classification of matrices and matrix pencils and known methods for solving
matrix equations that are relevant for the investigation the IP1S problem.

5 While in [16] the isomorphism of two m-tuples quadratic polynomials comprising also
linear and constant terms through a non-singular affine transformation was consid-
ered, we consider here the isomorphism of two m-tuples of quadratic forms through
a non-singular linear transformation. This replacement of the original definition by
a simplified definition is justified by the fact that all instances of the initial prob-
lem can be shown to be either easily solvable due to the lower degree homogeneous
equations they induce or efficiently reducible to an homogeneous quadratic instance.



Basic facts about matrices. Two matrices A and B are similar if there exists
an invertible matrix P such that P−1AP = B and congruent if there exists an
invertible P such that tPAP = B.

The matrix A is called cyclic if its minimal and characteristic polynomials
are equal.

For any matrix A, the commutant of A is the algebra CA of all matrices
commuting with A. It contains the algebra K[A], and this inclusion is an equality
if, and only if, A is cyclic.

For any matrix A, let
∏
peii be the prime factorization of its minimal polyno-

mial. Then K[A] is the direct product of the algebras K[x]/pi(x)ei ; each of these
factors is a local algebra with residual field equal to the extension field K[x]/pi.

Pencils of bilinear and quadratic forms. Let V be a K-vector space and
Q(V ) be the vector space of all quadratic forms on V . A projective pencil of
quadratic forms on V is a projective line in PQ(V ), i.e. a two-dimensional sub-
space of Q(V ). As a projective pencil is the image of the projective line P1

in Q(V ), it is determined by the images of the points ∞ and 0 in P1, which we
write A0 and A∞.

An affine pencil of quadratic forms is an affine line in Q(V ), or equivalently
a pair of elements of Q(V ). The affine pencil with basis (A∞, A0) may also be
written as a polynomial matrix Aλ = A0 + λA∞. Given a projective pencil A
of Q(V ), the choice of any basis (A∞, A0) of A determines an affine pencil.

A projective pencil is regular if it contains at least one regular quadratic
form. An affine pencil (A∞, A0) is regular if A∞ is regular; it is degenerate if the
intersection of the kernels of the quadratic forms Aλ is nontrivial.

If an affine pencil is non-degenerate, then the polynomial detAλ is non-zero;
choosing any λ which is not a root of this polynomial proves that the associated
projective pencil is regular (over K itself if it is infinite, and over a finite extension
of K if it is finite). This gives a basis of the projective pencil which turns the
affine pencil into a regular one. We shall therefore assume all affine pencils to be
regular.

Two pencils A,B of quadratic forms are congruent if there exists an invertible
matrix X such that tXAλX = Bλ. The case m = 2 of the quadratic IP1S prob-
lem reduces to the Pencil congruence problem: given two affine pencils A and B,
known to be congruent, exhibit a suitable congruence matrix X.

We first note that the IP1S problem easily reduces to the case where both
pencils are regular. Namely, if one (and therefore both) is degenerate, then we
may quotient out both spaces by the (isomorphic) kernels of the pencils; this
defines non-degenerate affine pencils on the quotient vector spaces, which are
still congruent. Since the associated projective pencils are regular, a change of
basis in the pencils (and maybe an extension of scalars) brings us to the case of
two regular affine pencils.

We define pencils of bilinear forms in the same way as pencils of quadratic
forms. The pencil bλ = b0 + λb∞ regular if b∞ is; in this case, the characteristic
endomorphism of the pencil is the endomorphism f = b−1∞ ◦ b0.



The following lemma allows to decompose pencils as direct sums, with each
factor having a power of an irreducible polynomial as its characteristic endomor-
phism.

Lemma 1. Let b be a regular pencil of symmetric bilinear forms. Then all pri-
mary subspaces of the characteristic endomorphism f are orthogonal with respect
to all forms of b.

Proof. We have to prove the following: given any two mutually prime factors p, q
of f and any x, y ∈ V such that p(f)(x) = 0 and q(f)(y) = 0, then for all λ, we
have bλ(x, y) = 0. For this it is enough to show that b∞(x, y) = 0.

Since p, q are mutually prime, there exist u, v such that up + vq = 1. Note
that, for all x, y ∈ V , we have b∞(x, fy) = b0(x, y) = b0(y, x) = b∞(fx, y);
therefore, all elements of K[f ] are self-adjoint with respect to b∞. From this we
derive the following:

b∞(x, y) = b∞(x, u(f)p(f)y + v(f)q(f)y)

= b∞(u(f)p(f)x, y) + b∞(x, v(f)q(f)y)

= 0.

(2)

ut

Explicit similarity of a matrix and its transposed. The next result is
intensively used in the sequel to deal with symmetric pencils. Although this
result is classic [23], we are interested with the explicit form given below.

Theorem 1. For any matrix M , there exists a non-singular symmetric matrix
T such that tMT = TM .

Proof. Using primary decomposition for M , we may assume that it is of the
form

M =


M0 1 0

. . .
. . .
. . . 1

0 M0

 , (3)

where M0 is the companion matrix of a polynomial p(λ) = λn +
∑n−1
i=0 piλ

i. We
then define matrices T0 and T by

T0 =


p1 · · · pn−1 1
... . .

.
. .
.

pn−1 .
. .

1 0

 , T =

 0 T0

. .
.

T0 0

 . (4)

One can easily verify that T0 is invertible, symmetric and tM0T0 = T0M0, and
that the same is true for T and M . ut



3 IP1S in characteristic different from two

Let K be a field of characteristic different from two6. In this case, the polarity
identity (1) identifies quadratic forms with symmetric bilinear forms, or again
with symmetric matrices with entries in K. We shall therefore write a quadratic
pencil A as Aλ = A0 + λA∞, where A0 and A∞ are symmetric matrices.

Proposition 1. Let Aλ = A0 + λA∞, Bλ = B0 + λB∞ be two regular affine
pencils.

(i) If Aλ is congruent to Bλ, then the characteristic matrices

MA = A−1∞ A0 and MB = B−1∞ B0

are similar.
(ii) Assume that MA and MB are similar and choose P such that P−1MAP =

MB. Then tPAλP = tPA∞P (λ+MB).
(iii) Assume that Aλ = A∞(λ + M) and Bλ = B∞(λ + M). Then the solutions

of the pencil congruence problem are exactly the invertible X such that

XM = MX and tXA∞X = B∞. (5)

Proof. (i). Since Aλ is regular, A∞ is invertible and we may write Aλ = A∞(λ+
A−1∞ A0); likewise, Bλ = B∞(λ + B−1∞ B0). Choose P such that tPAλP = Bλ,
then

B∞(λ+MB) = tPAλP = tPA∞P (λ+ P−1MAP ), (6)

which implies P−1MAP = MB as required. The same computations prove (ii).
The equations (5) follows directly from the equality tXA∞(λ + M)X =

tXA∞X(λ+X−1MX). ut

We now restrict ourselves to the case where the characteristic endomorphism
is cyclic.

Proposition 2. Let Aλ = A∞(λ + M) and Bλ = B∞(λ + M) be two regular
symmetric pencils such that the matrix M is cyclic, that is, its minimal and
characteristic polynomials are equal.

Then the solutions X of the pencil congruence problem are the square roots
of A−1∞ B∞ in the algebra K[M ].

Proof. Since M is cyclic, its commutant is reduced to the algebra K[M ]; there-
fore, all solutions of the congruence problem are polynomials in M .

Since Aλ is symmetric, both matrices A∞ and A0 = A∞M are symmetric;
therefore, tMA∞ = A∞M . Since X is a polynomial in M , we deduce that
also tXA∞ = A∞X.

The relation tXA∞X = B∞ may therefore be rewritten as A∞X
2 = B∞,

or X2 = A−1∞ B∞. ut
6 Although this is not used in cryptography, we mention that this section also applies

verbatim to the case of characteristic zero.



Theorem 2. Let K be a finite field of odd characteristic and Aλ, Bλ be two
regular pencils of quadrics over Kn, congruent to each other, such that at least
one is cyclic (and therefore both are). Then the pencil congruence problem may

be solved using no more than Õ(n3) operations in the field K.

Proof. The first step is to reduce to the case of primary components of the
characteristic endomorphism. This may be done, using for example Frobenius
reduction of both matrices A−1∞ A0 and B−1∞ B0, with a complexity of Õ(n3)
operations. This also provides the change of basis making the characteristic
endomorphism of both pencils to have the same matrix.

There remains to compute a square root of C = A−1∞ B∞ in K[M ], where
now the minimal polynomial of M is pe, with p irreducible. For this we first
write C as a polynomial g(M); this again requires Õ(n3) operations. To solve
the equation y2 = g(M) in the ring K[M ] = K[x]/p(x)e, we first solve it in the

(finite) residual field K[x]/p(x), with complexity Õ(n3) again; lifting the solution

to the ring K[M ] requires only Õ(n2) with Hensel lifting. ut

Solutions of the IP1S problem are square roots of an element C of the al-
gebra K[M ]; therefore, the number of solutions is 2s, where s is the number
of connected components of K[M ], that is, the number of prime divisors of the
minimal polynomial of M .

Summary and Computer experiments. The case where all the elementary
divisors of P(A) are pairwise co-prime – or equivalently where M is cyclic – rep-
resents in practice a quite large fraction of random cases (see for instance [15]).
In this case, as shown above, the number of solutions is exactly 2s where s is
the numbers of elementary divisors and solutions can be efficiently computed
(in polynomial time Õ(n3)) by our method. The highlighted structure of the
equations also provides some likely explanations of why Gröbner basis computa-
tion methods such as those presented in [2] were successful in this case. We give
in next table results (timings) of our MAGMA script SOLVECYCLICODDPC, t is the
mean execution time when solving 100 random cyclic IP1S instances, τ is the
observed fraction in percent of such “cyclic” instances over random instances.

q n t τ

3 80 5.s. 87.
3 128 34.s. 88.

310 32 15.s. 100.

q n t τ

5 20 0.07s. 95.
5 32 0.28s. 95.
5 80 7.s. 95.
57 32 8.s. 100.

q n t τ

76 32 11.s. 100.
65537 8 0.04s. 100.
65537 20 1.s. 100.

4 IP1S in Characteristic Two

Let K be a perfect field of characteristic two. In this case, the polarity iden-
tity (1) shows that the polar form b = P(q) attached to a quadratic form q is an
alternating bilinear form.



4.1 Pencils of alternating bilinear forms

This paragraph is a reminder of classical results. We refer the reader to [14] for
the proofs.

If b is alternating and nondegenerate, then the vector space V has a symplectic
basis, i.e. a basis (e1, . . . , en, f1, . . . , fn) such that b(ei, fi) = 1 and all other
pairings are zero. In particular, the dimension of V is even. The vector E space
generated by the ei is equal to its orthogonal space E⊥; such a space is called a
Lagrangian space for b.

We recall that two matrices A and B define the same quadratic form if and
only if P(A) = P(B) and ∆(A) = ∆(B).

Although quadratic forms only produce alternating bilinear forms in char-
acteristic two, the following lemma about alternating forms is true in all char-
acteristics. It proves that there exists a basis of V in which the pencil has the
block-matrix decomposition

A∞ =
(
0 1
1 0

)
, A0 =

(
0 tF
F 0

)
; A−1∞ A0 =

(
F 0
0 tF

)
. (7)

The matrix F is called the Pfaffian endomorphism of A.

Lemma 2. Let b = (b∞, b0) be a regular pencil of alternating bilinear forms
on V . Then there exists a symplectic basis for b∞ whose Lagrangian is stable by
the characteristic endomorphism of b.

Proof. Let f be the characteristic endomorphism of b. By Lemma 1, we may
replace V by one of the primary components of f and therefore assume that
the minimal polynomial of f is pn where p is a prime polynomial. By extending
scalars to K[λ]/p(λ) and replacing b0 by λb∞+ b0 we may assume that p(t) = t.
We now prove the lemma by induction on dimV .

Since tn is the minimal polynomial of f and b∞ is non-degenerate, there
exists x, y ∈ V such that b∞(x, fn−1y) = 1. Let W = K[f ]x ⊕ K[f ]y. Then we
may write V = W ⊕W⊥ where both W and its b∞-orthogonal W⊥ are stable
by f ; since W⊥ satisfies the lemma by the induction hypothesis, we only need
to prove it for W .

Let a(t) = 1+a1t+ · · ·+an−1t
n−1 be a polynomial and x′ = a(f)x. Then we

still have b∞(x′, fn−1y) = 1, and moreover we can choose a so that b∞(x′, f iy) =
0 for all i = 0, . . . , n− 2. In other words, (x′, fx′, . . . , fn−1x′, fn−1y, fn−2y, . . . ,
fy, y) is a symplectic basis for b∞ onW . By construction, its Lagrangian is K[f ]x,
which is obviously stable by the characteristic endomorphism f . ut

Proposition 3. Let K be a binary field. Any regular pencil of alternating bilin-
ear forms is congruent to a pencil of the form

A∞ =
(
0 T
T 0

)
, A0 =

(
0 TM
TM 0

)
, (8)

where M is in rational (Frobenius) normal form and T is the symmetric matrix
defined in Theorem 1.



Proof. From the equation 7, choose a matrix P such that M = P−1FP is
in rational normal form and define T as in Theorem 1. Then the coordinate
change

(
P 0
0 tP−1 T

)
produces the required form. ut

Let A be a pencil as in (8). The automorphism group O(A) of A is the set

of matrices X =
(
X1 X2
X3 X4

)
such that tXAX = A, that is all Xi commute with M

and tX1TX4 + tX3TX2 = T .
From now, we suppose that M is cyclic and for the sake of simplicity that

its primary decomposition has only one component.
Since M is cyclic, all Xi belong to K[M ]. The group O(A) is generated by

the elementary transformations

G1(X) =
(
1 X
0 1

)
, G2(X) =

(
1 0
X 1

)
, G3(X) =

(
X 0
0 X−1

)
, G4 =

(
0 1
1 0

)
, (9)

where X ∈ K[M ], X invertible for G3(X). The first three transformations gen-
erate the subgroup of positive automorphisms of A. This is a subgroup of order
two of the orthogonal group [6].

4.2 Pencils of quadratic forms

The following proposition deals with the diagonal terms of a quadratic form in
the cyclic case. We recall that, using the notations of Theorem 1, K[M0] is an
extension field of K, and K[M ] is the (local) K[M0]-algebra generated by

H =


0 1 0
. . .

. . .

. . . 1
0 0

 . (10)

We write ϕ(X) = X2 for the Frobenius map of K[M0]. Since this is a finite field,
the Frobenius map is bijective. It extends to K[M ] as ϕ(

∑
xiH

i) =
∑
x2iH

i.

Proposition 4. Define matrices M of size n, M0, T0 of size e = n/d as in
Theorem 1.

(i) The K-linear map K[M0] 7→ Ke, X 7→ ∆(T0X) is an isomorphism.
(ii) For any diagonal matrix D of size e, there exists a (unique) matrix C =

ψ0(D) ∈ K[M0] such that, for all X ∈ K[M0]:

∆(tXDX) = ∆(T0CX
2). (11)

(iii) Let D be a diagonal matrix of size n, written as blocks D0, . . . , Dd−1, and
write X ∈ K[M ] as X =

∑
xiH

i with xi ∈ K[M0]. Also define ψ(D) =∑
ψ0(Di)H

i ∈ K[M ]. Then we have the relation in K[M ]

ψ(∆(tXDX)) = ϕ(X) · ψ(D). (12)



Proof. (i) Since 2 = 0 in K, for any symmetric matrix A and any X, we have

∆(tX∆(A)X) = ∆(tXAX). (13)

Since the space K[M0] has dimension e over K, we only have to check injectivity.
Assume ∆(T0X) = 0 with X 6= 0; since K[M0] is a field, X is invertible. Let Y =
ϕ−1(X−1). We then have

∆(T0) = ∆(T0XY
2) = ∆(tY (T0X)Y ) = ∆(tY ∆(T0X)Y ) = 0. (14)

Let p(x) = p0+· · ·+pe−1xe−1+xe be the minimal polynomial of M0. From ∆(T0)
= 0 we deduce that pe−1 = pe−3 = · · · = 0, which contradicts the irreducibility
of p.

(ii) Let C ∈ K[M0] such that ∆(C) = D; applying (13) to the symmetric
matrix T0C and using the symmetry of T0M0 yields

∆(T0CX
2) = ∆(tXT0CX) = ∆(tX∆(T0C)X) = ∆(tXDX). (15)

(iii) From direct computation we find that the diagonal blocks of tXDX are
Bm =

∑
i+j=m

tXiDjXi; hence ∆(Bm) =
∑
∆(T0ψ0(Dj)X

2
i ) and ψ0(Bm) =∑

ψ0(Dj)ϕ(Xi). ut

For any binary field K, we write ℘(K) for the set of elements x2 + x ∈ K.
This is an additive subgroup of K, and the characteristic-two analogue of the set
of squares. For any element α of K[M ], we call degree of regularity of α that we
simply note deg(α) the smallest integer m such that there exists an invertible α′

of K[M ] such that α = Hmα′.

Proposition 5. Any regular pencil of quadratic forms is congruent to a pencil
of the form

A∞ =
(
D1 T
0 D2

)
, A0 =

(
D3 TM
0 D4

)
, (16)

where M , T are as in Prop. 3 and Di are diagonal matrices whose values αi =
ψ(Di) satisfy either one or the other of the following two kinds of canonical
forms:

(i) α1 = Hm, deg(α1 + α3) > m, α2 = 0 or α2 = δHd−1−m, deg(α4) ≥ m, for
some m ∈ {0, . . . , d}, and some fixed δ ∈ K[M0] r ℘(K[M0]);

(ii) α1 = Hm or α3 = Hm, deg(α1 + α3) = m, α2 = α4, deg(α2) > m for some
m ∈ {0, . . . , d}, and some fixed δ ∈ K[M0] r ℘(K[M0]).

Proof. By Prop. 3, we may compute bases in which the pencils of polar forms
have the form (8). In the same bases the pencils have the form (16) with M , T ,
M0, T0 as in Theorem 1 and Di are some diagonal matrices. We now perform
elementary transformations of the orthogonal group of P(A) to simplify the
diagonal part of the quadratic pencil. We use the transformations Gi(X) from (9)



for a matrix X = x0 + · · · + xd−1H
d−1 ∈ K[M ]. The effects of the elementary

transformations Gi(X) on the coefficients αi are:

G1(X) : α1 ← α1 + ϕ(X)α2 + ψ(∆(TX)),

α3 ← α3 + ϕ(X)α4 + ψ(∆(TX)),

α2 ← α2, α4 ← α4;

G2(X) : α2 ← α2 + ϕ(X)α1 + ψ(∆(TX)),

α4 ← α4 + ϕ(X)α3 + ψ(∆(TX)),

α1 ← α1, α3 ← α3;

G3(X) : α1 ← ϕ(X)α1, α2 ← ϕ(X−1)α2,

α3 ← ϕ(X)α3, α4 ← ϕ(X−1)α4;

G4 : α1 ↔ α2, α3 ↔ α4.

A direct computation gives

ψ(∆(TX)) =
∑
i≥ d−1

2

x2i−(d−1)H
i.

.
As in Prop. 4, we write Di as d blocks Di,j and define αi,j = ψ0Di,j . From

what we get above we explicit the effects of the elementary transformationG1(X)
on the coefficients αi,j :

G1(X) : α1,m ← α1,m +
∑

i+j=m

α2,ix
2
j form <

d− 1

2
,

α1,m ← α1,m +
∑

i+j=m

α2,ix
2
j + x2m−(d−1) form ≥ d− 1

2
;

If all αi = 0, we are done: the pencil is canonical. If not, we search the value
αi with smallest degree. Using G4, we may assume it is α1 or α3. We first suppose
that we have deg(α1 + α3) > m, that is α1 and α3 have the same trailing term.
We call this the case (i). Using G3, we may assume α1 = Hm, and therefore
α3 = Hm + α, with deg(α) > m. We look then for X such that G2(X)(α2) = 0.
We note that the corresponding system is triangular and all equations can be
solved except maybe for this one: α2,d−1−m = x2d−1−2m+xd−1−2m. Therefore we

may assume that α2 = 0 or α2 = δHd−1−m for some fixed δ ∈ K[M0]r℘(K[M0]).
We note also that G2(X) does not decrease the degree of α4. We have therefore
by hypothesis deg(α4) ≥ m.

We now examine the case (ii) where deg(α1 + α3) = m. Using again G3, we
may assume that α1 = Hm or α3 = Hm. Let’s note α1 + α3 = Hmα where
α is invertible. We are looking for X such that G2(X)(α2) = G2(X)(α4). By
hypothesis on the degree, we can write α2+α4 = Hmα′ for some α′. We naturally
choose X = ϕ−1(α′α−1). At this stage, we can consider that α2 = α4. However,



the condition on the degree may not hold. If by chance deg(α2) > m, then we
are done. If on the contrary deg(α2) ≤ m, then by using G4, we search instead
for a canonical form of the kind (i). ut

Theorem 3. Let K be a finite field with characteristic two. The cyclic case of
the IP1S problem is solvable using Õ(n3) operations in the field K. Moreover,
in the generic case, the IP1S problem has exactly 2s solutions, where s is the
number of components within the primary decomposition of M .

Proof. To solve the IP1S problem for two pencils A and B, we may reduce them
to the same canonical form using Prop. 5, using first the primary decomposition.
Following along the proof of the proposition, we see that it is constructive and
that all linear algebra algorithms used require at most Õ(n3) field operations.

Solutions of the IP1S problem correspond bijectively to automorphisms of the
canonical pencil. In the generic case, the ideal generated by the values (α1, α2)
is the full algebra K[M ]; the canonical pencil is then such that that α1 = 1
and α2 ∈

{
0, δHd−1}.

For both values of α2, since the equation x2d−1 + xd−1 = 0 has only the
solutions 0 and 1 in each component K[M0], the IP1S problem has in this case
exactly 2s solutions. ut

IP1S problem for a and b: Summary and Computer Experiments.
Next table gives timings of our MAGMA script SOLVECYCLICEVENIP1S, with the
same convention as for the odd case : τ represents the observed fraction of cyclic
cases and t the average computing time over these cases.

q n t τ

2 32 0.07s. 96.
2 128 2.s. 95.
2 256 33.s. 94.
24 32 0.3s. 100.
27 32 0.5s. 100.

q n t τ

28 20 0.2s. 100.
28 32 0.6s. 100.
28 80 20.s. 100.
28 128 133.s 100.

5 Conclusion and future work

We have shown that special instances of the quadratic homogeneous IP1S prob-
lem with m = 2 equations can be solved in polynomial time. These instances are
those where the characteristic endomorphism of the pencil (or its Pfaffian when
the characteristic of the field is 2) is cyclic, and represent in practice a large
fraction of generic instances. In a subsequent work, we studied the case where
the characteristic endomorphism is no longer cyclic and found similar results to
be published – at least for odd characteristic fields. In a work still in progress,
we try to extend these results to QIP1S problem with more than 2 equations,
and therefore expect to confirm that QIP1S is not as hard as GI.
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(F4). Journal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

9. Jean-Charles. Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient
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A Complexity, Timings, and Other Considerations

All the experimental results have been obtained with an Opteron 850 2.2GHz,
with 32 GBytes of Ram. The systems associated with the instance of the prob-
lems and their solutions have been generated using the MAGMA software, version
2.13-15. MAGMA scripts cited in this paper can be obtained from the authors.


