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Abstract. This paper initiates the study of preserving differential pri-
vacy (DP) when the data-set is sparse. We study the problem of con-
structing efficient sanitizer that preserves DP and guarantees high utility
for answering cut-queries on graphs. The main motivation for studying
sparse graphs arises from the empirical evidences that social network-
ing sites are sparse graphs. We also motivate and advocate the necessity
to include the efficiency of sanitizers, in addition to the utility guaran-
tee, if one wishes to have a practical deployment of privacy preserving
sanitizers.
We show that the technique of Blocki et al. [3] (BBDS) can be adapted to
preserve DP for answering cut-queries on sparse graphs, with an asymp-
totically efficient sanitizer than BBDS. We use this as the base technique
to construct an efficient sanitizer for arbitrary graphs. In particular, we
use a preconditioning step that preserves the spectral properties (and
therefore, size of any cut is preserved), and then apply our basic san-
itizer. We first prove that our sanitizer preserves DP for graphs with
high conductance. We then carefully compose our basic technique with
the modified sanitizer to prove the result for arbitrary graphs. In certain
sense, our approach is complementary to the Randomized sanitization
for answering cut queries [17]: we use graph sparsification, while Ran-
domized sanitization uses graph densification.
Our sanitizers almost achieves the best of both the worlds with the same
privacy guarantee, i.e., it is almost as efficient as the most efficient sani-
tizer and it has utility guarantee almost as strong as the utility guarantee
of the best sanitization algorithm.
We also make some progress in answering few open problems by BBDS.
We make a combinatorial observation that allows us to argue that the
sanitized graph can also answer (S, T )-cut queries with same asymptotic
efficiency, utility, and DP guarantee as our sanitization algorithm for
S, S̄-cuts. Moreover, we achieve a better utility guarantee than Gupta,
Roth, and Ullman [17]. We give further optimization by showing that fast
Johnson-Lindenstrauss transform of Ailon and Chazelle [2] also preserves
DP.

Keywords. Differential privacy, Graph sparsification, (S, T )-cut queries, Fast
Johnson-Lindenstrauss transform.
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1 Introduction

The privacy of a data is a fundamental problem in today’s age of information.
Many agencies collect enormous amount of data and store it in its database.
These data may contain sensitive informations about an individual. However,
given the benefits of analyzing these data, the problem that curators of such
a database face is to provide useful information in such a manner so that no
personal or sensitive information about an individual is leaked. A trivial way to
guarantee this is to add a lot of noise to the database; however, nothing useful
could be harnessed from such noisy database. Most of the research in this area is
geared towards providing a tight utility and privacy tradeoff and only consider
the query generator in mind. In this paper, we take a conceptual review and ask
the practical question: what would a firm, that is going to deploy these sanitizers,
demand from the group that develops these algorithms?

The question one expect to get from real firms or agencies is what extra
resources they have to invest to provide this facility. This is expected in the real-
world because a curator would prefer to deploy its resources to facilitate other
interfaces that are primary to its business if differential private sanitizer uses a
lot of resource. In general, sanitizers are polynomial time, but the exact bound
on this polynomial is never made explicit in earlier works. In fact, Exponential
sanitization [17, 19] may be intractable! We initiate the study of the question
whether it is possible to guarantee DP that has high utility guarantee with an
efficient sanitizer, emphasizing on a concrete bound on the efficiency parameter.

Motivation of our Problem. Our motivation of studying cut queries on sparse
graphs arises from a natural problem in social networks. One of the question
that is commonly asked in social network is, given a set of individuals, how
many friends/acquaintance do a set of people have outside their circle? The
natural approach to solve this problem is to construct a friendship graph, where
each vertex is labeled by an individual and there is an edge between two vertices
if they are friends. These graphs on social networks are usually sparse, i.e., the
average degree of the graph is very small in comparison to the number of vertices.

For a concrete example, consider the friendship graph on Facebook. According
to the recent data released by Facebook, it has around one billion active users!
It is not outrageous to assume that only a small fraction of users on Facebook
have more than a thousand friends. Therefore, this graph is highly sparse. The
friendship graph is undirected; however, this might not always be the case. For
example, consider the following graph based on the networking of Twitter. It is
a directed graph with nodes labeled by an individual. A node is the tail of an
edge if the individual follows the head of the edge. The number of active users on
Twitter is few million; however, it is less likely that an individual follows more
than a few hundred fellow users. Thus, the following graph is very sparse. In
these scenarios, the difference between performing 109×2.38 and 1018 algebraic
operations is huge. Any firm, like Facebook and Twitter, which is motivated by
economics is less likely to invest in the former sanitization algorithm and may
consider investing in the latter one.
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It could be argued that if a sanitizer works for dense graphs (and therefore,
also for sparse graphs), then there is no need for a specialized sanitizer for
sparse graphs. The reason why we feel it is important to study sparse graphs
exclusively is that sanitizers for dense graphs do not use the structural properties
present in sparse graphs. In general, sparse graphs provides faster algorithms [7,
15, 28]. For example, consider the Johnson-Lindenstrauss (JL) sanitizer [3]. The
sanitization algorithm of BBDS first overlays a complete graph on top of the
input graph and then applies JL transform to the columns of the Laplacian of
the modified graph. The step in which we overlay the complete graph destroys
all the structural properties the input graph might have.

Now consider the situation when the input graph is sparse, and a hypothetical
sanitizer that does not overlay Kn on top of it. When we perform random pro-
jection on this graph, the number of operations would depend on the number of
edges of the graph (more concretely, on the non-zero entries in the representative
matrix of the graph which could be Laplacian or adjacency matrix). Unfortu-
nately, this sanitizer is not differentially private if the graph is weakly connected
(in graph theoretic terms, has low conductance).

To see why this hypothetical sanitization does not provide DP, consider an
n-vertices graph with two connected components. If the query is to find the cut
of all the set of vertices in one component, the answer is 0 with probability 1.
However, for a graph that has an edge joining two vertices present in different
connected components, the probability with which the response to the query is
non-zero is 1. This gives an easy way to differentiate the two cases. To resolve
this particular problem, BBDS overlaid an n-vertex complete graph on top of
the input graph.

Unfortunately, if we overlay the complete graph on a sparse graph, then we
destroy the sparsity, and lose any (possible) gain in the computational time. On
the other hand, even if the graph is connected and we do not perturb the graph,
chances of privacy leakage are still present. More specifically, adding a single edge
in a sparse graph can potentially have more privacy leak than a corresponding
change in dense graphs. For example, consider a line graph or tree. They are
acyclic; however adding any edge introduces a cycle. A slight modification of the
differentiating algorithm used in the case of two component graph could be used
to break the DP.

Our Contributions. This work is motivated by practical scenarios in which a
sanitizer might be deployed. One of the objective of this paper is to advocate
that, in addition to the utility and privacy guarantee, a design methodology
for sanitizers should also give a concrete analysis of the efficiency of sanitizers.
We initiate this line of work by studying differentially private sanitizer for cut
queries on graphs.

As mentioned above, in practice, sparse graphs are more likely to occur than
dense graphs. Every sanitizer that are proposed in the literature for dense graphs
also works for sparse graphs, but they are not efficient. Moreover, there are
examples of sparse graphs that could leak more information in DP sense than
dense graphs, mainly because an addition or deletion of an edge could change
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the graph properties more dramatically in sparse graphs than in dense graphs.
Thus, the problem is non-trivial, especially when we wish to construct efficient
sanitizer.

On the fundamental level, we advocate the need of considering the efficiency
of the sanitizer in the design methodology and give an explicit bound on the
running time. The reason why we believe this is an important parameter is that,
in many practical scenarios, the data-sets are held by agencies who might not
have the privacy of an individual as their biggest priority. Therefore, unless a
sanitizer is efficient, they might not have any incentive to perform the required
sanitization. The technical contributions of this paper are as follows.

1. We show that it is possible to adapt the JL sanitizer of BBDS to answer
cut queries when the graph is sparse. Additionally, our sanitizer has to per-
form only O(n2+o(1)) algebraic operations. On the other hand, irrespective of
whether or not the graph is sparse, the sanitizer of BBDS needs O(rn2.38) op-
erations1, where r is the dimension of the subspace to which the JL transform
projects the columns of the Laplacian. This improvement is asymptotically
significant.

2. A natural question that arises next is whether our basic sanitizer is use-
ful when the graph is fairly dense. We answer this question in affirmative.
More precisely, we show that if we precondition a graph by reassigning the
weights to the edges such that the transformed graph is guaranteed to be
sparse and maintain the spectral properties of the graph, then applying the
basic sanitizer on the conditioned graph preserves DP. This can be seen as
a complementary approach to the Randomized sanitizer [17].

3. We make a simple combinatorial observation to argue that our sanitizer also
preserves (S, T )-cut queries. This answers an open problem raised by BBDS.

4. Our last contribution is directed towards the optimization of the algebraic
computations. We show that DP is maintained even if we replace the stan-
dard JL transform by the fast JL transform of Ailon and Chazelle [2]. This
partially answers another open problem of BBDS.

Remark 1. An important characteristics of our preconditioning step, in item 2
above, is that it preserves the spectral properties. Any sanitizer that answers the
queries based on spectral property of a graph could be transformed to first apply
the preconditioning step before the sanitization step to improve the efficiency.

We note that none of our sanitizer randomly projects the vector correspond-
ing to the column vector of the graph to a smaller dimension r. The main ob-
servation is that the mechanism is non-interactive, and in order to preserve the
privacy for all set of queries, the dimension of the projected space has to be at
least the dimension of the input space.

1 Assuming that the matrix multiplication is done using Coppersmith-Winograd’s
algorithm.
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Overview of our Techniques. We first give a brief overview of the sanitizer of
BBDS. In BBDS, the sanitization algorithm first reweighs the graph by overlaying
a complete graph on top of the input graph, i.e., every edge, e = (a, b), with
weight we is replaced by an edge with weight w′e := w

nwe +
(
1− w

n

)
. In other

words, the weight on the edges are redistributed such that the overlaid complete
graph has an equal weight, wn , on all its edges. This makes the graph connected,
and from Lemma 4, the smallest non-zero eigenvalues of this modified graph
is greater than w/n. The JL transform is then applied on the columns of the
Laplacian of the modified graph.

The major challenge that we face is that sparse graphs have low conduc-
tance. When we overlay the complete graph, it increases the conductance, but
simultaneously makes it inefficient to answer the cut-queries by destroying the
structural properties. As an extreme, consider a line graph. The cut-queries are
fairly straightforward to answer; however, if we overlay a complete graph on top
of it, we destroy the structural property and need to do some extra arithmetic to
answer the same set of queries. An alternative is to overlay a sparse graph that
increases the conductance, but does not destroy the structure of the underlying
graph by much. The most natural candidate for this is an expander graph. As
we show in our analysis, this suits our purpose very well.

We modify our basic sanitization technique, as outlined above, to construct
an efficient sanitization technique for dense graphs. The key idea is to use graph
sparsification at an appropriate step. As a warm-up, we assume that the input
graph has high conductance. Our technique in this case is simple: apply the graph
sparsification algorithms followed by the JL transform. The key observation here
is that conductance helps in proving that, when the sparsification technique is
applied on two neighboring graphs, the corresponding sparse graphs differ on at
most one edge. This allows us to use the proof of BBDS for DP. On the other
hand, due to the spectral guarantee provided by the sparsification technique, we
know that all the cuts of the graph is maintained within a multiplicative factor.
The utility guarantee then follows using simple arithmetic.

In order to apply the above analysis to arbitrary graph, we need a high
conductance graph. This directs the order of the steps we follow for arbitrary
graph, i.e, we first overlay a complete graph (or an expander) on the input graph
before applying the sparsification algorithm. Finally, we apply the JL transform.

Related Work. Differential privacy, introduced by Dwork et al. [9], provides a
robust guarantee of privacy. Informally speaking, if a curator sanitizes a data-
set, then even if an individual’s data is removed from the database, none of the
responses to a query is more or less likely than the others. The key idea used in
Dwork et al. [9] is to add noise to an output of the query according to a Laplace
distribution, where the distribution is parameterized by the sensitivity of the
query function. The Gaussian variant of this basic sanitizer was proven to pre-
serve DP by Dwork et al. [8] in a follow-up work. Since then, many sanitizers for
preserving DP have been proposed in the literature, including the Exponential
sanitizer [4, 23, 27], the Multiplicative Update sanitizer [16–19], the Median san-
itizer [30], the Boosting sanitizer [10], and the Random Projection sanitizer [25].
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All these sanitizers have a common theme: they perturb the output before re-
sponding to queries. Blocki et al. [3] took a complementary approach. They
perturb the input by performing a random projection of the input and show
that existing algorithms preserves DP if the input is perturbed in a reversible
manner.

The first work to explicitly study DP when the underlying data-set is a graph
or a social network was by Hay et al. [20]. They presented a differentially private
sanitizer for answering the degree of a node in a graph. They were followed by
works of Nissim et al. [29] and Karwa et al. [24]. Gupta et al. [17] first studied the
question of answering (S, T )-cut queries. The literature of studying faster com-
putations on a sparse variant of any mathematical objects is so extensive that we
cannot hope to cover it in all details here. An extensive study of faster methods
of doing linear algebra on a sparse matrix is covered in standard textbooks [7,
15]. We refer the readers to an excellent book by Nesetril and de Mendez [28]
for the properties and algorithms on sparse graph.

Organization of the paper. In Section 2, we cover the basic preliminaries and
definitions to the level required to understand the presentation of this paper. In
Section 3, we give our basic sanitizer for sparse graph that serves as the building
blocks for the sanitizers in Section 4. We conclude the paper by showing in
Section 5 that the fast JL transform of Ailon and Chazelle [2] also preserves DP.

2 Preliminaries, Notations, and Basic Definitions

2.1 Privacy and Utility

In this work, we deal with privacy-preserving sanitizers for answering cut queries
on graphs. The notion of differential privacy requires a definition of neighboring
data-sets. Two data-sets (graphs, respectively) are neighboring if they differ on
at most one entry (edge, respectively).

Definition 1. A randomized algorithm K, also called a sanitizer, gives ε-DP, if
for all neighboring data-sets D1 and D2, and all range S ⊂ Range(K), Pr[K(D1) ∈
S] ≤ exp(eε)Pr[K(D2) ∈ S], where the probability is over the coin tosses of the
sanitizer K.

In this paper, we study a natural relaxation of DP, called approximate DP.

Definition 2. A randomized algorithm, K also called a sanitizer, gives (ε, δ)-
DP, if for all neighboring data-sets D1 and D2, and all range S ⊂ Range(K),
Pr[K(D1) ∈ S] ≤ exp(eε)Pr[K(D2) ∈ S] + δ, where the probability is over the
coin tosses of the sanitizer K.

2.2 Linear Algebra

Let A be an n×m matrix. We let rk(A) denote the rank and Tr(A) denote the
trace norm of the matrix A. The singular value decomposition of A is A = V ΛUT ,
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where U, V are unitary matrices and Λ is a diagonal matrix. The entries of Λ,
denoted by λ1(A), · · · , λrk(A)(A), are called the singular values of A. Since U, V
are unitary matrices, one can write Ai = V ΛiUT for any real value i. If A is
not a full rank matrix, then its inverse is called Moore-Penrose inverse and is
denoted by A† and its determinant is called pseudo-determinant and is defined
as ∆̃(A) = Π

rk(A)
i=1 λi(A). We let χS ∈ {0, 1}n denote the characteristic vector for

a subset S ⊆ V.

2.3 Gaussian Distribution

Given a random variable, X, we denote by X ∼ N (µ, σ2) the fact that X is
distributed according to a Gaussian distribution with the probability density
function, PDFX(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
. The Gaussian distribution is invari-

ant under affine transformation, i.e., if X ∼ N (µx, σx) and Y ∼ N (µy, σy), then
Z = aX + bY has the distribution Z ∼ N (aµx + bµy, aσ

2
x + bσ2

y).

Multivariate Gaussian Distribution. The multivariate Gaussian distribu-
tion is a generalization of univariate Gaussian distribution. Given anm-dimensional
multivariate random variable, X ∼ N (µ,Σ) with mean µ ∈ Rm and covariance
matrix Σ = E[(X−µ)(X−µ)T ], the PDF of a multivariate Gaussian is given by
PDFX(x) := 1√

2π∆̃(Σ)
exp

(
− 1

2xTΣ†x
)
. It is easy to see from the description of

the PDF that, in order to define the PDF corresponding to a multivariate Gaus-
sian distribution, Σ has to have full rank. If Σ has a non-trivial kernel space,
then the PDF is undefined. However, in this paper, we only need to compare
the probability distribution of two random variables which are defined over the
same subspace. Therefore, in those scenarios, we would restrict our attention to
the subspace orthogonal to the kernel space of Σ.

Multivariate Gaussian distribution maintains many key properties of univari-
ate Gaussian distribution. For example, any (non-empty) subset of multivariate
normals is multivariate normal. Another key property that is important in our
analysis is that linearly independent linear functions of multivariate normal ran-
dom variables are multivariate normal random variables, i.e., if Y = AX + b,
where A is an n × n non-singular matrix and b is a (column) n-vector of con-
stants, then Y ∼ N (Aµ+ b, AΣAT ).

2.4 Graph Theory

We reserve the symbol G and H to denote a graph. We denote by G′ the graph
formed by adding an edge to the graph G. In the case when H is formed from
G using some transformation, we denote by H′ the graph formed by performing
the same transformation on G′. For any S ⊆ V(G), the cut of the set of vertices
S, denoted it by ΦG(S), is the weight of the edges that are present between S
and V \S.

We follow the same terminology of BBDS to define the utility guarantee.
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Definition 3. We say a sanitizer K gives a (η, τ, ν)-approximation for cut queries,
if for every non-empty set S ⊆ V, it holds that

Pr[(1− η)ΦG(S)− τ ≤ K(S,G) ≤ (1 + η)ΦG(S) + τ ] ≥ 1− ν.

For the entire paper, we fix w = Θ
(

log(1/δ)+log(1/ν)
ε

)
.

Laplacian of a Graph. For a weighted graph G := (V, E , w), its adjacency matrix
AG is given by AG(i, j) = wij if (i, j) ∈ E . The degree matrix of a weighted
graph G is given by a diagonal matrix DG such that the diagonal entries (i, i) is∑
j AG(i, j). The signed-edge matrix, BG , is constructed in the similar fashion

as in BBDS: let O be an arbitrary orientation of edges. For an edge e = (u, v),
place

√
we at position (e, v) if the edge e has v as its head and −√we if it has v

as its tail. For the other (e, i) when i 6= u, v, place 0.
The matrix for the Laplacian of a weighted graph, denoted by LG , is defined

as DG−AG . One of the most useful form of Laplacian of a graph is the following
form: LG =

∑
(a,b)∈E wabLab = BTGBG , where Lab is the Laplacian of a graph

with a single edge (a, b). Many interesting properties of the Laplacian of a graph
follows from this representation. For example, Laplacian of a graph is positive
semi-definite, i.e., all the eigenvalues are non-negative. For a set S of vertices, its
cut-set is ΦG(S) = χTSLGχS . Moreover, for S, T ⊆ V, the sum of the weights of
the edges with one end in S and other in T is denoted by ΦG(S, T ). We explore
this in detail later in Section 4.3.

We let λi(G) denote the eigenvalues of LG for 1 ≤ i ≤ n. Next we present few
lemmata that are useful in our analysis. In our analysis, we analyze multivari-
ate Gaussian distributions that are linear combination of the Laplacian of two
graphs. In order to analyze the two distributions, the corresponding covariance
matrices must span the same subspace. The first lemma allows us to work on
the same subspace, that is, the subspace orthogonal to Span{1}.

Lemma 1. [11, 12] Let 0 = λ1(G) ≤ λ2(G) · · · ≤ λn(G) be the n eigenvalues of
LG. Then G is connected iff λ2 > 0 and the kernel space of a connected graph is
Span{1}. More generally, if a graph has k components, then the multiplicity of
eigenvalue 0 is k.

The following two lemmata are useful in giving the upper bound while proving
the DP of our sanitizer.

Lemma 2. Let G and G′ be two graphs, where G′ is obtained from G by adding
one edge joining two distinct vertices of G. Then

λ2(G) ≤ λ2(G′) ≤ λ2(G) + 2.

Lemma 3. Let G′ be formed by adding an edge (u, v) to G. For any vector
x ∈ Rn, we have Tr(LG′) ≤ Tr(LG) + 2.

The following lemma is particularly useful in arguing that the lowest non-
zero eigenvalues of all the graphs is bounded from below by a constant (which
is the second smallest eigenvalue of an expander).
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Lemma 4. (Eigenvalue Interlacing). Let G and G′ be two graphs, where G′ is
obtained from G by adding one edge joining two distinct vertices of G. Then

λi(G) ≤ λi(G′) ≤ λi+1(G).

In particular, if H be a subgraph of G, then λi(H) ≤ λi(G)∀1 ≤ i ≤ n.

We refer the readers to the excellent book by Godsil and Royle [14] for a
comprehensive treatment of the algebraic properties of graphs.

Graph Approximation. A graph H is said to ε-approximate a graph G if H
approximates the spectral properties of G, i.e.,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn.

We denote it by (1− ε)LG � LH � (1 + ε)LG .

Electrical Flows and Resistance. We need the concept of electrical flow in graphs
at various points for the analysis of Theorem 7. Intuitively, electrical flow of a
graph measures how easy or difficult it is to move from one vertex to the other.
If the “resistance” (as described later) between two vertices is high, then it is
more difficult to reach from one vertex to the other, and vice versa. We give a
brief exposition of the electrical flow that is required to understand this paper.
Let i be the vector of current injected at the vertices of the graph G. Then
the effective resistance between two vertices u and v is defined as the potential
difference induced between them when a unit current is injected at one vertex
and extracted from the other. For any pair of vertices u and v, the effective
resistance,

Ruv = (χu − χv)TL†G(χu − χv) = ‖BGL†G(χu − χv)2‖22.

Conductance. At the intuitive level, the conductance of a graph is the inverse of
the resistance. For a graph, G = (V,E), let dv denote the degree of vertex v ∈ V .
Let V ol(S) =

∑
i∈S di, then the conductance of a set of vertex S, denoted by

condS(G) is defined by

condS(G) :=
|ΦG(S)|

min{V ol(S), V ol(V − S)}
.

The conductance of a graph G is then given by cond(G) := minS⊂V,|S|≥1 condS(G).
The conductance of a graph has a strong relation to the smallest non-zero eigen-
value of its Laplacian and we use it implicitly or explicitly in all of our analyses.

Theorem 1. (Cheeger’s Inequality). For a graph G, cond(G)2/2 ≤ λ2(LG) ≤
2cond(G).
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2.5 JL Transform

The famous JL transform [1, 2, 5, 6, 21, 22] can be seen as a random projection of
d points from a n-dimensional space to a lower dimensional space such that the
Euclidean distance between any two pairs of points is maintained.

Theorem 2. Fix any η ∈ (0, 1/2) and M be a k × n matrix, whose entries are
chosen from N (0, 1). Then ∀x ∈ Rn, we have

PrM

[
(1− η)‖x‖2 ≤ 1

k
‖Mx‖2 ≤ (1 + η)‖x‖2

]
≥ 1− 2 exp(−η2k/8). (1)

Fast JL Transform. Ailon and Chazelle [2] gave an elegant transform that is
asymptotically faster than the traditional JL transform. It involves precondi-
tioning the input. In this section, m denotes the number of n-dimensional points
on which the transform is applied and k denotes the target dimension. More
specifically, the fast JL transform is M = PWD, where (i) W is a n × n
normalized Walsh-Hadamard matrix, (ii) D is a n × n diagonal matrix, where
Pr[Dij = 1] = Pr[Dij = −1] = 1/2, and (iii) P is a k× n matrix whose elements
are independently distributed as follows. With probability 1 − q, set Pij = 0;
otherwise draw Pij from a normal distribution of expectation 0 and variance 1/q.

The constant q is called the sparsity constant and is set to q = Θ
(
ηp−2 logp n

n

)
,

where p is the norm we wish to preserve. Since W encodes the discrete Fourier
transform, using fast Fourier transform, Ailon and Chazelle [2] proved that the
transform satisfies equation (1), and takes time Õ(n+ qm/η2)).

3 Sanitizer for Cut Queries

In this section, we give our basic sanitizer for sparse graphs. Our key observation
is that, in the sanitizer of BBDS, the overlay of the complete graph is required to
maintain high conductance, and the result regarding the second smallest eigen-
value of the Laplacian follows immediately from the fact that a complete graph
is a subgraph of the resulting graph. Unfortunately, this perturbation, when
applied to sparse graphs, destroys the structural benefits of sparsity.

We get the same two objectives by overlaying an expander graph. An ex-
pander graph makes the graph connected while the smallest non-zero eigenvalue
has the desired lower bound if we chose our expander graph with care. Recently,
Friedman [13] proved that a random graph is an expander graph with high
probability. In fact, he showed that such graphs are Ramanujan graphs. Marcus,
Spielman, and Srivastava [26] recently proved the existential result for bipartite
expander that matches the Ramanujan bound for every degree d.

We first derive a connection between the spectral properties of an expander
graph and a complete graph. The most useful relation for this derivation is an
alternate definition of an expander graph, i.e., a d-regular graph G is an expander
if λ2(G) ≥ (1 − ε′)d for some arbitrary constant ε′. We give our basic sanitizer
for sparse graphs in Figure 1.
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Input. A n-vertex sparse graph G, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Pick a d-regular expander graph E.
2. Set LH ← w

d
LE +

`
1− w

d

´
LG

3. Pick an n× n matrix M with each entries picked from N (0, 1).
4. Output L̃ = (MTLHM)/n

The sanitizer publishes L̃ and anyone with a set of vertices S as input can
compute ΦG(S) as below

ΦG(S) =
1

1− w
d

„
χT

S L̃χS −
ws(n− s)

n

«
,

where |S| = s.

Fig. 1. The Basic Sanitizer

Theorem 3. The basic algorithm in Figure 1 preserves (ε, δ)-DP, provides an
utility of (η, τ, ν)-approximation, where τ ≤ O((η + ε′)ws), and runs in time
O(n2+o(1)).

Proof. We first perform the complexity analysis of the above sanitizer. For a
sparse graph, m = O(n); therefore, using [34], it takes Õ(n) time to compute
the JL transform (since every column in the Laplacian of a sparse graph has
Õ(1) entries). Since, matrix multiplication takes Ω(n2), this is almost tight for
any sanitizer design that uses noise multiplication for answering cut queries.

The proof of DP proceeds in the similar manner as in BBDS. This is because
our change still fulfills the requirement for which BBDS introduced the complete
graph, i.e., it makes the graph connected. Using Lemma 1, the kernel space
is Span{1}. Also, by a suitable choice of the expander graph, i.e., one with
1− ε′ ≥ w/d, Lemma 4 guarantees that all the eigenvalues of H is greater that
w, which is required in the privacy analysis of BBDS.

Our proof of utility guarantee develops on a useful relation between an ex-
pander graph and a complete graph. Let E be a d-regular expander graph such
that the eigenvalues of AE are ≤ ε′d. From the expression, LE = DE − AE ,
where DE is the degree matrix of E, we have that all the non-zero eigenvalues of
LE are between (1−ε′)d and (1+ε′)d. Therefore, from Courant-Fischer formula,

(1− ε′)dxTx ≤ xTLEx ≤ (1 + ε′)dxTx ∀x ∈ Rn. (2)

We wish to relate this to the complete graph. For the complete graph, Kn,
the eigenvalues are 0 with multiplicity 1 and n with multiplicity n−1. Therefore,

xTLKn
x = nxTx ⇒ d

n
xTLKn

x = dxTx. (3)
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Plugging equation (3) in equation (2), we have

(1− ε′) d
n

xTLKnx ≤ xTLEx ≤ (1 + ε′)
d

n
xTLKnx ∀x ∈ Rn. (4)

One way to look at equation 4 is that an expander graph is a sparsified
complete graph. Using equation 4, we have the following approximation:(

(1− ε′)w
n
LKn

+
(

1− w

d

)
LG

)
�
(w
d
LE +

(
1− w

d

)
LG

)
�
(

(1 + ε′)
w

n
LKn

+
(

1− w

d

)
LG

)
. (5)

We can now calculate the utility guarantee using equation (5) and similar
arithmetic as in BBDS. More specifically, the upper bound on the utility guar-
antee can be calculated as below.

(1 + η)χTSLHχS = (1 + η)χTS
(w
d
LE +

(
1− w

d

)
LG

)
χS

≤ (1 + η)χTS
(

(1 + ε′)
w

n
LKn +

(
1− w

d

)
LG

)
χS

≤ (1 + η)(1 + ε′)
w

n
s(n− s) +

(
1− w

d

)
(1 + η)ΦG(S).

Therefore,

1
1− w

d

(
χTS L̃χS −

ws(n− s)
n

)
=
(
w(η + ε′ + ηε′)s

(1− w
d )

)(
1− s

n

)
+ (1 + η)ΦG(S)

≤ 2(η + ε′ + ηε′)ws+ (1 + η)ΦG(S).

This gives an additive approximation of O((η + ε′)ws). The proof of the lower
bound is similar.

4 Differential Privacy by Sparsification

In Section 3, we showed that a simple change to the sanitizer of BBDS gives
an efficient sanitizer for sparse graphs. In this section, we consider the case
of an arbitrary graph. In particular, we show that various graph sparsification
techniques also preserves DP. This serves as the second main contribution of this
paper. Intuitively, the result in this section follows from the observation that, for
large enough n, the sparsification techniques can be seen as a random projection.
Thus, sparsification composed with our basic scheme should preserve DP by the
composition theorem [10] and Theorem 3.

In certain sense, our approach is complementary to the approach used in Ran-
domized sanitization. The Randomized sanitization [17] constructs a weighted
graph, H = (V, E ′, w′), such that ∀u, y ∈ V, the weight of edge (u, v) in H is
distributed as per the following distribution: Pr[w′uv = 1] = (1 + εwuv)/2 and
Pr[w′uv = −1] = (1− εwuv)/2.
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Input. A n-vertex graph G with high conductance, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Convert G to a H using [31] or [32], such that H is an ε-sparsification of G.
2. Pick an n× n matrix M with each entries picked from N (0, 1).
3. Output L̃ = (MTLHM)/n.

The sanitizer publishes L̃ and anyone who has as input the set of vertices S can
compute ΦG(S) =

`
1− w

n

´
χT

S L̃χS .

Fig. 2. Sanitizer for Graph With High Conductance

4.1 Sanitization of Graphs with High Conductance

Every randomized sparsification technique picks an edge to be included in a
sparsified graph with some specified probability distribution. At a high level,
the distribution can be defined either dependent on the local structure or on the
global structure of the graph. We give our sanitizer for both types of distribution,
picking the most efficient one for instantiation. In this section, we analyze our
sanitizer, stated in Figure 2, for graphs with high conductance.

The utility guarantee follows from the sparsification guarantee provided by
the respective sparsifiers and the JL transform. The efficiency guarantee is straight-
forward from the observation that there are Õ(1) entries in every row or column
of the Laplacian of sparse graphs, and the run time of the step 3 in the Figure 2
is governed by the number of non-zero entries in the Laplacian. More concretely,
assume that the sparsification algorithm takes Õ(m) time to output a graph with
Õ(n) edges (as we will see, both the techniques, Spielman and Teng [32] based
on local properties of the graph (Theorem 5), and Spielman and Srivastava [31]
based on global properties of the graph (Theorem 6), satisfies these two condi-
tions). Therefore, even if the graph is dense, i.e., m = O(n2), the run time for
sparsification is Õ(n2). Therefore, the time taken by the sanitizer is bounded by
Õ(n2) (since, in expectation, every column in the Laplacian of the sparse matrix
has Õ(1) entries).

The tricky part is to prove the privacy guarantee. For the privacy guarantee,
we prove that for two neighboring graphs G and G′, the respective sparse graphs
differ on at most one edge. We can then apply Lemma 3, and the rest of the
proof follows along the same line as BBDS. For both the sparsifier, we prove that
if the graph has high enough conductance, then the probability distribution on
edges with which the sparsification algorithm picks an edge does not differ by
a lot. We then analyze two types of edges: (i) the edge (a, b) that is present in
G′ but not in G and (ii) the edges that are in both G and G′. In the first case,
the probability that the edge (a, b) is present in H′ is non-zero and is identically
zero in H. We then prove that if the probability distribution on the edges does
not differ by “lot”, then with all but negligible probability, the respective sparse
graphs will differ on at most one edge, i.e., only due to the (possible) presence
of the edge (a, b) in H′. The privacy guarantee follows using the proof of BBDS.
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Using Local Sparsification Techniques: Construction of Spielman and Teng [32].
Spielman and Teng [32] proved the following result for any graph.

Theorem 4. [32] There exists an Õ(m) time algorithm which on input 0 <
ε, p < 1/2 and a graph G with n-vertices and m-edges, outputs a sparse graph H
with Õ(n/ε2) edges such that H is an ε-approximation of G.

The main construction of Spielman and Teng [32] for arbitrary graphs is
little complicated and uses techniques of graph decomposition and contraction.
In this section, we will use the construction that works for a graph with high
conductance. In this construction, every edge, e = (i, j), is picked with prob-
ability, pij := 144k2

ε2λ2(G)2 min{di,dj} , where k = max{log2(3/p), log2 n}, di denotes
the degree of the vertex i, and p is an arbitrary constant between (0, 1/2). It is
an easy exercise to check that the probability distribution on the edges that are
already present does not change by a lot when a new edge is added due to the
dependence only on the local structure of the graph (the eigenvalue changes by
at most two by Lemma 2, and degree of only the two end vertices changes).

Using the proof outline mentioned above, we have the following theorem for
the sanitizer in Figure 2 when we use the sparsifier of Spielman and Teng [32].

Theorem 5. The algorithm in Figure 2 preserves (ε, δ) DP, provides an answer
that is ((1 + η)(1 + ε), 0, ν)-approximation, and runs in time O(n2+o(1)) when
using [32] sparsifier.

Using Global Sparsification Techniques: Construction of Spielman and Srivas-
tava [31]. We first recall the spectral sparsifier of Spielman and Srivastava [31].
One alternative way to see their sparsification is that H is a random projection
of the edge matrix of G, where edges are picked according to their importance
in the original graph. The sparsifier construct a graph H by picking every edge,
e ∈ E(G), with probability pe = weRe/(n− 1) to be included in H, where Re is
the effective resistance across the edge e and we is the weight of the edge e. The
effective resistance on an edge can be computed as

Re = beL
†
Gb
T
e ⇒ R = BGL

†
GB

T
G . (6)

Using the above probability distribution, Spielman and Srivastava [31] proved
the following for any arbitrary graph.

Theorem 6. [31] There exists an Õ(m(log r)/ε2) algorithm which on input ε >
1/
√
n and an n vertex, m edges graph G, with the ratio of maximum weight to

minimum weight r, outputs a sparse graph H such that H is an ε-approximation
of G.

Consider the matrix, Π = BL+
GB

T , where B is the signed edge-vertex matrix.
It is easy to see that Π is a projection matrix and has a well defined spectrum:
eigenvalue 1 with multiplicity (n−1) and 0 otherwise. Also, it has a nice relation
to the probability with which an edge is picked to be placed in H: Πe,e =
W

1/2
e,e ReW

1/2
e,e = weRe for every edge e = (a, b). Moreover, since the trace of Π
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is n− 1; therefore, pe = Πe,e/(n− 1) = ‖BL†(χa−χb)‖/(n− 1), where χa is the
characteristic vector of the vertex a.

We have the following theorem for DP when using the sparsification technique
of Spielman and Srivastava [31].

Theorem 7. If the input graph has high conductance, then the algorithm in
Figure 2 runs in time O(n2+o(1)) and preserves (ε, δ) differential privacy with
an utility of ((1 + η)(1 + ε), 0, ν) approximation when using [31] sparsifier.

Few remarks are in order regarding Theorems 5 and 7. The theorems state
that the sanitizer allows zero additive error. Therefore, if we have a graph with
high conductance, we can get an answer with only multiplicative approximation
for as low tolerance as possible. This stands in stark contrast with Theorem 3 and
Theorem 9 where there is an additive approximation that governs the tolerance
achieved by the sanitizer. The reason is that, as the underlying graph has high
conductance, the smallest non-zero eigenvalue is large. This allows us to remove
the step where we overlay an expander graph!

4.2 Sanitizer for Arbitrary Graph

Before we move to arbitrary graphs, we give an alternative for the local spar-
sification technique of Spielman and Teng [31]. They (and Trevisan [33], inde-
pendently) proved an important combinatorial property of an arbitrary graph,
which can be used, in composition to their basic technique for high conductance
graph, to prove the sparsification result for any arbitrary graph.

Theorem 8. [32, 33] Let G = (V,E) be an arbitrary graph. Then there exists a
set E ′ ⊂ E of κ|E| edges, such that removal of these edges decomposes the graph
in some components, each of which have an smallest non-zero eigenvalue at least
κ2/72 · (log |E|)2. Furthermore, these edges can be found in polynomial time.

The above theorem could be used to get sparsification algorithm for an arbi-
trary graph. Let E ′ be the set of edges found by the algorithm guaranteed in
Theorem 8. First apply the sparsification algorithm of [32] on all the compo-
nents with high conductance, neglecting the edges in the set E ′. We recursively
apply the sparsification algorithm on E ′ until we get a sparse graph, i.e, one
with |E ′| ≤ Õ(n). The recursion depth is at most O(log n) rounds, so the overall
run time of the algorithm is still under the bound guaranteed by Theorem 4.
Therefore, one could use the complete sparsification technique that decomposes
the graph in to graphs of high conductance with few bridge edges between the
components before the third step of Figure 1. The DP of the sanitizer would
follow the same idea as in the proof of Theorem 5 because the probability of
picking edges depends on local graph structure, and the utility guarantee would
follow from the partition-then-sample lemma of Spielman and Teng [32] and the
guarantee of JL transform.

The idea of constructing sparse graphs using recursion also applies to the
sparsifier of Spielman and Srivastava [31], but does not help us in proving the
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DP because of a subtle reason: the probability distribution in [32] depend locally
on the graph structure, i.e., only on the degree of the end-points of the edges
(it also depends on the smallest non-zero eigenvalue of the Laplacian, but from
Lemma 3 and Lemma 4, it is easy to prove that the eigenvalue change by at
most 2). Thus, the probability distribution changes by any significant amount
only for the edge that is added.

On the other hand, the probability distribution on an edge can change drasti-
cally for Spielman and Srivastava’s sparsifier [31]. This is because the probability
distribution depends globally on the whole graph and if an edge is added, it is
possible that the effective resistance along a different edge changes by a lot. For
example, if a unit weight edge (a, b) is added, then any edge (u, v) that is parallel
to (a, b) sees an effective drop to less than 1. If the conductance of the graph is
not large, then this drop is significant.

The key idea to work around this problem is to maintain the conductance of
the graph. We do this by using appropriate order of composition: we first overlay
a expander (or complete) graph on top of the input graph and then apply the
Spielman-Srivastava’s sparsifier [31].

The utility guarantee follows by incorporating the approximation guarantee
provided by Spielman and Teng [32] or Spielman and Srivastava [31] in the
analysis of Theorem 3.

Theorem 9. The algorithm in Figure 3 preserves (ε, δ)-DP, provides an utility
of (η, τ, ν) approximation, where τ ≤ O((η+ε)ws), and runs in time O(n2+o(1)).

Input. A n-vertex graph G, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Pick a d-regular expander (or n-vertices complete) graph E.
2. Set LG ← w

d
LE +

`
1− w

d

´
LG .

3. Convert G to a H using [31] or [32], such that H is an ε-sparsification of G.
4. Pick an n× n matrix M with each entries picked from N (0, 1).
5. Output L̃ = (MTLHM)/n

The sanitizer publishes the matrix L̃. For an input S ⊂ V , one can compute
the number of vertices that crosses the cut as below

ΦS(G) =
1

1− w
n

„
χT

S L̃χS −
ws(n− s)

n

«
.

Fig. 3. Sanitizer for Arbitrary Graph

Remark. Note that we can perform the complexity analysis of all the sanitizer
mentioned in Sections 3 and 4 using the optimization mentioned in Section 5.
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4.3 Answering (S, T )-cut Queries

One of the open problems listed by BBDS was to construct a sanitizer that
answers (S, T )-cut queries on arbitrary graphs. Their concern for using the JL
transform based mechanism is related to the inner product problem in JL trans-
form. We get around this problem by making a simple combinatorial observation.

Let S, T ⊆ V be the set of vertices and we wish to find ΦG(S, T ) =
∑
s∈S,t∈T wst.

Note that

ΦG(S) =
∑

s∈S,u∈V \S

wsu and ΦG(T ) =
∑

t∈T,v∈V \T

wst.

Therefore, ΦG(S) + ΦG(T ) counts the weight of the edges that are crossing
the boundaries of either S or T . These edges includes two types of edges: one
that are crossing the boundaries of either S or T but do not have end vertices
in both the sets and the one that have one end in S and the other in T . Note
that we are interested in counting the weight of the edges of the latter form.
Therefore, ΦG(S) + ΦG(T ) − ΦG(S ∪ T ) is the sum of the weights of the edges
between S and T , counted twice. This observation gives us that ΦG(S, T ) =
(ΦG(S) +ΦG(T )−ΦG(S ∪ T ))/2. Therefore, anyone with a set of vertices S and
T as input and the sanitized graph from any of the mechanisms in this paper
can compute ΦG(S, T ) as below

ΦG(S, T ) =
1

2(1− w
n )

((
χTS L̃χS + χTT L̃χT − χTS∪T L̃χS∪T

))
− 1

2(1− w
n )

(
ws(n− s)

n
+
wt(n− t)

n
− w(s+ t)(n− (s+ t))

n

)
.

Since computing the (S, T )-cut is three sequential applications of our basic san-
itizer, DP follows from Theorem 3 (Theorem 5 and 7, respectively) for sparse
graphs (high conductance graphs and arbitrary graphs, respectively) and the
composition theorem of Dwork, Rothblum, and Vadhan [10, Theorem III.1].
The utility guarantee and efficiency guarantee are straightforward, giving the
following theorem.

Theorem 10. We can preserves (ε, δ) DP and provides an utility of (η, τ, ν) ap-
proximation, where τ ≤ O((η+ ε)wmax{s, t}) in time O(n2+o(1)) for answering
(S, T )-cut queries.

4.4 Comparison With Other Algorithms

In Table 1, we compare our sanitizer algorithms with other sanitizers that are
proposed in the literature. It is not clear how to compare interactive and non-
interactive sanitizers; therefore, for the additive errors, we have a column when
total number of cut queries are at most k.

It is easy to see from Table 1 that our sanitizer almost matches the best
of both the worlds; it is almost as efficient as Randomized Response and the
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utility guarantee is as high as JL transform for constant ε′, ε. For JL mechanism,
we assume that for publishing the matrix, the sanitizer uses the Coppersmith-
Winograd’s matrix multiplication algorithm.

Method τ for any k Curator’s Run Time

Randomized Response [17] O(
p
sn log k/ε) O(n2)

Exponential Sanitizer [4, 27] O(n logn/ε) Intractable

Multiplicative Weight [17, 19]∗ Õ(
p
|E| log k/ε) O(n2)

JL [3] O(s
√

log k/ε) O(rn2.38)

Basic Scheme O(s(η + ε′)
√

log k/ε) O(n2+o(1))

Using Sparsifier O(s(η + ε′)
√

log k/ε) O(n2+o(1))

Table 1. Comparison Between our Sanitizers and Other Sanitizers.

5 Optimization Using Fast-JL Transform

Our last major contribution is to explore whether some other variants of JL
transform also preserve DP. We show a positive result for fast JL-transform of
Ailon and Chazelle [2]; thereby, partially answering an open problem of BBDS.

Due to lack of space, we just give an overview of our proof. Recall that
the fast-JL transform is the product PWD. The intuitive reason why fast JL
transform preserves privacy is that fast-JL transform preconditions the input by
performing a random projection by matrix D. This is a random projection by
the result of Achlioptas [1]. It then applies an unitary matrix that is a FFT and
then another random projection matrix P . Thus, it can be seen as the applica-
tion of two random projections. Using Theorem III.1 of Dwork, Rothblum, and
Vadhan [10] and the main observation of BBDS, it preserves DP. This is our
intuition behind the proof.

The exact proof uses case analysis. Consider the edge (a, b) that is present
in G′ and absent in G. Let d1, · · · , dn be the diagonal entries of the matrix D.
The proof proceeds by consider two cases: when da = db and when da 6= db. The
first case is almost the same as in BBDS because WD is an unitary matrix. The
upper bound when da 6= db is also immediate. However, for lower bound, we
need to analyze the terms in the decomposition of matrix WDLabD

TWT , and
the eigenvalues of the projection of WDLG on the co-ordinates a, b.

6 Open Problems

Our technique of using spectral sparsification is very general. We believe it could
be used as a subroutine in many sanitization algorithms, which are designed to
answer queries based on the spectral properties, to improve their run time. It
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would be interesting to investigate other such spectral properties. For example,
one possible candidate for this improvement could be the differentially private
low rank approximation algorithm of Kapralov and Talwar [23]. This is because
Kapralov and Talwar [23] assume that their private matrices are covariance
matrices and publish the low rank approximation by computing the singular
vectors. Since covariance matrices are symmetric, one could compute the spectral
sparsification.

Another aspect that is still open is to investigate whether other off-the-shelf
JL transforms also preserve privacy or not. We have partially answered this
question by studying fast JL transform, but there are many other variants that
have applicability in different domains of computer science. In particular, we
believe that any positive result for sparse JL transforms will be a significant step
in improving the efficiency of our sanitizers and help in better understanding
the relation between JL transforms and DP.
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