
On Diamond Structures and Trojan Message Attacks

Tuomas Kortelainen1 and Juha Kortelainen2

1 Mathematics Division, Department of Electrical Engineering
2 Department of Information Processing Science

University of Oulu

Abstract. The first part of this paper considers the diamond structures which were first introduced and
applied in the herding attack by Kelsey and Kohno [7]. We present a new method for the construction
of a diamond structure with 2d chaining values the message complexity of which is O(2

n+d
2) . Here

n is the length of the compression function used. The aforementioned complexity was (with intuitive
reasoning) suggested to be true in [7] and later disputed by Blackburn et al. in [3].

In the second part of our paper we give new, efficient variants for the two types of Trojan
message attacks against Merkle-Damgård hash functions presented by Andreeva et al. [1] The message
complexities of the Collision Trojan Attack and the stronger Herding Trojan Attack in [1] are O(2

n
2
+r)

and O(2
2n
3 +2

n
2
+r) , respectively. Our variants of the above two attack types are the Weak Trojan Attack

and the Strong Trojan Attack having the complexities O(2
n+r
2) and O(2

2n−s
3 + 2

n+r
2) , respectively.

Here 2r is the cardinality of the prefix set and 2s is the length of the Trojan message in the Strong
Trojan Attack.

1 Introduction

Hash functions are mappings which take as input arbitrary strings over a fixed alphabet (usually
assumed to be the binary alphabet {0, 1}) and return a (binary) string of a fixed length as their
output. These functions are used in various cryptographic protocols such as message authentica-
tion, digital signatures and electronic voting. In order to be useful in cryptographic context, hash
functions need to have three traditional properties, preimage resistance, second preimage resistance
and collision resistance.

An ideal hash function H from the set {0, 1}∗ of all binary strings into the set {0, 1}n of all
binary strings of length n is a random oracle: for each x ∈ {0, 1}∗ , the value H(x) ∈ {0, 1}n is
chosen uniformly at random.

Merkle and Damgård [4,13] devised a method for constructing hash functions from a family of
fixed size collision–free compression functions. In this method, the message to be hashed is divided
into blocks and padded; the hash value is computed by the repeated (iterative) use of the compression
function to the message blocks and to the previous value of the computation. The result of the final
computation is then defined to be the hash value of the message. Both Merkle and Damgård were
able to prove that if the length (in blocks) of the message is appended to the original message
and the result is padded and hashed in the previous iterative fashion using a collision resistant
compression function, then the resulting hash function is also collision resistant.

The iterative method for constructing hash functions, from a single compression function, has
been found quite susceptible to several different types of attacks. Joux [6] demonstrated that, for
iterated hash functions (of length n), 2k –collisions can be found with O(k · 2n/2) compression
function queries; the respective number of queries for a random oracle hash function is much higher
[15]. Multicollision attacks against more generalized hash function structures have been studied in
[14,5,9,10], and [11]. A second preimage attack against long messages was first constructed by Kelsey

and Schneier [8] while in [7] Kelsey and Kohno presented a new form of attack named the herding
attack.

The herding attack relies on diamond structures, a tree construction where several hash values
(leaves of the tree) are herded towards one (fixed) hash value (the root). Diamond structures proved
to be very useful in attack construction. They were employed in [1] and [2] to create herding and
second preimage attacks against several iterated hash function variants also beyond Merkle-Damgåd.
Our special interest, Trojan message attacks [1], can also be based on diamond structures.

Now, in the paper [7], a method to construct diamond structures was also introduced. With intu-
itive reasoning the authors deduced that to build a diamond structure with 2d chaining values takes
approximately 2

n+d
2

+2 compression function queries. Later a more comprehensive study of diamond
structures [3] pointed out that the complexity estimation was too optimistic, the true complexity
of the method presented being O(

√
d 2

n+d
2) . We shall demonstrate a new (and, unfortunately, also

more intricate) construction algorithm with message complexity O(2
n+d
2) for a diamond structure of

2d chaining values. Our algorithm is based on recycling previously created hash values and message
blocks.

The second goal of our paper is to fortify the two Trojan message attacks developed in [1].
Our variant for the weaker Collision Trojan Attack (possessing the complexity O(2

n+r
2)) is more

efficient than the original one (with the complexity O(2
n
2
+r)), and moreover, offers the attacker

a greater freedom to choose the content of the second preimage message. The attack algorithm
makes use of diamond structures. Finally, we are able to significantly reduce the complexity of the
Herding Trojan Attack in our version of strong Trojan message attack. Both expandable messages
[8] elongated diamond structures [7] are exploited in our construction.

This paper is organized in the following way. In the next section, our new method to generate a
diamond structure is presented. Section 3 contains an introduction to Trojan message attacks. We
formulate a new security property and study the complexity of creating a Trojan message attack
against a random oracle hash function. In the fourth section two new and efficient variants of Trojan
message attacks are developed. The final section contains some conclusive remarks.

2 Diamond Structures

From now on, assume that our compression function f is a mapping: {0, 1}n×{0, 1}m → {0, 1}n such
that m > n . The message hashing is carried out with the iterative closure f∗ : {0, 1}n×({0, 1}m)∗ →
{0, 1}n of f which is defined inductively as follows. For the empty word ε , let f∗(h, ε) := h
for all h ∈ {0, 1}n . For each k ∈ N , words x1, x2, . . . , xk+1 ∈ {0, 1}m , and h ∈ {0, 1}n , let
f∗(h, x1x2 · · · xk+1) := f(f∗(h, x1x2 · · · xk), xk+1) . Note that for k = 0 above, x1x2 · · ·xk is the
empty word ε and the definition allows us to deduce that f∗(h, x1) = f(h, x1) . All message lengths
are expressed in number of blocks.

2.1 Concepts and Tools

Let H ⊆ {0, 1}n be a finite nonempty set of hash values. A pairing set of H is any set B ⊆
H × {0, 1}m such that

(i) for each h ∈ H there exists exactly one x ∈ {0, 1}m such that (h, x) ∈ B ; and

(ii) for each (h1, x1) ∈ B there exist (h2, x2) ∈ B such that h1 6= h2 and f(h1, x1) = f(h2, x2) .

2

The following technical result is eventually applied in evaluating the cardinalities of message
block sets when building the diamond structure.

Lemma 1. Let r ≥ 2 and n be positive integers. Define the integers sr,0, sr,1, sr,2, . . . , sr,2 r−2 as
follows.

sr,0 = d2
n−r
2
−1e sr,k+1 = sr,k +

⌈
2

n−r
2

+1

2r − 2k

⌉
for k = 0, 1, . . . , 2 r−2 − 1

Then sr,j ≥ 2
n+r
2 −1

2r−2j for each j ∈ {0, 1, . . . , 2 r−2} .

Proof. Proceed by induction on j . The case j = 0 is clear. Suppose that sr,k ≥ 2
n+r
2 −1

2r−2k where
k ∈ {0, 1, . . . , 2 r−2 − 1} . Then, by definition, the inequality

sr,k+1 ≥
2

n+r
2
−1 + 2

n−r
2

+1

2r − 2k

holds. It suffices to show that

2
n+r
2
−1 + 2

n−r
2

+1

2r − 2k
≥ 2

n+r
2
−1

2r − 2(k + 1)
.

But this is obvious since the inequality

(2
n+r
2
−1 + 2

n−r
2

+1)[2r − 2(k + 1)] ≥ 2
n+r
2
−1(2r − 2k)

is equivalent with k ≤ 2 r−2 − 1 . ut

A diamond structure (with 2d chaining values, or of breadth 2d), where d ∈ N+ , is a both
vertex labeled and edge labeled complete binary tree D satisfying the following conditions.

1. The tree D has 2d leaves, i.e., the height of the tree is d .

2. The vertices of the tree D are labeled by hash values (strings in the set {0, 1}n) so that the
labels of vertices that are on the same distance from the root of D are pairwise disjoint.

3. The edges of the tree D are labeled by message blocks (strings in the set {0, 1}m).

4. Let v1, v2 , and v with (hash value) labels h1, h2 , and h , respectively, be any vertices of
the tree D such that v1 and v2 are children of v . Suppose furthermore that x1 and x2 are
(message) labels of the edges connecting v1 to v and v2 to v , respectively. Then f(h1, x1) =
f(h2, x2) = h .

2.2 Intuitive Description of the Diamond Structure Construction Method

Our method advances in jumps, phases, and steps. In each jump several phases are carried out,
every phase consists of numerous steps, and in each step we search two distinct hash value and
message block pairs (h1, x1) , (h2, x2) such that f(h1, x1) = f(h2, x2) . By dividing the process in
aforementioned manner and recycling hash value and message block sets, we are able to decrease
the number of compression function queries. It is quite easy to see that our method is not optimal,
but we have to make a compromise between completeness and the simplicity of computations.

3

Jumps The construction of a diamond structure D with 2d chaining values d ≥ 2 is carried out in d
jumps Jd , Jd−1 , . . . , J1 . We proceed from the leaves towards the root of the structure. Let Hd be the
set of the 2d chaining values. In jump Jd , a pairing set Bd of Hd is created. The set Bd is constructed
so that the cardinality of the set Hd−1 := {f(h, x) | (h, x) ∈ Bd} is 2d−1 . In jump Jd−1 a pairing set
Bd−1 of Hd−1 is created so that the cardinality of the set Hd−2 := {f(h, x) | (h, x) ∈ Bd−1} is 2d−2 .
We continue like this until in the last jump J1 a pairing set B1 of H1 containing only two hash
values is generated. The set H0 := {f(h, x) | (h, x) ∈ B1} contains only one element which is the
root of the diamond structure. By each jump the distance to the root of the diamond structure is
decreased by one. Obviously we are herding the chaining values towards the final hash value which
labels the root of our structure.

Now each jump consists of several phases; since the structures of jumps are mutually identical,
we give below an intuitive description of the phases (and steps) of the jump Jd only.

Phases The jump Jd consists of d phases Pd , Pd−1 , . . . , P2 , P1 . In the phase Pd of the jump Jd
we create a pairing set Td−1 of a subset Kd−1 ⊆ Hd of cardinality 2d−1 , in the phase Pd−1 a pairing
set Td−2 of a subset Kd−2 ⊆ Hd \Kd−1 of cardinality 2d−2 , and so on, ..., in the phase P2 a pairing
set T1 of a subset K1 of Hd \ (Kd−1 ∪Kd−2 ∪ · · · ∪K2) of cardinality 2 . There are two hash values
(forming the set K0) still without pairing left in Hd , so in the phase P1 we search a pairing T0 of
K0 . Then we set Bd := Td−1 ∪ Td−2 ∪ · · · ∪ T0 . Thus the jump Jd consists of d phases after which
we have created a pairing set Bd of Hd ; moreover, it proves to be constructed so that the input set
Hd−1 := {f(h, x) | (h, x) ∈ Bd} of jump Jd−1 is of cardinality 2d−1 .

Steps Each phase is made up of several steps in the following way. Consider the phase Pj of jump
Jd , where j ∈ {2, 3, . . . , d} . As told above, in this phase we create a pairing set for a subset Kj−1
of Hd \ (Kd−1 ∪Kd−2 ∪ · · · ∪Kj) of cardinality 2j−1 . The phase is divided into 2j−2 steps

S(d, j, 0), S(d, j, 1), . . . , S(d, j, 2j−2 − 1) .

In each step we create a pairing for two hash values in Hd\(Kd−1∪Kd−2∪ · · · ∪Kj) so that together
the hash values in the pairs form a set Kj−1 of cardinality 2j−1 . A more rigorous description of
each step with appropriate input and output follows.

Initialization I(d)
As an input we have a set Ad,0 := Hd of 2d hash values. We first create a message block set
Md,0 ⊆ {0, 1}m such that

1. the cardinality of Md,0 is 2
n−d
2
−1 ; and

2. the cardinality of the set f(Ad,0,Md,0) = {f(h, x)|h ∈ As,0, x ∈Md,0} is 2
n+d
2
−1 .

Let Hd,0 = f(Ad,0,Md,0) . The complexity to construct such an Hd,0 is approximately 2
n+d
2
−1 . Note

that our assumption on the cardinality of the set Hd,0 has an insignificant impact to the complexity;
we can easily replace the appropriate message blocks one by one with new ones. The output of the
initialization step is: Ad,0 ; Md,0 ; Hd,0 .

Let now j ∈ {2, 3, . . . , d} and k ∈ {0, 1, 2, . . . , 2j−2 − 1} .

Step S(d, j, k)
The step takes as an input Aj,k , Mj,k , Hj,k . Here Aj,k is a set of 2j − 2k hash values, Mj,k is a

4

set of sj,k message blocks, where sj,k ≥ 2
n+j
2 −1

2j−2k , and

Hj,k = {f(x, h) |x ∈ Aj,k , x ∈Mj,k}

is a set of hash values such that |Hj,k| = |Aj,k| · |Mj,k| . Note that |Hj,k| ≥ (2j − 2k)sj,k ≥ 2
n+j
2
−1 .

A set M ′j,k of dsj,k+1 − sj,ke new messages is generated so that the cardinality of the set

f(Aj,k,M
′
j,k) = {f(h, x) |h ∈ Aj,k , x ∈M ′j,k}

is at least 2
n−j
2

+1 . We search for hash values hjk , h
′
jk
∈ Aj,k and message blocks xjk ∈ Mj,k ,

x′jk ∈ M ′j,k such that f(hjk , xjk) = f(h′jk , x
′
jk

) . Note that since |Hi,k × f(Aj,k,M
′
j,k)| ≥ 2n , the

expected number of hash values h such that h ∈ Hi,k ∩ f(Aj,k,M
′
j,k) is at least one. Furthermore,

for the sake of simplicity of computations, we assume that (hjk , xjk) and (h′jk , x
′
jk

) are the only
colliding pairs in Aj,k × [Mj,k ∪M ′j,k] . Now, what is the (message) complexity of the actions and
assumptions above? We may create the message set M ′j,k as a statistical experiment and then
compute the hash values in the set f(Aj,k,M

′
j,k) . Since |Hi,k × f(Aj,k,M

′
j,k)| ≥ 2n , a routine

reasoning shows that the probability of finding a colliding pair is greater than 0.5 . This means that
the expected number of times we have to repeat the experiment is less than two. Thus the message
complexity to create the set M ′j,k , compute the values in f(Aj,k,M

′
j,k) , and to find the colliding

pair is at most 2 · 2
n−j
2

+1 . Our assumptions on the cardinality of f(Aj,k,M
′
j,k) and of the number

of colliding pairs do not increase the complexity significantly. This is ensured by either repeating
the experiment sufficiently many times or replacing messages in the set M ′j,k one by one with new
ones.

Let Aj,k+1 := Aj,k \ {hjk , h′jk} , Mj,k+1 := Mj,k ∪M ′j,k , and Hj,k+1 := f(Aj,k+1, Mj,k+1) . Further-
more we set Bd := Bd ∪ {(hjk , xjk), (h′jk , x

′
jk

)} .

As an output of this step, we get Aj,k+1 , Mj,k+1 , Hj,k+1 , and Bd .

The output of a the step S(d, j, 2j−2 − 1) (the last step of the phase Pj) serves as the input
to the S(d, j − 1, 0) (the first step of the phase Pj−1) for each j ∈ {3, 4, . . . , d} . We thus define
Aj−1,0 := Aj,2j−2−1 , Mj−1,0 := Mj,2j−2−1 , and Hj−1,0 := Hj,2j−2−1 .

We carry out our diamond structure construction by running the jumps Jd , Jd−1 , . . . , J2 , J1
one after another in this order. We describe the inner realization of the jump Jd more accurately; all
the other jumps are carried out completely analogously. The jump Jd is implemented by running all
its phases I(d) , Pd , Pd−1 , . . . , P2 , P1 . The last phase P1 takes as its input only the set A1,0 := A2,1

of two (remaining) hash values and the pairing set Bd . It searches a pairing set for A1,0 on its
own. Each phase Pj , j ∈ {2, 3, . . . , d} , is realized by running all its steps S(d, j, 0) , S(d, j, 1) , . . . ,
S(d, j, 2j−2 − 1) subsequently in this order.

Note that in each phase (step, resp.), the message blocks and hash values generated in the
previous phases (steps, resp.) are utilized, recycled, one could say. This means that in our method
the excessive growth of the message complexity can be prevented. This is verified in the next
subsection.

2.3 Diamond Structure Construction Method: The Pseudocode

1. Input: d ∈ N+ , (1 < d < n
2) ; Hd ⊆ {0, 1}n , |Hd| = 2d

5

2. for i = d downto 2 do {Jumps J(d), J(d− 1), ..., J(2) .}
{Input to jump J(i): a set Hi of 2i distinct hash values.}

2.1. Ai,0 := Hi

2.2. Generate a set Mi,0 ⊆ {0, 1}m such that |Mi,0| = 2
n−i
2
−1 and |f(Ai,0,Mi,0)| = 2

n+i
2
−1 .

{Initialization}
2.3. Hi,0 = f(Ai,0,Mi,0) ; Bi := ∅
2.4. for j = i downto 2 do {Phases P(i, i) , P(i, i− 1) , ..., P(i, 2).}

{Input to phase P(i, j) : The sets Bi , Aj,0 , Mj,0 , and Hj,0}
2.4.1. for k = 0 to 2j−2 − 1 do {Steps S(i, j, 0), S(i, j, 1), ..., S(i, j, 2j−2 − 1).}

{Input to S(i, j, k): the sets Aj,k ⊆ {0, 1}n , Mj,k ⊆ {0, 1}m , Hj,k = f(Aj,k,Mj,k) ,
and Bi such that |Aj,k| = 2j − 2k , |Mj,k| = sj,k , and |Hj,k| = |Aj,k| · |Mj,k| .}

a. Generate a set M ′j,k ⊆ {0, 1}m of cardinality dsj,k+1−sj,ke such that M ′j,k∩Mj,k = ∅
and |f(Aj,k,M

′
j,k)| ≥ 2

n−j
2

+1 .
b. Search distinct hash values hj,k, h′j,k ∈ Aj,k and message blocks xj,k ∈ Mj,k , x′j,k ∈

M ′j,k such that f(hj,k, xj,k) = f(h′j,k, x
′
j,k) .

c. Aj,k+1 = Aj,k \ {hj,k, h′j,k} ; Mj,k+1 = Mj,k ∪ M ′j,k ; Hj,k+1 = f(Aj,k+1,Mj,k+1) ;
Bi = Bi ∪ {(hj,k, xj,k), (h′j,k, xj,k)}

d. if k = 2j−2 − 1 then
(i) Aj−1,0 := Aj,2j−2−1 , Mj−1,0 := Mj,2j−2−1 ; Hj−1,0 := Hj,2j−2−1

{Input to phase P(i, 1): the set A1,0 := {h1,0, h′1,0} of two distinct hash values.}
2.5. Generate a set M ′1,0 ⊆ {0, 1}m of 2

n
2 message blocks such that there exist x1,0, x′1,0 ∈ M ′1,0

for whicch f(h1,0, x1,0) = f(h′1,0, x
′
1,0) . {Phase P(i, 1).}

2.6. Bi := Bi ∪ {(h1,0, x1,0), (h′1,0, x′1,0)} ; Hi−1 := {f(h, x) | (h, x) ∈ Bi}
{Input to jump J(1) : the set H1 := {h1, h2} of two distinct hash values.}

3. Generate a set M1 ⊆ {0, 1}m of 2
n
2 message blocks such that there exist x1, x2 ∈M1 for which

f(h1, x1) = f(h2, x2) . {Jump J(1) .}
4. B1 := {(h1, x1), (h2, x2)} ; H0 := {h0} where h0 = f(h1, x1) = f(h2, x2)
5. Output: Bd, Bd−1, . . . , B1

2.4 The Overall Message Complexity of the Construction

Let us first compute the message complexity of jump Jd ; recall that it consists of phases Pd , Pd−1 ,
. . . , P2 , P1 . Certainly the complexity of jump Jd is the sum of the expected number of compression
function enquieries in I(d) and the phases Pd , Pd−1 , . . . , P2 , P1 . Applying Lemma 1 and induction

on j and k that sj,k ≥ 2
n+j
2 −1

2j−2k holds for each j ∈ {2, 3, . . . , d} and k ∈ {0, 1, . . . , 2j−2 − 1} . This
means that the complexity analysis given in the description of step S(d, j, k) holds. This implies,
that given j ∈ {2, 3, . . . , d} , the expected number of compression function queries to carry out phase
Pj is at most (a small multiple of) 2j−2 · 2

n−j
2

+1 ; here 2j−2 naturally refers to the number of steps
in the phase. The complexity of I(d) is approximately 2

n+d
2
−1 and of P1 approximately 2 ·2

n
2 . The

total complexity of jump Jd is thus

comp(Jd) ≤ a · {2
n+d
2
−1 +

d∑
i=2

[2j−2 · 2
n−j
2

+1] + 2 · 2
n
2 } ≤ 2a · 2

n+d
2

where a is a positive rational smaller than 2 and certainly independent of both n and d .

6

Remark 1. As noted above, the probability to find a colliding pair in each step S(d, j, k) is greater
than 0.5 . It can be shown that we can choose the constant a to be approximately e

e−1 when 2n is
sufficiently large.

By the cosiderations above, we can deduce that the complexity of jump Ji is at most 2a · 2
n+i
2

for i = 2, 3, . . . , d . Since running the jump J1 takes approximately 2 · 2
n
2 compression function

queries, the overall message complexity of our diamond structure construction is not more than

2a · [
d∑

j=2

2
n+j
2 + 2 · 2

n
2] ≤ 8 a · 2

n+d
2 .

2.5 Reducing the Complexity

It is quite easy to slightly reduce the complexity of the first pairing (i.e., J1) if we can choose the
chaining values freely. One can choose an arbitrary hash value set A such that |A| = 2

n+d
2 . After

this we can fix a single message block x and compute the value f(h, x) for all h ∈ A . Thus we have
2

n+d
2 hash values and the number of possibly colliding pairs is(

2
n+d
2

2

)
= 2n+d−1 − 2

n+d
2
−1 ≈ 2n+d−1.

Since the codomain of f consists of 2n elements, there should be approximately 2d−1 pairs
h, h′ ∈ A such that f(h, x) = f(h′, x) . We have now found 2d−1 colliding pairs with the approximate
complexity 2

n+d
2 (instead of 2 a · 2

n+d
2) .

As stated before the method presented in this section does not give us optimal complexity.
A more effacious approach would be to create new message blocks one by one, to compute the
respective hash values, and to search for colliding pairs after each new message block. However, we
certainly still need to apply the compression function at least 2

n+d−i
2 times to create 2d−i pairs and

so the total message complexity of our diamond structure construction will thus not drop below
O(2

n+d
2) .

3 Trojan Message Attacks on Merkle-Damgård Structure

As mentioned before, the Trojan message attack was first presented in [1]. A Trojan message is a
nonempty string t produced offline by the attacker and given to the victim. The victim then chooses
some word x from a fixed set P of prefixes (also known to the attacker) and forms the word x t .
The attacker’s task is to find a second preimage for x t . Extra constraints may be imposed to the
structure of the preimage depending on the type of the Trojan attack.

In practise a Trojan message attack could happen for example in the following situation. Two
parties A (the attacker) and B (the victim) are forming a contract and B is satisfied when choosing
the first part of the contract from some set of precreated messages; then A is free to create the rest
of the contract to be a Trojan message t . A situation like this could occur, for instance, when A
does not know the exact day when the contract will be signed, but is allowed to otherwise formalize
its details.

Inspired by the results in [1], we launch the following security property:

7

Trojan message resistance. Given any finite message set P , where |P | > 1 , it is computationally
infeasible to find a message t and a message set M such that |M | = |P | and for each p ∈ P there
exists m ∈M such that H(p t) = H(m) .

Assume for a moment that H : {0, 1}∗ → {0, 1}n is a random oracle hash function and P is
a set of messages with cardinality k ∈ N+ . Suppose that M is another set of messages such that
|M | = 2s for some s ∈ N+ . The probability that a random message t satisfies the property: for each
p ∈ P there exists m ∈ M satisfying H(p t) = H(m) , is approximately

(
2s

2n

)k . Assume now that
we create a new message set T where |T | = 2j , j ∈ N+ . The expected number of messages t ∈ T
such that for each x ∈ P there exists y ∈ M satisfying H(xt) = H(y) is 2j ·

(
2s

2n

)k
= 2j+k s−k n .

In order to succesfully complete the attack we should be able to create at least one Trojan message
satisfying the given conditions, so the above expected number of messages should certainly be at
least one. This means that j + k s− k n ≥ 0 .

The number of hash function queries needed is certainly in Ω(2j + 2s) . We can minimize the
complexity by setting j = s = k n

k+1 . So the number of hash function queries needed is in Ω(2
k

k+1
·n) .

It is interesting to see, that this is almost equal to the number of hash function queries needed to
create a k−collision [15].

From now on we consider Trojan message attacks on Merkle-Damgård hash functions; recall
that f : {0, 1}n × {0, 1}m → {0, 1}n is our compression function and f∗ : {0, 1}n × ({0, 1}m)∗ →
{0, 1}n its iterative extension. Assume furthermore that h0 ∈ {0, 1}n the initial hash value and
P = {p1, p2, · · · , p2r} is the set of prefixes, r ∈ N+ . Moreover, denote h0,i := f∗(h0, pi) for i =
1, 2, · · · , 2r . For the sake of simplicity we will assume that all the prefixes in P are of equal length
k , k ∈ N+ .

As mentioned before, the Andreeva et al [1] offered two variants of Trojan message attacks against
Merkle-Damgård structure: the Collision Trojan Attack (abbr. ColTrA) and Herding Trojan Attack
(abbr. HerTrA). Both attacks are comprised of three general phases. It is assumed that both the
attacker and victim are familiar with the compression function f , the initial hash value h0 and the
prefix set P .

1. The attacker, Trudy, creates a Trojan message t . The complexity of this phase is the offline
complexity of the attack.

2. The victim, Alice, chooses a prefix message p from the prefix set P , where |P | = 2r .

3. Trudy creates a second preimage for pt . The complexity of this phase is the online complexity
of the attack.

3.1 The Collision Trojan Attack

The first phase of ColTrA consists of 2r step. In the first step the Trudy creates a message block
pair x1, y1 such that f(h0,1, x1) = f(h0,1, y1) , x1 6= y1 . In the step i of the attack, where i ∈
{2, 3, · · · , 2r} , the attacker computes the value hi−1 = f(h0,i, x1x2 · · ·xi−1) and creates a message
block pair xi, yi such that f(hi−1, xi) = f(hi−1, yi) and xi 6= yi . The attacker chooses then the
word t = x1x2 · · ·x2r for the Trojan message and has thus completed the offline phase of the attack.

Assume now that in the second phase Alice chooses a prefix pj and forms the word pj t . The
word pj t is passed to Trudy.

8

In the third phase the attacker first sets t′ := x1x2 · · ·xj−1yjxj+1 · · ·x2r and then offers the
word pj t

′ for a second preimage to pj t . The attack is successful, since obviously f(h0, pj t) =
f(h0, pj t

′)). The offline complexity of this attack is O(2
n
2
+r) while the online complexity is negli-

gible.

p2

p1

p3

p4

x

y1

1

x

y2

2

x

y

3

3
x

y

4

4

x2

x2

x2

x1

x1

x1

x3

x3

x3

x4

x4

x4

Fig. 1. Example of the Collision Trojan Attack when r = 2

3.2 The Herding Trojan Attack (HerTrA)

In first phase the attacker, Trudy, creates a diamond structure, with 2d chaining values. The com-
plexity of this operation is O(2

n+d
2) . Assume now that the final value of the structure is h′ . Now

Trudy creates a message x0 such that |x0| = d . Next she searches for message block pair x1, y1
such that f(h0,1, x0x1) = f(h′, y1) , and then sets h1 := f(h0,1, x0x1) .

In the step i of the first phase, where i ∈ {2, 3, · · · , 2r} , Trudy computes the value hi−1,i :=
f(h0,i, x0x1 · · ·xi−1) and creates a message block pair xi, yi such that f(hi−1,i, xi) = f(hi−1, yi) .
Then she simply sets hi := f(hi−1,i, xi) and is ready to proceed to next step. Finally Trudy creates
the Trojan message t = x0x1 · · ·x2r and has finished the second phase.

Assume now that the attacker is challenged both with a prefix pj , j ∈ {1, 2, . . . , 2r} and a second
prefix w such that the length |w| of w is smaller than k . Trudy now searches for a connection
message z such that |wz| = k and f(h0, wz) is equal to some for chaining value of the created
diamond structure. Assume now that message u is the path from this chaining value to the root
hash value h′ of the diamond structure, i.e. f(h0, wzu) = h′ .

Now we have f(h0, wzuy1y2 · · · yj) = hj = f(h0, pjx0x1 · · ·xj) so clearly wzuy1y2 · · · yjxj+1xj+2

· · ·x2r is a second preimage for the word pjt .

The complexity of creating a diamond structure is O(2
n+d
2) so the complexity of the offline phase

is O(2
n
2
+r + 2

n+d
2) while the complexity of finding z is 2n−d which means that the complexity of

the online phase is also 2n−d . If we want to minimize the total complexity, we can set d = n
3 and

get the total complexity of O(2
n
2
+r + 2

2n
3) .

It is easy to see that the complexity of this kind of attack is in O(2
2n
3) , as long as the number

of possible preimages is at most 2
n
6 , while the length of the created message is k + d + 2r . If the

number of possible preimages is larger than 2
n
6 the complexity exceeds 2

2n
3 .

9

In comparison the second preimage attack presented in [8] and second preimage attack based
on diamond structure presented in [2] against message with length 2

n
6 would have the complexity

O(2
5n
6) .

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

h' y2 y3 y4y1
h1 h2 h3 h4

h1

h2

h3

h4

Fig. 2. Example of offline phase in Herding Trojan Attack when r = 2 , d = 3

4 New Versions of the Trojan Message Attacks

4.1 The Weak Trojan Attack (WeaTrA)

We shall now present a new variant of the Collision Trojan Attack. The complexity of our con-
struction is lower than that of the original one, while it gives the attacker more freedom to choose
the content of the created second preimage. To ensure this we will assume that the attacker is, in
addition to the prefix choice p of the victim from the set P , challenged with another prefix v from
a set V such that |V | ≤ 2r in the second phase of the attack. The attacker, Trudy, now has to find
suffix s such that f(h0, vs) = f(h0, pt) , where t is the Trojan message created by Trudy in the first
phase.

In the first, offline phase Trudy creates a diamond structure with chaining values h0,1, h0,2,

· · · , h0,2r . The complexity is certainly O(2
n+r
2) . Assume now that the final, root hash value of the

diamond structure is h′ . Next the attacker creates an expandable message, starting from the hash
value h′ , with minimum block length r + 1 and maximum block length 2r+1 + r . The complexity
of this effort is O((r + 1) · 2

n
2) [8]. Assume that the final hash value of expandable message is h′′ .

The attacker now creates a set Y consisting of 2
n+r
2 random message blocks and computes

the respective hash values f(h′′, y) for each y ∈ Y . This requires approximately 2
n+r
2 compression

function queries. In addition, the attacker now chooses any message x0 such that the length of x0
is 2r + 1 .

10

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1
x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

v2

v1

v3

v4

h' h''
Y

h1

h2

h3

h4

h4

h3
h1

h2

Fig. 3. Weak Trojan Message Attack example when r = 2 .

Now Trudy searches for a message block x1 such that f(h0,1, x0x1) = f(h′′, y) for some y ∈ Y .
Denote h1 := f(h0,1, x0x1) . The complexity of finding such an x1 is approximately 2

n−r
2 . The

attacker sets y1 := y and is now ready for the second step of the first phase.
Consider the step i ∈ {2, 3, · · · , 2r} of the first phase of the attack. Trudy computes h′i−1 :=

f(h0,i, x0x1x2 · · ·xi−1) and searches for a message block xi such that f(h′i−1, xi) = f(h′′, y) for some
y ∈ Y . Once again the complexity of finding xi is 2

n−r
2 . Denote hi := f(h′i−1, xi) and yi := y .

Once the attacker has completed the 2r steps, the offline phase is done. The attacker now forms
the Trojan message t = x0x1x2 · · ·x2r .

In the second phase the victim picks from P the prefix pj , where j ∈ {1, 2, . . . , 2r} . The
attacker is also challenged with a second prefix v ∈ V . Assume that z is the expandable message
with length j + l and y is the path from f∗(h0, v) to h′ , i.e., f∗(f∗(h0, v), y) = h′ . Obviously
f∗(h0, pjx0x1 · · ·x2r) = f∗(h0, vyzyjxj+1xj+2 · · ·x2r) , so clearly vyzyjxj+1xj+2 · · ·x2r is a second
preimage for pjt .

The messages created in this way have the length k + 2r + 1 + 2r . The offline complexity of
this attack is O(2

n+r
2) while the online complexity is negligible. Since ColTrA has the complexity

in O(2
n
2
+r) , the advantage of the WeaTrA is obvious.

4.2 The Strong Trojan Attack (StrTrA)

We shall use both expandable messages [8] and elongated diamond structures [7] to reduce the
complexity of the original HerTrA.

The attacker, Trudy, begins the first phase of the attack by creating a random message z =
z1z2 · · · z2s , where s ≥ r and z1, z2, . . . , z2s are message blocks. Then she chooses random hash
values b1, b2, · · · b2d (where d ∈ N+, d ≤ s), computes ai := f∗(bi, z) for i = 1, 2, . . . 2d , and creates a
diamond structure with chaining values a1, a2, . . . , a2d . The number of compression function queries
needed is O(2

n+d
2) . Assume that the final root hash value of the structure is h′ . Trudy then continues

11

by constructing an expandable message, starting from the hash value h′ , with minimun length s+1
and maximum length s+ 1 + 2s+1 . The complexity of the construction is O((s+ 1) · 2

n
2) . Suppose

that the final hash value of the expandable message is h′′ .
Trudy now creates a set Y containing 2

n+r
2 random message blocks and computes all the hash

values f(h′′, y) , y ∈ Y . She also chooses an arbitrary message x0 of length 2s + d + s + 1 , and
searches a message block x1 such that f∗(h0,1, x0x1) = f(h′′, y) for some y ∈ Y . The complexity
of finding such x1 and y is O(2

n−r
2) . Denote h1 := f∗(h0,1, x0x1) and y1 := y .

Let i ∈ {2, 3, · · · , 2r} . In the step i of the first phase of the attack, Trudy computes h′i−1 :=
f∗(h0,i, x0x1x2 · · ·xi−1) and searches for a message block xi such that f(h′i−1, xi) = f(h′′, y) for
some y ∈ Y . To find such xi and y takes approximately 2

n−r
2 compression function queries. Finally

Trudy sets hi := f(h′i−1, xi) = f(h′′, y) and yi := y .
After the 2r steps our attacker chooses t := x0x1x2 · · ·x2r for the Trojan message and has

completed the first (offline) phase of the attack. Since there were alltogether 2r steps above, the
complexity of completing them all is O(2

n+r
2) . This means that the total complexity of the offline

phase is O(2
n+d
2 + 2

n+r
2) .

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1
x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

h' h''
Y

z

z

z

z

h1

h2

h3

h4

h2

h1

h3

h4

Fig. 4. Offline phase for Strong Trojan Message Attack example when r = 2 .

Assume now that the attacker is challenged with a prefix pj ∈ P (chosen by the victim, Alice) and
another (arbitrary) prefix p with length smaller than k . The attacker now searches for a connection
message x such that length of px is k , and f(h0, px) = l for some hash value l that satisfies the
condition l = f(bi, z1z2 · · · zk) for some i ∈ {1, 2, · · · d} and k ∈ {1, 2, · · · 2s} . Assume now that
message y is the path from l to the hash value h′ in the diamond structure, i.e., f(h0, pxy) = h′ ;
the length of y is clearly 2s +d−k . Assume furthermore, that w is the expandable message chosen
so that the total length of the message pxywyjxj+1xj+2 · · ·x2r is 2s + 2r + k + d+ s+ 1 .

Now f(h0, pxywyj) = f(h0, pjx0x1 · · ·xj) = hj so pxywyjxj+1xj+2 · · ·x2r is a second preimage
for the message pjt . The length of both messages is 2s + 2r + k + d+ s+ 1 .

12

The complexity of finding x is O(2n−d−s) which means that the complexity of the online phase
is also in O(2n−d−s) . If we want to minimize the total complexity we can choose d = n−2s

3 which
means that the total complexity of the attack is O(2

2n−s
3 + 2

n+r
2) .

This means of course, that if we are able to create longer messages we can reduce the total
complexity of the attack. Ideally we could choose s = n−3r

2 giving us the total complexity of
O(2

n+r
2) i.e. the same as in the weak version of the attack. For exampla in SHA-1 the maximum

lenght of the message is 254 message blocks while n = 160 . This implies that if, for example
r = 20 we will have 2

n+r
2 = 290 if we can choose the length of the message to be 250 message

blocks. Creating a basic second preimage attacks, presented in [8] and [2], against messages with
that length would have complexity greater than 2110 , while the complexity of previous version of
strong Trojan message attack woud be approximately 2107 .

In practice messages are of course far shorter. However if we are able to choose, for example
s = n

5 , we would have the total complexity of O(2
3n
5) in comparison to O(2

4n
5) offered by ordinary

second preimages against messages with length 2
n
5 , while s = n

11 would give us complexity O(2
7n
11)

in comparison to O(2
10n
11) .

5 Conclusion

In this paper we have presented a better and more efficient versions of Trojan message attacks.
By using expandable messages and elongated diamond structures we have been able to reduce
the complexity needed to create Trojan message attack significantly. We have also proven that
for random oracle hash function the Trojan message complexity should be at least in Ω(2

r
r+1
·n) .

Furhter study is needed to show if it is possible to create even more efficient Trojan message attacks
or implement them in practice.

Diamond Structure Creation Method Message Complexity
Blackburn & all O(

√
d2

n+d
2)

New Method O(2
n+d
2)

Trojan Message Attack Type Message Complexity AttCon
Second preimage attack O(2n−s) Any prefix
ColTrA O(2

n
2
+r) -

HerTrA O(2
2n
3 + 2

n
2
+r) Any prefix

WeaTrA O(2
n+r
2) Restricted prefix

StrTrA O(2
2n−s

3 + 2
n+r
2) Any prefix

Message complexities for Trojan message attacks when the length of the second preimage is in O(2s) and the size
of the prefix set is 2r , where r < s . Second preimage attack means the attack presented by Kelsey and Schneier [8]
AttCon refers to the controll attacker has over created second preimage in online phase. Restricted prefix means that
the attacker can choose the prefix of the second preimage from the pregenerated set with 2r prefixes. Any prefix means
that only the length of the prefix is restricted.

13

References

1. Andreeva, E., Bouillaquet, C., Dunkleman, O., Kelsey, J.: Herding, Second Preimage and Trojan Message Attacks
Beyond Merkle-Damgård. LNCS, vol. 5867, pp. 393-414, (2009)

2. Andreeva, E., Bouillaquet, C., Fouque, P., Hoch, J., Kelsey, J., Shamir, A., Zimmer, S.: Second Preimage Attacks
on Dithered Hash Functions. LNCS, vol. 4965, pp. 270-288, (2008)

3. Blackburn, S., Stinson, D., Upadhyay, J.: On the Complexity of the Herding Attack and Some Related Attacks
on Hash Functions. Cryptology ePrint Archive, Report 2010/030, http://eprint.iacr.org/2010/030, (2010)

4. Damgård, I.: A Design Principle for Hash Functions. LNCS, vol. 435, pp. 416-427, (1990)
5. Hoch, J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated Concatenated and Expanded (ICE)

Hash Functions. LNCS, vol. 4047, pp. 179-194, (2006)
6. Joux, A.: Multicollisions in Iterated Hash Functions. Aplication to Cascaded Constructions. LNCS, vol. 3152,

pp. 306-316, (2004)
7. Kelsey, J., Kohno, T.: Herding Hash Functions and Nostradamus Attack. LNCS, vol. 4004, pp. 183-200, (2006)
8. Kelsey, J., Schneier, B.: Second Preimage on n -bit Hash Functions for Much Less than 2n Work. LNCS, vol

3494, pp. 474-490, (2005)
9. Kortelainen, J., Halunen, K., Kortelainen, T.: Multicollision attacks and generalized iterated hash functions.

Journal of Mathematical Cryptology, vol. 4, pp. 239-270, (2010)
10. Kortelainen, J., Kortelainen, T., Vesanen, A.: Unavoidable Regularities in Long Words with Bounded Number of

Symbol Occurences. LNCS, vol. 6842, pp. 519-530, (2011)
11. Kortelainen, T., Vesanen, A., Kortelainen, J.: Generalized Iterated Hash Functions Revisited: New Complexity

Bounds for Multicollision Attacks. LNCS, vol. 7668, pp. 172-190, (2012)
12. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A., eds. Handbook of Applied Cryptology, pp. 321-376, (1996)
13. Merkle, R.: A Certified Digital Signature. LNCS, vol. 435, pp. 218-238, (1990)
14. Nandi, M., Stinson, D.: Multicollision attacks on some generalized sequential hash functions. IEEE Transactions

on Information Theory, vol. 53(2), pp. 759-767, (2007)
15. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multicollisions. IEICE Transactions, vol.

91-A(1), pp. 39-45, (2008)

14

