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Abstract. AES-128, the NIST P-256 elliptic curve, DSA-3072, RSA-
3072, and various higher-level protocols are frequently conjectured to
provide a security level of 2128. Extensive cryptanalysis of these primi-
tives appears to have stabilized sufficiently to support such conjectures.

In the literature on provable concrete security it is standard to define 2b

security as the nonexistence of high-probability attack algorithms taking
time ≤2b. However, this paper provides overwhelming evidence for the
existence of high-probability attack algorithms against AES-128, NIST
P-256, DSA-3072, and RSA-3072 taking time considerably below 2128,
contradicting the standard security conjectures.

These attack algorithms are not realistic; do not indicate any actual
security problem; do not indicate any risk to cryptographic users; and
do not indicate any failure in previous cryptanalysis. Any actual use of
these attack algorithms would be much more expensive than the conven-
tional 2128 attack algorithms. However, this expense is not visible to the
standard definitions of security. Consequently the standard definitions of
security fail to accurately model actual security.

The underlying problem is that the standard set of algorithms, namely
the set of algorithms taking time ≤2b, fails to accurately model the set
of algorithms that an attacker can carry out. This paper analyzes this
failure in detail, and analyzes several ideas for fixing the security defini-
tions.
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1 Introduction

The Basic Principles of Modern Cryptography . . .

Principle 1—Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has
been the realization that formal definitions of security are essential pre-
requisites for the design, usage, or study of any cryptographic primitive
or protocol. —Katz and Lindell [53]

In this paper we will show that CBC MAC construction is secure if the
underlying block cipher is secure. To make this statement meaningful
we need first to discuss what we mean by security in each case.

—Bellare, Kilian, and Rogaway [12, Section 1.2]

Why do we believe that AES-CBC-MAC is secure? More precisely: Why do we
believe that an attacker limited to 2100 bit operations, and 250 message blocks,
cannot break AES-CBC-MAC with probability more than 2−20?

The standard answer to this question has three parts. The first part is a
concrete definition of what it means for a cipher or a MAC to be secure. We quote
from the classic paper [12, Section 1.3] by Bellare, Kilian, and Rogaway: the
PRP-“insecurity” of a cipher such as AES (denoted “Advprp

AES(q′, t′)”) is defined
as the “maximum, over all adversaries restricted to q′ input-output examples
and execution time t′, of the ‘advantage’ that the adversary has in the game of
distinguishing [the cipher for a secret key] from a random permutation.” The

PRF-insecurity of m-block AES-CBC-MAC (denoted “Advprf
CBCm-AES(q, t)”) is

defined similarly, using a uniform random function rather than a uniform random
permutation.

The second part of the answer is a concrete security theorem bounding the
insecurity of AES-CBC-MAC in terms of the insecurity of AES, or more generally
the insecurity of F -CBC-MAC in terms of the insecurity of F for any `-bit
block cipher F . Specifically, here is the main theorem of [12]: “for any integers
q, t,m ≥ 1,

Advprf
CBCm-F (q, t) ≤ Advprp

F (q′, t′) +
q2m2

2l−1

where q′ = mq and t′ = t + O(mql).” One can object that the O constant is
unspecified, making this theorem meaningless as stated for any specific q, t,m
values; but it is easy to imagine a truly concrete theorem replacing O(mql) with
the time for mql specified operations.

The third part of the answer is a concrete conjecture regarding the security
of AES. NIST’s call for AES submissions [66, Section 4] identified “the extent
to which the algorithm output is indistinguishable from [the output of] a [uni-
form] random permutation” as one of the “most important” factors in evaluat-
ing candidates; cryptanalysts have extensively studied AES without finding any
worrisome PRP-attacks; it seems reasonable to conjecture that no dramatically
better attacks exist. Of course, this part of the story depends on the details of
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AES; analogous conjectures regarding, e.g., DES would have to be much weaker.
For example, Bellare and Rogaway in [16, Section 3.6] wrote the following:

“For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

. . . In other words, we are conjecturing that the best attacks are either
exhaustive key search or linear cryptanalysis. We might be bolder with
regard to AES and conjecture something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.”

One can again object that the c1 and c2 are unspecified here, making these con-
jectures non-concrete and unfalsifiable as stated. A proper concrete conjecture
would specify, e.g., c1 = c2 = 3. One can also quibble that the TDES and TAES

factors do not properly account for inner-loop speedups in exhaustive key search
(see, e.g., [27]), that q/240 is a rather crude model of the success probability of
linear cryptanalysis, etc., but aside from such minor algorithm-analysis details
the conjectures seem quite reasonable.

This AES security conjecture (with small specified c1 and c2) says, in partic-
ular, that the attacker cannot PRP-break AES with probability more than 2−21

after 250 cipher outputs and 2100 bit operations. The CBC-MAC security theo-
rem (with small specified O) then says that the same attacker cannot PRF-break
AES-CBC-MAC with probability more than 2−20.

Of course, this answer does not prove that AES-CBC-MAC is secure; it re-
lies on a conjecture regarding AES security. Why not simply conjecture that
AES-CBC-MAC is secure? The answer is scalability. It is reasonable to ask
cryptanalysts to intensively study AES, eventually providing confidence in the
security of AES, while it is much less reasonable to ask cryptanalysts to inten-
sively study AES-CBC-MAC, AES-OMAC, AES-CCM, AES-GCM, AES-OCB,
and hundreds of other AES-based protocols. Partitioning the AES-CBC-MAC
security conjecture into an AES security conjecture and a CBC-MAC security
proof drastically simplifies the cryptanalyst’s job.

The same three-part pattern has, as illustrated by Appendix L (in the full ver-
sion), become completely standard throughout the literature on concrete “prov-
able security”. First part: The insecurity of X — where X is a primitive such as
AES or RSA, or a higher-level protocol such as AES-CBC-MAC or RSA-PSS —
is defined as the maximum, over all algorithms A (“attacks”) that cost at most
C, of the probability (or advantage in probability) that A succeeds in breaking
X. This insecurity is explicitly a function of the cost limit C; typically C is sep-
arated into (1) a time limit t and (2) a limit q on the number of oracle queries.
Note that this function depends implicitly on how the “cost” of an algorithm is
defined.

Often “the (q, t)-insecurity of X is at most ε” is abbreviated “X is (q, t, ε)-
secure”. Many papers prefer the more concise notation and do not even mention



4 Daniel J. Bernstein and Tanja Lange

the insecurity function. We emphasize, however, that this is merely a superficial
change in notation, and that both of the quotes in this paragraph refer to exactly
the same situation: namely, the nonexistence of algorithms that cost at most (q, t)
and that break X with probability more than ε.

Second part: Concrete “provable security” theorems state that the insecurity
(or security) of a complicated object is bounded in terms of the insecurity (or
security) of a simpler object. Often these theorems require restrictions on the
types of attacks allowed against the complicated object: for example, Bellare and
Rogaway in [14] showed that RSA-OAEP has similar security to RSA against
generic-hash attacks (attacks in the “random-oracle model”).

Third part: The insecurity of a well-studied primitive such as AES or RSA-
1024 is conjectured to match the success probability of the best attack known.
For example, Bellare and Rogaway, evaluating the concrete security of RSA-FDH

and RSA-PSS, hypothesized that “it takes time Ce1.923(logN)1/3(log logN)2/3 to
invert RSA”; Bellare, evaluating the concrete security of NMAC-h and HMAC-
h, hypothesized that “the best attack against h as a PRF is exhaustive key
search”. See [15, Section 1.4] and [7, Section 3.2]. These conjectures seem to
precisely capture the idea that cryptanalysts will not make significant further
progress in attacking these primitives.

1.1. Primary contribution of this paper. Our primary goal in this paper
is to convincingly undermine all of the standard security conjectures reviewed
above. Specifically, Sections 2, 3, 4, and 5 show — assuming standard, amply
tested heuristics — that there exist high-probability attacks against AES, the
NIST P-256 elliptic curve, DSA-3072, and RSA-3072 taking considerably less
than 2128 time. In other words, the insecurity of AES, NIST P-256, DSA-3072,
and RSA-3072, according to the standard concrete-security definitions, reaches
essentially 100% for a time bound considerably below 2128. The conjectures by
Bellare and Rogaway in [15, Section 1.4], [16, Section 3.6], [7, Section 3.2],
etc. are false for every reasonable assignment of the unspecified constants.

The same ideas show that there exist high-probability attacks against AES-
CBC-MAC, RSA-3072-PSS, RSA-3072-OAEP, and thousands of other “provably
secure” protocols, in each case taking considerably less than 2128 time. It is not
clear that similar attacks exist against every such protocol in the literature, since
in some cases the security reductions are unidirectional, but undermining these
conjectures also means undermining all of the security arguments that have those
conjectures as hypotheses.

We do not claim that this reflects any actual security problem with AES, NIST
P-256, DSA-3072, and RSA-3072, or with higher-level protocols built from these
primitives. On the contrary! Our constructions of these attacks are very slow; we
conjecture that any fast construction of these attacks has negligible probability
of success. Users have nothing to worry about.

However, the standard metrics count only the cost of running the attack, not
the cost of finding the attack in the first place. This means that there is a very
large gap between the actual insecurity of these primitives and their insecurity
according to the standard metrics.
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This gap is not consistent across primitives. We identify different gaps for
different primitives (for example, the asymptotic exponents for high-probability
attacks drop by a factor of 1.5 for ECC and a factor of only 1.16 for RSA), and
we expect that analyzing more primitives and protocols in the same way will
show even more diversity. In principle a single attack is enough to illustrate that
the standard definitions of security do not accurately model actual security, but
the quantitative variations from one attack to another are helpful in analyzing
the merits of ideas for fixing the definitions. It is of course also possible that the
gaps for the primitives we discuss will have to be reevaluated in light of even
better attacks.

1.2. Secondary contribution of this paper (in the full version). Our
secondary goal in this paper is to propose a rescue strategy: a new way to
define security — a definition that restores, to the maximum extent possible, the
attractive three-part security arguments described above.

All of the gaps considered in this paper come from errors in quantifying feasi-
bility. Each of the high-probability attacks presented in this paper (1) has a cost
t according to the standard definitions, but (2) is obviously infeasible, even for
an attacker able to carry out a “reasonable” algorithm that costs t according to
the same definitions. The formalization challenge is to say exactly what “reason-
able” means. Our core objective here is to give a new definition that accurately
captures what is actually feasible for attackers.

This accuracy has two sides. First, the formally defined set of algorithms must
be large enough. Security according to the definition does not imply actual se-
curity if the definition ignores algorithms that are actually feasible. Second, the
formally defined set of algorithms must be small enough. One cannot conjecture
security on the basis of cryptanalysis if infeasible attacks ignored by cryptana-
lysts are misdeclared to be feasible by the security definition.

We actually analyze four different ideas for modifying the notion of feasibility
inside existing definitions:

– Appendix B.2: switching the definitions from the RAM metric used in [12]
to the NAND metric, an “alternative” mentioned in [12];

– Appendix B.3: switching instead to the AT metric, a standard hardware-
design metric formally defined by Brent and Kung in [29] in 1981;

– Appendix B.4: adding constructivity to the definitions, by a simple trick that
we have not seen before (with a surprising spinoff, namely progress towards
formalizing collision resistance); and

– Appendix B.5: adding uniformity (families) to the definitions.

Readers unfamiliar with the RAM, NAND, and AT metrics should see Ap-
pendix A (in the full version) for a summary and pointers to the literature.

The general idea of modifying security definitions, to improve the accuracy
with which those definitions model actual security, is not new. A notable example
is the change from the algorithm cost metric used in [11], the original Crypto ’94
version of [12], to a more complicated algorithm cost metric used in subsequent
definitions of security; readers unfamiliar with the details should see Appendix A
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for a review. The attacks in this paper show that this modification was not
enough, so we push the same general idea further, analyzing the merits of the
four modifications listed above. It is conceivable that this general idea is not the
best approach, so we also analyze the merits of two incompatible approaches:
(Appendix B.1) preserving the existing definitions of security; (Appendix B.7)
trying to build an alternate form of “provable security” without definitions of
security.

Ultimately we recommend the second and third modifications (AT and con-
structivity) as producing much more accurate models of actual feasibility. We
also recommend refactoring theorems (see Appendix B.6) to simplify further
changes, whether those changes are for even better accuracy or for other rea-
sons. We recommend against the first and fourth modifications (NAND and
uniformity). Full details of our analysis appear in Appendix B; the NAND and
AT analyses for individual algorithms appear in Sections 2, 3, 4, and 5. Ap-
pendix Q (in the full version) is a frequently-asked-questions list, serving a role
for this paper comparable to the role that a traditional index serves for a book.

Our recommended modifications have several positive consequences. Incorrect
conjectures in the literature regarding the concrete security of primitives such
as AES can be replaced by quite plausible conjectures using the new definitions.
Our impression is that most of the proof ideas in the literature are compatible
with the new definitions, modulo quantitative changes, so most concrete-security
theorems in the literature can be replaced by meaningful concrete-security theo-
rems using the new definitions. The conjectures and theorems together will then
produce reasonable conclusions regarding the concrete security of protocols such
as AES-CBC-MAC.

We do not claim that all proofs can be rescued, and it is even possible that
some theorems will have to be abandoned entirely. Some troublesome examples
have been pointed out by Koblitz and Menezes in [55] and [56]. Our experience
indicates, however, that such examples are unusual. For example, there is nothing
troublesome about the CBC-MAC proof or the FDH proof; these proofs simply
need to be placed in a proper framework of meaningful definitions, conjectures,
and theorem statements.

1.3. Priority dates; credits; new analyses. On 20 March 2012 we publicly
announced the trouble with the standard AES conjectures; on 17 April 2012
we publicly announced the trouble with the standard NIST P-256, DSA-3072,
and RSA-3072 conjectures. The low-probability case of the AES trouble was
observed independently by Koblitz and Menezes and announced earlier in March
2012; further credits to Koblitz and Menezes appear below. We are not aware of
previous publications disputing the standard concrete-security conjectures.

Our attacks on AES, NIST P-256, DSA-3072, and RSA-3072 use many stan-
dard cryptanalytic techniques cited in Sections 2, 3, 4, and 5. We introduce
new cost analyses in all four sections, and new algorithm improvements in Sec-
tions 3, 4, and 5; our improvements are critical for beating 2128 in Section 5. In
Sections 2, 3, and 4 the standard techniques were already adequate to (heuris-
tically) disprove the standard 2128 concrete-security conjectures, but as far as
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we know we were the first to point out these contradictions. We do not think
the contradictions were obvious; in many cases the standard techniques were
published decades before the conjectures!

This paper was triggered by a 23 February 2012 paper [55], in which Koblitz
and Menezes objected to the non-constructive nature of Bellare’s security proof
[7] for NMAC. Bellare’s security theorem states a quantitative relationship be-
tween the standard-definition-insecurity of NMAC-h and the standard-definition-
insecurity of h: the existence of a fast attack on NMAC-h implies the existence of
a fast attack on h. The objection is that the proof does not reveal a fast method
to compute the second attack from the first: the proof left open the possibility
that the fastest algorithm that can be found to attack NMAC-h is much faster
than the fastest algorithm that can be found to attack h.

An early-March update of [55] added weight to this objection by pointing out
the (heuristic) existence of a never-to-be-found fast algorithm to attack any 128-
bit function h. The success probability of the algorithm was only about 2−64,
but this was still enough to disprove Bellare’s security conjectures. Koblitz and
Menezes commented on “how difficult it is to appreciate all the security implica-
tions of assuming that a function has prf-security even against unconstructible
adversaries”.

Compared to [55], we analyze a much wider range of attacks, including higher-
probability PRF attacks and attacks against various public-key systems, showing
that the difficulties here go far beyond PRF security. We also show quantitative
variations of the difficulties between one algorithm cost metric and another, and
we raise the possibility of eliminating the difficulties by carefully selecting a cost
metric.

Readers who find these topics interesting may also be interested in the fol-
lowup paper [56] by Koblitz and Menezes, especially the detailed discussion in
[56, Section 2] of “two examples where the non-uniform model led researchers
astray”. See also Appendices Q.13, Q.14, and Q.15 of our paper for further
comments on the concept of non-uniformity.

2 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks
readily generalize to other block ciphers; none of the attacks exploit any partic-
ular weakness of AES. We focus on AES because of its relevance in practice and
to have concrete numbers to illustrate the attacks.

All of the (single-target) attacks here are “PRP” attacks: i.e., attacks that
distinguish the cipher outputs for a uniform random key (on attacker-selected
inputs) from outputs of a uniform random permutation. Some of the attacks go
further, recovering the cipher key, but this is not a requirement for a distinguish-
ing attack.

2.1. Breaking AES with MD5. We begin with an attack that does not use any
precomputations. This attack is feasible, and in fact quite efficient; its success
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probability is low, but not nearly as low as one might initially expect. This is a
warmup for the higher-success-probability attack of Section 2.2.

Let P be a uniform random permutation of the set {0, 1}128; we label elements
of this set in little-endian form as integers 0, 1, 2, . . . without further comment.
The pair (P (0), P (1)) is nearly a uniform random 256-bit string: it avoids 2128

strings of the form (x, x) but is uniformly distributed among the remaining
2256 − 2128 strings.

If k is a uniform random 128-bit string then the pair (AESk(0),AESk(1))
is a highly nonuniform random 256-bit string, obviously incapable of covering
more than 2128 possibilities. One can reasonably guess that an easy way to
distinguish this string from (P (0), P (1)) is to feed it through MD5 and output
the first bit of the result. The success probability p of this attack — the absolute
difference between the attack’s average output for input (AESk(0),AESk(1))
and the attack’s average output for input (P (0), P (1)) — is far below 1, but it
is almost certainly above 2−80, and therefore many orders of magnitude above
2−128. See Appendix V for relevant computer experiments.

To understand why p is so large, imagine replacing the first bit of MD5 with
a uniform random function from {0, 1}256 to {0, 1}, and assume for simplicity
that the 2128 keys k produce 2128 distinct strings (AESk(0),AESk(1)). Each key
k then has a 50% chance of choosing 0 and a 50% chance of choosing 1, and
these choices are independent, so the probability that 2127 + δ keys k choose 1

is exactly
(

2128

2127+δ

)
/22

128

; the probability that at least 2127 + δ keys k choose 1 is

exactly
∑
i≥δ
(

2128

2127+i

)
/22

128

; the probability that at most 2127 − δ keys k choose

1 is the same. The other 2256 − 2129 possibilities for (P (0), P (1)) are practically
guaranteed to have far smaller bias. Consequently p is at least≈δ/2128 with prob-

ability approximately 2
∑
i≥δ
(

2128

2127+i

)
/22

128 ≈ 1−erf(δ/
√

2127) ≈ exp(−δ2/2127),

where erf is the standard error function. For example, p is at least ≈2−65 with
probability above 30%, and is at least ≈2−80 with probability above 99.997%.

Of course, MD5 is not actually a uniform random function, but it would be
astonishing for MD5 to interact with AES in such a way as to spoil this attack.
More likely is that there are some collisions in k 7→ (AESk(0),AESk(1)); but
such collisions are rare unless AES is deeply flawed, and in any event will tend
to push δ away from 0, helping the attack.

2.2. Precomputing larger success probabilities. The same analysis applies
to a modified attack Ds that appends a short string s to the AES outputs
(AESk(0),AESk(1)) before hashing them: with probability ≈ exp(−δ2/2127) the
attack Ds has success probability at least ≈δ/2128. If s is long enough to push the
hash inputs beyond one block of MD5 input then the iterated structure of MD5
seems likely to spoil the attack, so we define Ds using “capacity-1024 Keccak”
rather than MD5.

Consider, for example, δ = 267: with probability ≈ 1 − erf(23.5) ≈ 2−189 the
attack Ds has success probability at least ≈2−61. There are 2192 choices of 192-
bit strings s, so presumably at least one of them will have Ds having success
probability at least ≈2−61. Of course, actually finding such an s would require
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inconceivable amounts of computation by the best methods known (searching
2189 choices of s, and computing 2128 hashes for each choice); but this is not
relevant to the definition of insecurity, which considers only the time taken by
Ds.

More generally, for any n ∈ {0, 1, 2, . . . , 64} and any s, with probability ≈
1 − erf(2n+0.5) ≈ exp(−22n+1), the attack Ds has success probability at least

≈2n−64. There are 23·2
2n

choices of (3·22n)-bit strings s, and 23·2
2n

is considerably
larger than exp(22n+1), so presumably at least one of these values of s will have
Ds having success probability at least ≈2n−64.

Similar comments apply to essentially any short-key cipher. There almost
certainly exists a (3 · 22n)-bit string s such that the following simple attack
achieves success probability ≈2n−K/2, where K is the number of bits in the
cipher key: query 2K bits of cipher output, append s, and hash the result to 1
bit. Later we will write p for the success probability; note that the string length
is close to 2Kp2.

As n increases, the cost of hashing 3 · 22n + 2K bits grows almost linearly
with 22n in the RAM metric and the NAND metric. It grows more quickly in
the AT metric: storing the 3 · 22n bits of s uses area at least 3 · 22n, and even
a heavily parallelizable hash function will take time proportional to 2n simply
to communicate across this area, for a total cost proportional to 23n. In each
metric there are also lower-order terms reflecting the cost of hashing per bit; we
suppress these lower-order terms since our concern is with much larger gaps.

2.3. Iteration (Hellman etc.). Large success probabilities are more efficiently
achieved by a different type of attack that iterates, e.g., the function f7 :
{0, 1}128 → {0, 1}128 defined by f7(k) = AESk(0)⊕ 7.

Choose an attack parameter n. Starting from f7(k), compute the sequence of
iterates f7(k), f27 (k), f37 (k), . . . , f2

n

7 (k). Look up each of these iterates in a table
containing the precomputed quantities f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1). If f j7 (k)

matches f2
n

7 (i), recompute f2
n−j

7 (i) as a guess for k, and verify this guess by
checking AESk(1).

This computation finds the target key k if k matches any of the following
keys: 0, f7(0), . . . , f2

n−1
7 (0); 1, f7(1), . . . , f2

n−1
7 (1); etc. If n is not too large (see

the next paragraph) then there are close to 22n different keys here. The compu-
tation involves ≤2n initial iterations; 2n table lookups; and, in case of a match,
≤2n iterations to recompute f2

n−j
7 (i). The precomputation performs many more

iterations, but this precomputation is only the cost of finding the algorithm, not
the cost of running the algorithm.

This heuristic analysis begins to break down as 3n approaches the key size
K. The central problem is that a chain f7(i), f27 (i), . . . could collide with one of
the other 2n−1 chains; this occurs with probability ≈23n/2K , since there are 2n

keys in this chain and almost 22n keys in the other chains. The colliding chains
will then merge, reducing the coverage of keys and at the same time requiring
extra iterations to check more than one value of i. This phenomenon loses a
small constant factor in the algorithm performance for n ≈ K/3 and much more
for larger n.
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Assume from now on that n is chosen to be close to K/3. The algorithm then
has success chance ≈2−K/3. The algorithm cost is on the scale of 2K/3 in both
the RAM metric and the NAND metric; for the NAND metric one computes the
2n independent table lookups by sorting and merging.

This attack might not sound better (in the RAM metric) than the earlier
attack Ds, which achieves success chance ≈2−K/3 for some string s with ≈2K/3

bits. The critical feature of this attack is that it recognizes its successes. If the
attack fails to find k then one can change 7 to another number and try again,
almost doubling the success chance of the algorithm at the expense of doubling
its cost; for comparison, doubling the success chance of Ds requires quadrupling
its cost. Repeating this attack 2K/3 times reaches success chance ≈1 at cost
22K/3.

In the AT metric this attack is much more expensive. The table of precom-
puted quantities f2

n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n − 1) uses area on the scale of 2n, and
computing f2

n

7 (k) takes time on the scale of 2n, for a total cost on the scale of 22n

for an attack that finds ≈ 22n keys. One can compute f2
n

7 (0), f2
n

7 (1), . . . , f2
n

7 (2n−
1) in parallel within essentially the same bounds on time and area, replacing
each precomputed key with a small circuit that computes the key from scratch;
precomputation does not change the exponent of the attack. One can, more
straightforwardly, compute any reasonable sequence of 22n guesses for k within
essentially the same cost bound. Achieving success probability p costs essentially
2Kp.

2.4. Multiple targets. Iteration becomes more efficient when there are multiple
targets: U cipher outputs AESk1(0),AESk2(0), . . . ,AESkU (0) for U independent
uniform random keys k1, . . . , kU . Assume for simplicity that U is much smaller
than 2K ; the hypothesis U ≤ 2K/4 suffices for all heuristics used below.

Compute the iterates f7(k1), f27 (k1), . . . , f2
n

7 (k1), and similarly for each of
k2, . . . , kU ; this takes 2nU iterations. Look up each iterate in a table of 2nU
precomputed keys. Handle any match as above.

In the RAM metric or the NAND metric this attack has cost on the scale
of 2nU , just like applying the previous attack to the U keys separately. The
benefit of this attack is that it uses a larger table, producing a larger success
probability for each key: the precomputation covers 22nU keys instead of just
22n keys. To avoid excessive chain collisions one must limit 2n to 2K/3U−1/3 so
that 23nU does not grow past 2K ; the attack then finds each key with probability
22nU/2K = 2−K/3U1/3, with a cost of 2n = 2K/3U−1/3 per key, a factor of U2/3

better than handling each key separately. Finding each key with high probability
costs 22K/3U−2/3 per key.

As before, the AT metric assigns a much larger cost than the RAM and NAND
metrics. The computation of f2

n

7 (k1), f2
n

7 (k2), . . . , f2
n

7 (kU ) is trivially parallelized,
taking time on the scale of 2n, but the 2nU precomputed keys occupy area 2nU ,
for a total cost on the scale of 22nU , i.e., 22n per key, for success probability
22nU/2K per key. Note that one can carry out the precomputation using essen-
tially the same area and time. There is a large benefit from handling U keys
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together — finding all U keys costs essentially 2K , i.e., 2K/U per key — but this
benefit exists whether or not precomputation costs are taken into account.

2.5. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p against U keys costs

– RAM metric: ≈2Kp2 for p ≤ 2−K/3U−2/3; ≈(22K/3U−2/3)p for larger p.
– NAND metric: same.
– AT metric: ≈23K/2p3 for p ≤ 2−K/4U−1/2; ≈2KU−1p for larger p.

Figure G.1 graphs these approximations for U = 1, along with the cost of ex-
haustive search.

2.6. Previous work. All of the attacks described here have appeared before.
In fact, when the conjectures in [16, Section 3.6] and [7, Section 3.2] were made,
they were already inconsistent with known attacks.

The iteration idea was introduced by Hellman in [45] for the special case
U = 1. Many subsequent papers (see, e.g., [25] and [49]) have explored variants
and refinements of Hellman’s attack, including the easy generalization to larger
U . Hellman’s goal was to attack many keys for a lower RAM cost than attacking
each key separately; Hellman advertised a “cost per solution” of 22K/3 using
a precomputed table of size 22K/3. The generalization to larger U achieves the
same goal at lower cost, but the special case U = 1 remains of interest as a
non-uniform single-key attack.

Koblitz and Menezes in [55] recently considered a family of attacks analo-
gous to Ds. They explained that there should be a short string s where Ds has
success probability at least ≈ 2−K/2, and analyzed some consequences for prov-
able concrete secret-key security. However, they did not analyze higher levels of
insecurity.

Replacing Ds with a more structured family of attacks, namely linear crypt-
analysis, can be proven to achieve insecurity 2−K/2 at low cost. (See, for example,
[39, Section 7], which says that this is “well known in complexity theory”.) De,
Trevisan, and Tulsiani in [36] proved cost ≈2Kp2, for both the RAM metric
and the NAND metric, for any insecurity level p. A lucid discussion of the gap
between these attacks and exhaustive search appears in [36, Section 1], but with-
out any analysis of the resulting trouble for the literature on provable concrete
secret-key security, and without any analysis of possible fixes.

Biham, Goren, and Ishai in [23, Section 1.1] pointed out that Hellman’s attack
causes problems for defining strong one-way functions. The only solution that
they proposed was adding uniformity. Note that this solution abandons the goal
of giving a definition for, e.g., the strength of AES as a one-way function, or the
strength of protocols built on top of AES. We analyze this solution in detail in
Appendix B.5.

Our AT analysis appears to be new. In particular, we are not aware of previous
literature concluding that switching to the AT metric removes essentially all of
the benefit of precomputation for large p, specifically p > 2−K/4U−1/2.
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3 Breaking the NIST P-256 elliptic curve

This section analyzes the cost of an attack against NIST P-256 [67], an elliptic
curve of 256-bit prime order ` over a 256-bit prime field Fp. The attack computes
discrete logarithms on this curve, recovering the secret key from the public key
and thus completely breaking typical protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching
from NIST P-256 to another group of the same size (another curve over the same
field, a curve over another field, a hyperelliptic curve, a torus, etc.) does not
stop the attack. We focus on NIST P-256 for both concreteness and practical
relevance, as in the previous section.

3.1. The standard attack without precomputation. Let P be the specified
base point on the NIST P-256 curve. The discrete-logarithm problem on this
curve is to find, given another point Q on this curve, the unique integer k modulo
` such that Q = kP . The standard attack against the discrete-logarithm problem
is the parallelization by van Oorschot and Wiener [72] of Pollard’s rho method
[73], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the
(i + 1)-st point Pi+1, apply a hash function h : Fp → I to the x-coordinate of
Pi, select a step Sh(x(Pi)) from a sequence of precomputed steps Sj = rjP (with
random scalars rj for j ∈ I), and compute Pi+1 = Pi + Sh(x(Pi)). The size of
I is chosen large enough to have the walk simulate a uniform random walk; a
common choice, recommended in [87], is |I| = 20. The walk continues until it
hits a distinguished point: a point Pi where the last t bits of x(Pi) are equal to
zero. Here t is an attack parameter.

The starting point of the bth walk is of the form aP + bQ where a is chosen
randomly. Each step increases the multiple of P , so the distinguished point has
the form a′P + bQ for known a′, b. The triple (a′P + bQ, a′, b) is stored and a
new walk is started from a different starting point. If two walks hit the same
distinguished point then a′P + bQ = c′P +dQ which gives (a′− c′)P = (d− b)Q;
by construction d 6≡ b mod `, revealing k ≡ (a′ − c′)/(d− b) mod `.

After
√
` ≈ 2128 additions (in approximately 2128−t walks, using storage

2128−t), there is a high chance that the same point has been obtained in two
different walks. This collision is recognized from a repeated distinguished point
within approximately 2t additional steps.

3.2. Precomputed distinguished points. To use precomputations in this
attack, build a database of triples of the form (a′P, a′, 0), i.e., starting each walk
at a multiple of P . The attack algorithm takes this database and starts a new
walk at aP + bQ for random a and b. If this walk ends in a distinguished point
present in the database, the DLP is solved. If the walk continues for more than
2t+1 steps (perhaps because it is in a cycle) or reaches a distinguished point not
present in the database, the attack starts again from a new pair (a, b).

The parameter t is critical for RAM cost here, whereas it did not significantly
affect RAM cost in Section 3.1. Choose t as d(log2 `)/3e. One can see from the
following analysis that significantly smaller values of t are much less effective,
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and that significantly larger values of t are much more expensive without being
much more effective.

Construct the database to have exactly 2t distinct triples, each obtained from
a walk of length at least 2t, representing a total of at least 22t (and almost
certainly O(22t)) points. Achieving this requires searching for starting points
in the precomputation (and optionally also varying the steps Sj and the hash
function) as follows. A point that enters a cycle without reaching a distinguished
point is discarded. A point that reaches a distinguished point in fewer than
2t steps is discarded; each point survives this with probability approximately
(1 − 1/2t)2

t ≈ 1/e. A point that produces a distinguished point already in the
database is discarded; to see that a point survives this with essentially constant
probability (independent of `), observe that each new step has chance 2−t of
reaching a distinguished point, and chance O(22t/`) = O(2−t) of reaching one of
the previous O(22t) points represented by the database. Computer experiments
that we reported in [22], as a followup to this paper, show that all theO constants
here are reasonably close to 1.

Now consider a walk starting from aP + bQ. This walk has chance approxi-
mately 1/e of continuing for at least 2t steps. If this occurs then those 2t steps

have chance approximately 1−(1−22t/`)2
t ≈ 1−exp(−23t/`) ≥ 1−1/e of reach-

ing one of the 22t points in the precomputed walks that were within 2t of the
distinguished points in the database. If this occurs then the walk is guaranteed
to reach a distinguished point in the database within a total of 2t+1 steps. The
algorithm thus succeeds (in this way) with probability at least (1−1/e)/e ≈ 0.23.
This is actually an underestimate, since the algorithm can also succeed with an
early distinguished point or a late collision.

To summarize, the attack uses a database of approximately 3
√
` distinguished

points; one run of the attack uses approximately 2 3
√
` curve additions and suc-

ceeds with considerable probability. The overall attack cost in the RAM metric
is a small constant times 3

√
`. The security of NIST P-256 in this metric has thus

dropped to approximately 286. Note that the precomputation here is on the scale
of 2170, much larger than the precomputation in Section 2.3 but much smaller
than the precomputation in Section 2.2.

In the NAND metric it is simplest to run each walk for exactly 2t+1 steps,
keeping track of the first distinguished point found by that walk and then com-
paring that distinguished point to the 2t points in the database. The overall
attack cost is still on the scale of 3

√
`.

In the AT metric the attack cost is proportional to 3
√
`
2
, larger than the

standard
√
`. In this metric one does better by running many walks in parallel:

if Z points are precomputed, one should run approximately Z walks in parallel
with inputs depending on Q. The precomputation then covers 2tZ points, and
the computations involving Q cover approximately 2tZ points, leading to a high
probability of success when 2tZ reaches

√
`. The AT cost is also 2tZ. This attack

has the same cost as the standard Pollard rho method, except for small constants;
there is no benefit in the precomputations.
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3.3. Comparison. We summarize the insecurity established by the best attacks
presented above. Achieving success probability p costs

– RAM metric: ≈(p`)1/3.
– NAND metric: same.
– AT metric: ≈(p`)1/2.

Figure G.2 graphs these approximations.

3.4. Related work. Kuhn and Struik in [58] and Hitchcock, Montague, Carter,
and Dawson in [46] considered the problem of solving multiple DLPs at once.
They obtain a speedup of

√
U per DLP for solving U DLPs at once. Their

algorithm reuses the distinguished points found in the attack on Q1 to attack Q2,
reuses the distinguished points found for Q1 and Q2 to attack Q3, etc. However,
their results do not seem to imply our 3

√
` result: they do not change the average

walk length and distinguished-point probabilities, and they explicitly limit U to
c 4
√
` with c < 1. See also the recent paper [61] by Lee, Cheon, and Hong, which

considered solving DLPs with massive precomputation for trapdoor DL-groups.
None of these papers noticed any implications for provable security, and none of
them went beyond the RAM metric.

Our followup paper [22] experimentally verified the algorithm stated above,
improved it to 1.77 · 3

√
` additions using 3

√
` distinguished points, extended it

to DLPs in intervals (using slightly more additions), and showed constructive
applications in various protocols.

4 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signa-
ture system. The attack computes discrete logarithms in the DSA-3072 group,
completely breaking the signature system.

DSA uses the unique order-q subgroup of the multiplicative group F∗p, where
p and q are primes with q (and not q2) dividing p− 1. DSA-3072 uses a 3072-bit
prime p and is claimed to achieve 2128 security. The standard parameter choices
for DSA-3072 specify a 256-bit prime q, allowing the 286 attack explained in
Section 3, but this section assumes that the user has stopped this attack by
increasing q to 384 bits (at a performance penalty).

4.1. The attack. Take y = 2110, and precompute logg x
(p−1)/q for every prime

number x ≤ y, where g is the specified subgroup generator. There are almost
exactly y/ log y ≈ 2103.75 such primes, and each logg x

(p−1)/q fits into 48 bytes,
for a total of 2109.33 bytes.

To compute logg h, first try to write h as a quotient h1/h2 in F∗p with h2 ∈{
1, 2, 3, . . . , 21535

}
, h1 ∈

{
−21535, . . . , 0, 1, . . . , 21535

}
, and gcd{h1, h2} = 1; and

then try to factor h1, h2 into primes ≤ y. If this succeeds then logg h
(p−1)/q is

a known combination of known quantities logg x
(p−1)/q, revealing logg h. If this

fails, try again with hg, hg2, etc.
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One can write h as h1/h2 with high probability, approximately (6/π2)23071/p,
since there are approximately (6/π2)23071 pairs (h1, h2) and two distinct such
pairs have distinct quotients. Finding the decomposition of h as h1/h2 is a very
fast extended-Euclid computation.

The probability that h1 is y-smooth (i.e., has no prime divisors larger than
y) is very close to u−u ≈ 2−53.06 where u = 1535/110. The same is true for h2;
overall the attack requires between 2107.85 and 2108.85 iterations, depending on
23071/p. Batch trial division, analyzed in detail in Section 5, finds the y-smooth
values among many choices of h1 at very low cost in both the RAM metric and
the NAND metric. This attack is much slower in the AT metric.

4.2. Previous work. Standard attacks against DSA-3072 do not rely on pre-
computation and cost more than 2128 in the RAM metric. These attacks have
two stages: the first stage computes discrete logarithms of all primes ≤ y, and
the second stage computes logg h. Normally y is chosen to minimize the cost of
the first stage, whereas we replace the first stage by precomputation and choose
y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for
the second stage; see, e.g., the “special-q descent” algorithms in [51] and [32].
The gap between known algorithms and existing algorithms is thus even larger
than indicated in this section. We expect that reoptimizing these algorithms
to minimize the cost of the second stage will produce even better results. We
emphasize, however, that none of the algorithms perform well in the AT metric.

5 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack com-
pletely breaks RSA-3072, factoring any given 3072-bit public key into its prime
factors, so it also breaks protocols such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key
size, and analyzing the asymptotic cost exponents of the generalized attack. It
then analyzes the cost more precisely for 3072-bit keys.

5.1. NFS with precomputation. This attack is a variant of NFS, the standard
attack against RSA. For simplicity this description omits several NFS optimiza-
tions. See [30] for an introduction to NFS.

The attack is determined by four parameters: a “polynomial degree” d; a
“radix” m; a “height bound” H; and a “smoothness bound” y. Each of these pa-
rameters is a positive integer. The attack also includes a precomputed “factory”

F =

{
(a, b) ∈ Z× Z :

−H ≤ a ≤ H; 0 < b ≤ H;
gcd{a, b} = 1; and a− bm is y-smooth

}
.

The standard estimate (see [30]) is that F has (12/π2)H2/uu elements where
u = (logHm)/ log y. This estimate combines three approximations: first, there
are about 12H2/π2 pairs (a, b) ∈ Z×Z such that −H ≤ a ≤ H, 0 < b ≤ H, and
gcd{a, b} = 1; second, a− bm has approximately the same smoothness chance as
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a uniform random integer in [1, Hm]; third, the latter chance is approximately
1/uu.

The integers N factored by the attack will be between md and md+1. For
example, with parameters m = 2256, d = 7, H = 255, and y = 250, the attack
factors integers between 21792 and 22048. Parameter selection is analyzed later
in more detail. The following three paragraphs explain how the attack handles
N .

Write N in radix m: i.e., find n0, n1, . . . , nd ∈ {0, 1, . . . ,m− 1} such that
N = ndm

d + nd−1m
d−1 + · · ·+ n0. Compute the “set of relations”

R =
{

(a, b) ∈ F : nda
d + nd−1a

d−1b+ · · ·+ n0b
d is y-smooth

}
using Bernstein’s batch trial-division algorithm [19]. The standard estimate is
that R has (12/π2)H2/(uuvv) elements where v = (log((d+ 1)Hdm))/ log y.

We pause the attack description to emphasize two important ways that this
attack differs from conventional NFS: first, conventional NFS chooses m as a
function of N , while this attack does not; second, conventional NFS computes R
by sieving all pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H to detect smoothness
of a − bm and nda

d + · · · + n0b
d simultaneously, while this attack computes R

by batch trial division of nda
d + · · ·+n0b

d for the limited set of pairs (a, b) ∈ F .
The rest of the attack proceeds in the same way as conventional NFS. There

is a standard construction of a sparse vector modulo 2 for each (a, b) ∈ R,
and there is a standard way to convert several linear dependencies between the
vectors into several congruences of squares modulo N , producing the complete
prime factorization of N ; see [30] for details. The number of components of each
vector is approximately 2y/ log y, and standard sparse-matrix techniques find
linear dependencies using about 4y/ log y simple operations on dense vectors of
length 2y/ log y. If the number of elements of R is larger than the number of
components of each vector then linear dependencies are guaranteed to exist.

5.2. Asymptotic exponents. Write L = exp((logN)1/3(log logN)2/3). For the
RAM metric it is best to choose

d ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

logm ∈ (0.9051 . . .+ o(1))(logN)2/3(log logN)1/3,

log y ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL,

logH ∈ (1.0034 . . .+ o(1))(logN)1/3(log logN)2/3 = (1.0034 . . .+ o(1)) logL.

so that

u ∈ (1.1047 . . .+ o(1))(logN)1/3(log logN)−1/3,

u log u ∈ (0.3682 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.3682 . . .+ o(1)) logL,

d logH ∈ (1.1085 . . .+ o(1))(logN)2/3(log logN)1/3,

v ∈ (2.4578 . . .+ o(1))(logN)1/3(log logN)−1/3,

v log v ∈ (0.8193 . . .+ o(1))(logN)1/3(log logN)2/3 = (0.8193 . . .+ o(1)) logL.
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Out of the L2.0068...+o(1) pairs (a, b) with −H ≤ a ≤ H and 0 < b ≤ H, there
are L1.6385...+o(1) pairs in the factory F , and L0.8193...+o(1) relations in R, just
enough to produce linear dependencies if the o(1) terms are chosen appropriately.
Linear algebra uses y2+o(1) = L1.6385...+o(1) bit operations.

The total RAM cost of this factorization algorithm is thus L1.6385...+o(1). For
comparison, factorization is normally claimed to cost L1.9018...+o(1) (in the RAM
metric) with state-of-the-art variants of NFS. Similar comments apply to the
NAND metric.

This algorithm runs into trouble in the AT metric. The algorithm needs space
to store all the elements of F , and can compute R in time Lo(1) using a chip of
that size (applying ECM to each input in parallel rather than using batch trial
division), but even the most heavily parallelized sparse-matrix techniques need
much more than Lo(1) time, raising the AT cost of the algorithm far above the
size of F . A quantitative analysis shows that one obtains a better cost exponent
by skipping the precomputation of F and instead computing the elements of F
one by one on a smaller circuit, for AT cost L1.9760...+o(1).

5.3. RAM cost for RSA-3072. This attack breaks RSA-3072 with RAM
cost considerably below the 2128 security level usually claimed for RSA-3072.
Of course, justifying this estimate requires replacing the above o(1) terms with
more precise cost analyses.

For concreteness, assume that the RAM supports 128-bit pointers, unit-cost
256-bit vector operations, and unit-cost 256-bit floating-point multiplications.
As justification for these assumptions, observe that real computers ten years ago
supported 32-bit pointers, unit-cost 64-bit vector operations, and unit-cost 64-
bit floating-point multiplications; that the RAM model requires operations to
scale logarithmically with the machine size; and that previous NFS cost analyses
implicitly make similar assumptions.

Take m = 2384, d = 7, H = 262 +261 +257, and y = 266 +265. There are about
12H2/π2 ≈ 2125.51 pairs (a, b) with −H ≤ a ≤ H, 0 < b ≤ H, and gcd{a, b} = 1,
and the integers a − bm have smoothness chance approximately u−u ≈ 2−18.42

where u = (logHm)/ log y ≈ 6.707, so there are about 2107.09 pairs in the factory
F . Each pair in F is small, easily encoded as just 16 bytes.

The quantities nda
d + nd−1a

d−1b+ · · ·+ n0b
d are bounded by (d+ 1)mHd ≈

2825.3. If they were uniformly distributed up to this bound then they would
have smoothness chance approximately v−v ≈ 2−45.01 where v = (log((d +
1)mHd))/ log y ≈ 12.395, so there would be approximately (12H2/π2)u−uv−v ≈
262.08 relations, safely above 2y/ log y ≈ 262.06. The quantities nda

d+nd−1a
d−1b+

· · ·+n0bd are actually biased towards smaller values and thus have larger smooth-
ness chance, but this refinement is unnecessary here.

Batch trial division checks smoothness of 258 of these quantities simultane-
ously; here 258 is chosen so that the product of those quantities is larger (about
267.69 bits) than the product of all the primes ≤ y (about 267.11 bits). The main
steps in batch trial division are computing a product tree of these quantities and
then computing a scaled remainder tree. Bernstein’s cost analysis in [20, Section
3] shows that the overall cost of these two steps, for T inputs having a B-bit
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product, is approximately (5/6) log2 T times the cost of a single multiplication
of two (B/2)-bit integers. For us T = 258 and B ≈ 267.69, and the cost of batch
trial division is approximately 25.59 times the cost of multiplying two (B/2)-bit
integers; the total cost of smoothness detection for all (a, b) ∈ F is approximately
254.68 times the cost of multiplying two (B/2)-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing
each (B/2)-bit input into B/(2w) words for some word size w ∈ Ω(log2B) and
then performing three real floating-point FFTs of length B/w. Each FFT uses
approximately (17/9)(B/w) log2(B/w) arithmetic operations (additions, sub-
tractions, and multiplications) on words of slightly more than 2w bits, for a
total of (17/3)(B/w) log2(B/w) arithmetic operations. A classic observation of
Schönhage [82] is that the RAM metric allows constant-time multiplication of
Θ(log2B)-bit integers in this context even if the machine model is not assumed
to be equipped with a multiplier, since one can afford to build large multipli-
cation tables; but it is simpler to take advantage of the hypothesized 256-bit
multiplier, which comfortably allows w = 69 and B/w < 261 + 260, for a total
multiplication cost of 270.03. Computing R then costs approximately 2124.71.

Linear algebra involves 263.06 simple operations on vectors of length 262.06.
Each operation produces each output bit by xoring together a small number of
input bits, on average fewer than 32 bits. A standard block-Wiedemann compu-
tation merges 256 xors of bits into a single 256-bit xor with negligible overhead,
for a total linear-algebra cost of 2122.12. All other steps in the algorithm have
negligible cost, so the final factorization cost is 2124.93.

5.4. Previous work. There are two frequently quoted cost exponents for NFS
without precomputation. Buhler, Lenstra, and Pomerance in [30] obtained RAM
cost L1.9229...+o(1). Coppersmith in [33] introduced a “multiple number fields”
tweak and obtained RAM cost L1.9018...+o(1).

Coppersmith also introduced NFS with precomputation in [33], using ECM
for smoothness detection. Coppersmith called his algorithm a “factorization fac-
tory”, emphasizing the distinction between precomputation time (building the
factory) and computation time (running the factory). Coppersmith computed
the same RAM exponent 1.6385 . . . shown above for the cost of one factorization
using the factory.

We save a subexponential factor in the RAM cost of Coppersmith’s algorithm
by switching from ECM to batch trial division. This is not visible in the asymp-
totic exponent 1.6385 . . . but is important for RSA-3072. Our concrete analysis
of RSA-3072 security is new, and as far as we know is the first concrete analysis
of Coppersmith’s algorithm.

Bernstein in [18] obtained AT exponent 1.9760 . . . for NFS without precom-
putation, and emphasized the gap between this exponent and the RAM exponent
1.9018 . . .. Our AT analysis of NFS with precomputation, and in particular our
conclusion that this precomputation increases the AT cost of NFS, appears to
be new.
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