
Fully Homomorphic Message Authenticators

Rosario Gennaro1 ? Daniel Wichs2 ??

1 City College, CUNY
2 Northeastern University

Abstract. We define and construct a new primitive called a fully homo-
morphic message authenticator. With such scheme, anybody can perform
arbitrary computations over authenticated data and produce a short tag
that authenticates the result of the computation (without knowing the
secret key). This tag can be verified using the secret key to ensure that
the claimed result is indeed the correct output of the specified computa-
tion over previously authenticated data (without knowing the underlying
data). For example, Alice can upload authenticated data to “the cloud”,
which then performs some specified computations over this data and
sends the output to Bob, along with a short tag that convinces Bob of
correctness. Alice and Bob only share a secret key, and Bob never needs
to know Alice’s underlying data. Our construction relies on fully homo-
morphic encryption to build fully homomorphic message authenticators.

1 Introduction

The rise of the cloud computing paradigm requires that users can securely out-
source their data to a remote service provider while allowing it to reliably per-
form computations over the data. The recent ground-breaking development of
fully homomorphic encryption [24] allows us to maintain confidentiality/privacy
of outsourced data in this setting. In this work, we look at the analogous but
orthogonal question of providing integrity/authenticity for computations over
outsourced data. In particular, if a remote server claims that the execution of
some program P over the user’s outsourced data results in an output y, how can
the user be sure that this is indeed the case?

More generally, we can consider a group of mutually-trusting users that share
a secret key – each user can authenticate various data items at various times
(without keeping state) and upload the authenticated data to an untrusted cloud.
The cloud should be able to perform a joint computation over various data of
several users and convince any user in the group of the validity of the result.

Toward this goal, we define and instantiate a new primitive, called a fully
homomorphic message authenticator. This primitive can be seen as a symmetric-
key version of fully homomorphic signatures, which were defined by Boneh and

? rosario@cs.ccny.cuny.edu. Work done while at the IBM Research, T.J.Watson.
?? wichs@ccs.neu.edu. Work done while at IBM Research, T.J.Watson.

Freeman [10], but whose construction remains an open problem. We will re-
turn to survey the related work on partially homomorphic signatures and au-
thenticators, as well as related work on delegating memory and computation, in
Section 1.3. First, we describe our notion of fully homomorphic message authen-
ticators, which will be the focus of this work.

1.1 What are Homomorphic Message Authenticators?

Simplified Description. In a homomorphic message-authenticator scheme,
Alice can authenticate some large data D using her secret key sk. Later, any-
body can homomorphically execute an arbitrary program P over the authenti-
cated data to produce a short tag ψ (without knowing sk), which certifies the
value y = P(D) as the output of P. It is important that ψ does not simply au-
thenticate y out of context; it only certifies y as the output of a specific program
P. Another user Bob, who shares the secret key sk with Alice, can verify the
triple (y,P, ψ) to ensure that y is indeed the output of the program P evaluated
on Alice’s previously authenticated data D (without knowing D). The tag ψ
should be succinct, meaning that its size is independent of the size of the data
D or the complexity of the program P. In other words, homomorphic message
authenticators allow anyone to certify the output of a complex computation over
a large authenticated data with only a short tag.

Labeled Data and Programs. The above high-level description considers a
restricted scenario where a single user Alice authenticates a single large data D
in one shot. We actually consider a more general setting where many users, who
share a secret key, can authenticate various data-items (say, many different files)
at different times without keeping any local or joint state. In this setting, we
need to establish some syntax for specifying which data is being authenticated
and which data a program P should be evaluated on. For this purpose, we rely
on the notion of labeled data and programs.

Whenever the user wants to authenticate some data-item D, she chooses a
label τ for it, and the authentication algorithm authenticates the data D with
respect to the label τ . For example, the label τ could be a file name. For the
greatest level of granularity, we will assume that the user authenticates indi-
vidual bits of data separately. Each bit b is authenticated with respect to its
own label τ via a secretly-keyed authentication algorithm σ ← Authsk(b, τ). For
example, to authenticate a long file named “salaries” containing the data-bits
D = (b1, . . . , bt), the user can create separate labels τi =(“salaries”, i) to denote
the ith bit of the file, and then authenticate each bit bi of the file under the label
τi. Our scheme is oblivious to how the labels for each bit are chosen and whether
they have any meaningful semantics.

Correspondingly, we consider labeled programs P, where each input bit of the
program has an associated label τi indicating which data it should be evaluated
on. For example, a labeled-program P meant to compute the median of the
“salaries” data would have its input bits labeled by τi =(“salaries”, i). In general,
the description of the labeled program P could be as long as, or even longer than,
the input data itself. However, as in the above example, we envision the typical

use-case to be one where P has some succinct description, such as computing
the “median of the salaries data”. We note that a labeled program can compute
over data authenticated by different users at different times, as long as it was
authenticated with the same shared secret key,

Homomorphic authenticators allow us to certify the output of a labeled pro-
gram, given authentication tags for correspondingly labeled input data. In partic-
ular, there is a public homomorphic evaluation algorithm ψ = Eval(P, σ1, . . . , σt)
that takes as input tags σi authenticating some data-bits bi with respect to some
labels τi, and a labeled program P with matching input labels τ1, . . . , τt. It out-
puts a tag ψ that certifies the value y = P(b1, . . . , bt) as the correct output of
the program P. The verification algorithm Versk(y,P, ψ) uses the secret key sk
to verify that y is indeed the output of the labeled program P on previously
authenticated labeled input-data, without needing to know the original data.

Composition. Our homomorphic authenticators are also composable so that
we can incrementally combine authenticated outputs of partial computations
to derive an authenticated output of a larger computation. In particular, if the
tags ψ1, . . . , ψt authenticate some bits b1, . . . , bt as the outputs of some labeled
programs P1, . . . ,Pt respectively, then ψ∗ = Eval(P∗, ψ1, . . . , ψt) should authen-
ticate the bit b∗ = P∗(b1, . . . , bt) as the output of the composed program, which
first evaluates P1, . . . ,Pt on the appropriately labeled authenticated data, and
then runs P∗ on the outputs.

Succinct Tags vs. Efficient Verification. The main requirement that makes
our definition of homomorphic authenticators interesting is that the tags should
be succinct. Otherwise, there is a trivial solution where we can authenticate
the output of a computation P by simply providing all of its input bits and
their authentication tags. The succinctness requirement ensures that we can
certify the output of a computation P over authenticated data with much smaller
communication than that of simply transmitting the input data.3 Therefore, this
primitive is especially useful when verifying computations that read a lot of input
data but have a short output (e.g., computing the median in a large database).

However, we note that the verification algorithm in a homomorphic authen-
ticator schemes is allowed to have a large computational complexity, propor-
tional to the complexity of the computation P being verified. Therefore, al-
though homomorphic authenticators allow us to save on communication, they
do not necessarily save on the computational complexity of verifying computa-
tions over outsourced data. We believe that communication-efficient solutions
are already interesting, and may be useful, even without the additional con-
straint of computational efficiency. In Section 4, we explore how to combine
our communication-efficient homomorphic authenticators with techniques from
delegating computation to also achieve computationally efficient verification.

3 Note that we do not count the cost of transmitting the labeled-program P itself.
As a previous note explains, we envision that in the typical use-case such programs
should have a succinct description.

1.2 Overview of Our Construction

Our construction of fully homomorphic authenticators relies on the use of fully
homomorphic encryption (FHE). Let n denote the security parameter, and define

[n]
def
= {1, . . . , n}. The secret key of the authenticator consists of: a random veri-

fication set S ⊆ [n] of size |S| = n/2, a key-pair (pk, sk) for a fully homomorphic
encryption (FHE) scheme and a pseudo-random function (PRF) fK(·).

To authenticate a bit b under a label τ , Alice creates n ciphertexts c1, . . . , cn
as follows. For i ∈ [n] \ S, she chooses the ciphertexts ci ← Encpk(b) as random
encryptions of the actual bit b being authenticated. For i ∈ S, she computes ci =
Encpk(0; fK((i, τ))) as pseudorandom encryptions of 0, where the random coins
are derived using the PRF. Notice that for the indices i ∈ S in the verification
set, the pseudorandom ciphertexts ci can be easily re-computed from Alice’s
secret key and the label τ alone, without knowing the data bit b. Alice outputs
the authentication tag σ = (c1, . . . , cn), consisting of the n ciphertexts.

Given some program P with t input-labels and t authentication tags {σj =
(c1,j , . . . , cn,j)}j∈[t] for the correspondingly labeled data, we can homomorphi-
cally derive an authentication tag ψ = (c∗1, . . . , c

∗
n) for the output by setting

c∗i = Eval(P, ci,1, . . . , ci,t), where Eval is the homomorphic evaluation of the FHE
scheme. In other words, for each position i ∈ [n], we perform a homomorphic
evaluations of the program P over the t FHE ciphertexts that lie in position
i. We assume (without loss of generality) that the evaluation procedure for the
FHE scheme is deterministic so that the results are reproducible.

Alice can verify the triple (y,P, ψ), where the tag ψ = (ĉ1, . . . , ĉn) is supposed
to certify that y is the output of the labeled program P. Let τ1, . . . , τt be the
input labels of P. For the indices i ∈ S in the verification set, Alice can re-
compute the pseudo-random input ciphertexts {ci,j = Encpk(0; fK((i, τj)))}j∈[t]
using the PRF, without knowing the actual input bits. She then computes c∗i =
Eval(P, ci,1, . . . , ci,t) and checks that the ciphertexts in the tag ψ were computed

correctly with ĉi
?
= c∗i for indices i ∈ S. 4 If this is the case, and all of the other

ciphertexts ĉi for i ∈ [n] \ S decrypt to the claimed bit y, then Alice accepts.

Intuitively, the only way that an attacker can lie about the output of some
program P is by producing a tag ψ = (ĉ1, . . . , ĉt) where the ciphertexts ĉi for
indices in the verification set i ∈ S are computed correctly but for i ∈ [n] \ S
they are all modified so as to encrypt the wrong bit. But this is impossible
since the security of the FHE should ensure that the attacker cannot distinguish
encryptions of 0 from those of the authenticated bits, and hence cannot learn
anything about the set S. In particular, the FHE hides the difference between
data-independent pseudorandom ciphertexts ci : i ∈ S, which allow Alice to
check that the computation was performed correctly, and data-containing ci-
phertexts ci : i ∈ [n]\S, which allow Alice to check that the output bit y is the
correct one. Note that the authentication tags ψ in our scheme always consist
of n (= security parameter) ciphertexts, no matter how many inputs the pro-

4 In this step, Alice has to perform work comparable to that of computing P.

gram P takes and what its complexity is. Therefore, we satisfy the succinctness
requirement.

We remark that several recent schemes for delegating computation [21, 16, 2]
(see Section 1.3 on related work) also use FHE in a similar manner to check
that a computation is performed correctly by a remote server. In particular,
the work of Chung, Kalai and Vadhan [16] relies on a similar idea, where the
output of the homomorphic evaluation for some “data-independent ciphertexts”
is known in advance and used to check that the computation was done correctly
for the relevant “data-containing” ciphertexts. However, in all these previous
works, the technique is used to verify computations over a short known input,
whereas in our case we use it to verify computations over unknown authenticated
data. The main novelty in our use of the technique is to notice that the “data-
independent ciphertexts” can be made pseudorandom, so that they can be re-
derived in the future given only a short secret PRF key without needing to
sacrifice any significant storage.

Security & Verification Queries. We show that our construction is secure
in the setting where the attacker can adaptively make arbitrarily many authen-
tication queries for various labels, but cannot make verification queries to test
if a maliciously constructed tag verifies correctly. In practice, this means that
the user needs to abort and completely stop using the scheme whenever she gets
the first tag that doesn’t verify correctly. It is easy to allow for some fixed a-
priori bounded number of verification queries q, just by increasing the number
of ciphertexts contained in an authentication tag from n to n+ q.

The difficulty of allowing arbitrarily many verification queries also comes up
in most prior schemes for delegating computation in the “pre-processing” model
[21, 16, 2] (see Section 1.3 on related work), and remains an important open
problem in both areas.

Fast Verification. One of the limitations of our solution above is that the ver-
ification algorithm is no more efficient than running the computation P. There-
fore, although it saves tremendously on the communication complexity of verify-
ing computations over outsourced data, it does not save on user’s computational
complexity. In Section 4, we explore the option of using schemes for delegating
computation to also offload the computational cost of the verification procedure
to the remote server. As one of our contributions, we show how to achieve fully
homomorphic MACs with fast verification using our initial construction and suc-
cinct non-interactive arguments for polynomial-time computation: P-SNARGs.
In contrast, a simple solution that bypasses fully-homomorphic MACs would re-
quire succinct non-interactive arguments of knowledge for all non-deterministic
polynomial-time computation: NP-SNARKs.

1.3 Related work

Homomorphic Signatures and MACs. Many prior works consider the
question of homomorphic message authentication (private verification) and sig-
natures (public verification) for restricted homomorphisms, and almost exclu-

sively for linear functions. Perhaps the first work to propose this problem is that
of Johnson et al. [29]. Since then, many works have considered this notion in the
context of network coding, yielding a long line of positive results [1, 9, 23, 10, 5,
11, 15, 20]. Another line of works considered this notion in the context of proofs
of data possession and retrievability [3, 33, 18, 4].

The only work that considers a larger class of homomorphisms beyond linear
functions is that of Boneh and Freeman [10], who show how to get homomorphic
signatures for bounded (constant) degree polynomials. In that work, they also
present a general definition along the same lines as the definition we use in
this work, and pose the question of constructing fully homomorphic signatures
for arbitrary functions.5 Although the question of fully homomorphic publicly
verifiable signatures under standard assumptions still remains open, our work
provides the first positive result for the case of private verification.

Succinct Arguments of Knowledge. One method that would allow us to
construct fully homomorphic (publicly verifiable) signatures is to rely on CS-
Proofs [30] or, more generally, any succinct non-interactive argument of knowl-
edge for all of NP (NP-SNARK) [7]. This primitive allows us to create a short
“argument” π for any NP statement, to prove “knowledge” of the corresponding
witness. The length of π is independent of the statement/witness size, and the
complexity of verifying π only depends on the size size of the statement.

Using SNARKs, we can authenticate the output y of a labeled program P,
by creating a short argument π that proves the knowledge of some “labeled
input data D along with valid signatures authenticating D under the appropriate
labels, such that P(D) = y”. Since this is an argument of knowledge, a forged
signature for the output of some program P would allow us to extract out a forged
signature for the underlying input data, breaking the security of signatures.

Unfortunately, constructing succinct non-interactive arguments for NP is
known to require the use of non-standard assumptions [25]. Current construc-
tions either rely on the random-oracle model [30] or on various “knowledge”
assumptions (see, e.g., [28, 7, 8, 22]).

Delegating Computation. Several prior works consider the problem of dele-
gating computation to a remote server while maintaining the ability to efficiently
verify the result [27, 21, 16, 2, 6, 31]. In this scenario, the server needs to convince
the user that P(x) = y, where the user knows the program P, the input x and
the output y, but does not want to do the work of computing P(x). In contrast,
in our scenario the verifier only knows P, y, but does not know the previously
authenticated inputs that P should have been executed on. On the other hand,
we are not trying to minimize work, just communication.

Despite these differences, some of the results on delegating computation in
the “pre-processing” model [21, 16, 2], can also be (re-)interpreted for our setting.
In this model, the user “pre-processes” a circuit C and stores some value σ on

5 See [10, 20] for an explanation of how this definition generalizes that of prior works
on network coding.

the server. Later, the user can ask the server to compute C(x) for various inputs
x, and the server uses σ to derive a short and efficiently verifiable proof ψ that
certifies correctness of the computation. One caveat is that, in all these schemes,
the user first needs to send some challenge c = chall(x) to the server, and the
proof ψ is computed as a response to c.

We can apply these results to our setting of outsourced data as follows.
Consider outsourcing the “universal circuit” CD(·) that has the data D “hard-
coded”, gets as input a program P, and outputs CD(P) = P(D). Then, we can
think of the pre-processing of CD as creating an authentication tag σ for the data
D. Later, the user can take a program P, create a challenge c = chall(P), and
get back a short tag ψ that authenticates y = CD(P) = P(D).6 One advantage
of this approach is that the tag ψ can be verified efficiently, with less work than
that of computing P(D). However, there are several important disadvantages of
this approach as compared to our notion of homomorphic authenticators:

1. Interaction: Homomorphic authenticators allow anybody to evaluate a cho-
sen program P over authenticated data and non-interactively authenticate
the output. The above delegation-based schemes require a round of inter-
action; the user first creates a challenge chall(P) for the program P, and
only then can the server authenticate the output P(D) with respect to this
challenge.

2. Single Use: Homomorphic authenticators allow several users to authenticate
various labeled data “on the fly” (without any state) and verify arbitrary
computations over all of the data in the future using a fixed secret key. The
above delegation-based schemes require that a single user outsources all of
the data D in one shot, and stores some small secret state associated with
the data to verify computations over only this data in the future.

3. Bounded Size: The above delegation-based schemes require that the circuit-
size of the computations P is a-priori bounded by some fixed polynomial
chosen during authentication. Furthermore, the complexity of authentication
is proportional to this polynomial. Our fully homomorphic authenticators
have no such restriction.

4. No composition: The above delegation-based schemes does not support the
composition of several partial authenticated computations.

Memory Delegation. The work of Chung et al. [17] on memory delegation
explicitly considers the problem of outsourcing a large amount of data while
maintaining the ability to efficiently verify later computations over it. The main
advantages of memory delegation over our work are that: (I) the verification is
more efficient than the computation, (II) the data can be efficiently updated
by the user in the future, (III) it does not suffer from the verification prob-
lem. However, memory delegation suffers from many of the same disadvantaged
outlined above for delegation-based schemes. In particular, the general memory

6 Here, we assume that P has a short uniform description so that reading /transmitting
P is much more efficient than evaluating P.

delegation scheme of [17] is interactive, requiring 4 rounds of interaction during
verification. The paper also provides a non-interactive solution where the size of
the tag grows with the depth of the computation-circuit (and therefore does not
satisfy our succinctness property). Furthermore, memory delegation considers
the setting where a single user outsources a single data item D in one shot, and
store some small secret state associated with the data to verify computations over
it in the future. In particular, it does not provide a method where various users
can authenticate various (small) pieces of data independently, and verify joint
computations over all of the data in the future. Lastly, the memory-delegation
solutions do not support composition.

Follow-up work. Following our work, Catalano and Fiore [14] (Eurocrypt ’13)
give a very efficient and simple construction of homomorphic-message authenti-
cators for low-depth arithmetic circuits – in particular, the computation/verification
time and the tag size depend polynomially on the degree of the circuit, which
can be exponential in the depth of the circuit. Their construction only relies on
one-way functions. In contrast, our construction here is significantly more gen-
eral (works for any polynomial-size boolean circuit) but relies on the “heavier
machinery” of fully homomorphic encryption.

2 Definitions

2.1 Homomorphic Authenticators
Labeled Programs. We begin by defining the concept of a labeled program,
where the labels denote which data the program should be evaluated on. For-
mally, a labeled-program P = (f, τ1, . . . , τk) consists of a circuit f : {0, 1}k →
{0, 1} along with a distinct input label τi ∈ {0, 1}∗ for each input wire i ∈ [k]. 7

Given some labeled programs P1, . . . ,Pt and a circuit g : {0, 1}t → {0, 1},
we can define the composed program, denoted by P∗ = g(P1, . . . ,Pt), which
corresponds to evaluating g on the outputs of P1, . . . ,Pt. The labeled inputs of
the composed program P∗ are just all the distinct labeled inputs of P1, . . . ,Pt,
meaning that we collect all the input wires with the same label and convert them
into a single input wire.

We define the identity program with label τ as Iτ := (gid, τ) where gid is
the canonical identity circuit and τ ∈ {0, 1}∗ is some label. Notice that any
program P = (f, τ1, . . . , τk) can be written as a composition of identity programs
P = f(Iτ1 , . . . , Iτk).

Syntax. A homomorphic authenticator scheme consists of the probabilistic-
polynomial time algorithms (KeyGen, Auth, Ver, Eval) with the following syntax:

7 Although the above description of P is long (proportional to its input size and
complexity), in many scenarios it is possible that P may also have an alternative
succinct description. For example, P may compute the median value in a large file
called “salaries” and its input labels are simply τi = (“salaries”, i) for each bit i.
Therefore, although we are concerned with succinctness, we will ignore the cost of
communicating the program P from future consideration.

– KeyGen(1n) → (evk, sk): Outputs the secret key sk and an evaluation key
evk.

– Authsk(b, τ)→ σ: Creates a tag σ that authenticates the bit b ∈ {0, 1} under
the label τ ∈ {0, 1}∗. (Equivalently, we say that σ authenticates b as the
output of the identity program Iτ .)

– Evalevk(f,σ) → ψ: The deterministic evaluation procedure takes a vector

of tags σ = (σ1, . . . , σk) and a circuit f : {0, 1}k → {0, 1}. It outputs
a tag ψ. If each σi authenticates a bit bi as the output of some labeled-
program Pi (possibly the identity program), then ψ should authenticate b∗ =
f(b1, . . . , bk) as the output of the composed program P∗ = f(P1, . . . ,Pk).

– Versk(e,P, ψ)→ {accept, reject}: The deterministic verification procedure
uses the tag ψ to check that e ∈ {0, 1} is the output of the program P on
previously authenticated labeled data.

We require that the scheme satisfies the following properties, defined below:
authentication correctness, evaluation correctness, succinctness and authentica-
tor security.

Authentication Correctness. We require that for any b ∈ {0, 1} and any
label τ ∈ {0, 1}∗, we have:

Pr
[
Versk(b, Iτ , σ) = accept

∣∣ (evk, sk)← KeyGen(1n), σ ← Authsk(b, τ)
]

= 1

where Iτ is the identity program with label τ . In other words, the tag σ =
Authsk(b, τ) correctly authenticates b under the label τ , which is equivalent to
saying that it authenticates b as the output of the identity program Iτ .

Evaluation Correctness. Fix any (evk, sk) in the support of KeyGen(1n).
Fix any circuit g : {0, 1}t → {0, 1} and any set of program/bit/tag triples
{ (Pi, bi, ψi) }ti=1 such that Versk(bi,Pi, ψi) = accept. Set:

b∗ := g(b1, . . . , bt), P∗ := g(P1, . . . ,Pt), ψ∗ := Evalevk(g, (ψ1, . . . , ψt)).

Then we require Versk(b∗,P∗, ψ∗) = accept.
In words, assume that each tag ψi certifies that the output of the labeled

program Pi is bi. Then the tag ψ∗ certifies that b∗ is the output of the composed
program P∗. If all of the programs Pi = Iτi are identity programs, then the above
says that as long as the tags ψi authenticate bits bi under the labels τi, the tag
ψ∗ authenticates b∗ as the output of P∗ = (g, τ1, . . . , τt). Therefore, the above
definition captures the basic correctness of computing over freshly authenticated
data, as well as the composability of computing over the authenticated outputs
of prior computations.

Succinctness. We require that the tag-size is always bounded by some fixed
polynomial in the security parameter n, and is independent of the size of the
evaluated circuit or the number of inputs it takes. That is, there exists some
polynomial p(·) such that, for any (evk, sk) in the support of KeyGen(1n), the
output-size of Authsk(·, ·) and of Evalevk(·, ·) is bounded by p(n) for any choice
of their input.

Authenticator Security. Consider the following game ForgeGameA(1n) be-
tween an attacker A(1n) and a challenger:

1. The challenger chooses (evk, sk) ← KeyGen(1n) and gives evk to A. It ini-
tializes T := ∅.

2. The attackerA can adaptively submit arbitrarily many authentication queries
of the form (b, τ) to the challenger. On each such query, if there is some
(τ, ·) ∈ T (i.e. the label τ is not fresh) then the challenger ignores it. Else it
updates T := T ∪{(τ, b)}, associating the label τ with the authenticated bit
b, and replies with σ ← Authsk(b, τ).

3. Finally, the attacker outputs some forgery (e∗,P∗ = (f∗, τ∗1 , . . . , τ
∗
k), ψ∗).

The output of the game is 1 iff Versk(e∗,P∗, ψ∗) = accept and one of the
following two conditions holds:
– Type I Forgery: There is some i ∈ [k] such that the label (τ∗i , ·) does

not appear in T . (i.e., No bit was ever authenticated under the label τ∗i
involved in the forgery.)

– Type II Forgery: The set T contains tuples (τ∗1 , b1), . . . , (τ∗k , bk), for some
bits b1, . . . , bk ∈ {0, 1} such that f∗(b1, . . . , bk) 6= e∗. (i.e., The labeled
program P∗ does not output e∗ when executed on previously authenticated
labeled data b1, . . . , bk .)

We say that a homomorphic authenticator scheme is secure (without verification
queries) if, for any probabilistic polynomial-timeA, we have Pr[ForgeGameA(1n) =
1] ≤ negl(n). We can also define a stronger variant, called security with verifi-
cation queries, where we insist that the above probability holds for a modified
version of the game, in which the attacker can also adaptively make arbitrarily
many verification queries of the form (e,P, ψ), and the challenger replies with
Versk(e,P, ψ).

2.2 Homomorphic Encryption

A fully homomorphic (public-key) encryption (FHE) scheme is a quadruple of
PPT algorithms HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) defined as follows.

– HE.KeyGen(1n)→ (pk, evk, sk): Outputs a public encryption key pk, a public
evaluation key evk and a secret decryption key sk.

– HE.Encpk(b) → c: Encrypts a bit b ∈ {0, 1} under public key pk. Outputs
ciphertext c.

– HE.Decsk(c)→ b: Decrypts ciphertext c using sk to a plaintext bit b ∈ {0, 1}.
– HE.Evalevk(g, c1, . . . , ct)→ c∗: The deterministic evaluation algorithm takes

the evaluation key evk, a boolean circuit g : {0, 1}t → {0, 1}, and a set of t
ciphertexts c1, . . . , ct. It outputs the result ciphertext c∗.

An FHE should also satisfy the following properties.

Encryption Correctness. For all b ∈ {0, 1} we have:

Pr [HE.Decsk(HE.Encpk(b)) = b | (pk, evk, sk)← HE.KeyGen(1n)] = 1

Evaluation Correctness. For any (pk, evk, sk) in the support of HE.KeyGen(1n),
any ciphertexts c1, . . . , ct such that HE.Decsk(ci) = bi ∈ {0, 1}, and any circuit
g : {0, 1}t → {0, 1} we have

HE.Decsk(HE.Evalevk(g, c1, . . . , ct)) = g(b1, . . . , bt).

Succinctness. We require that the ciphertext-size is always bounded by some
fixed polynomial in the security parameter, and is independent of the size of
the evaluated circuit or the number of inputs it takes. That is, there exists some
polynomial p(·) such that, for any (pk, evk, sk) in the support of HE.KeyGen(1n),
the output-size of HE.Encpk(·) and of Evalevk(·) is bounded by p(n), for any choice
of their inputs.

Semantic Security. Lastly, an FHE should satisfy the standard notion of
semantic security for public-key encryption, where we consider the evaluation
key evk as a part of the public key. That is, for any PPT attacker A we have:

| Pr [A(1n, pk, evk, c0) = 1]− Pr [A(1n, pk, evk, c1) = 1] | ≤ negl(n)

where the probability is over (pk, evk, sk)← KeyGen(1n), {cb ← HE.Encpk(b)}b∈{0,1},
and the coins of A.

Canonical FHE. We can take any FHE scheme and make it canonical, mean-
ing that the HE.Eval procedure just evaluates the circuit recursively, level-by-level
and gate-by-gate. In particular, for any circuit g : {0, 1}k → {0, 1} taking input
bits b1, . . . , bk, if the top gate of g is h : {0, 1}t → {0, 1} and the inputs to h
are computed by sub-circuits f1(bi1,1 , . . . bi1,k1

) . . . , ft(bit,1 , . . . bit,kt
) then

HE.Evalevk(g, c1, . . . , ck) = HE.Evalevk(h, c∗1, . . . , c
∗
t)

where c∗j = HE.Evalevk(fj , cij,1 , . . . , cij,kj
) for j ∈ [t]. We also assume that, if

gid is the canonical identity circuit on one input, then HE.Evalevk(gid, c) = c.
Making the FHE scheme canonical will be important when we want to reason
about composition, since it will ensure that the evaluation procedure outputs the
exact same ciphertext when we homomorphically evaluate the entire circuit in
one shot as when we first homomorphically evaluate some sub-circuits and then
combine the results via additional independent homomorphic evaluations.

See, e.g., the works of [24, 34, 13, 12] for constructions of fully homomorphic
encryption.

3 Constructing Homomorphic Authenticators

We now describe our construction of homomorphic authenticators. Although
it closely follows our high-level description in the introduction, there are some
differences. Most notably, the simple scheme in the introduction does not ap-
propriately protect against type I forgeries. For example, it is possible that

for the function g0 which always outputs 0, the FHE scheme always outputs
HE.Evalevk(g0, c) = C0 where C0 is some fixed and known ciphertext encrypting
0. In that case, the attacker can always authenticate the output of the labeled-
program P0 = (g0, τ) for any label τ , even if he never saw any previously authen-
ticated data under the label τ . This would qualify as a type I forgery, breaking
our definition. To fix this, we add an extra component to our tags that ensures
that the attacker must have seen authentication tags for all of the underlying
input labels. We describe this component below.

Hash Tree of a Circuit. If g : {0, 1}k → {0, 1} is a circuit andH : {0, 1}∗ →
{0, 1}m is some hash function, we define the hash-tree of g, denoted gH , as a
Merkle-Tree that has the same structure as the circuit g, but replaces all internal
gates with the hash function H. More precisely, the hash-tree gH : ({0, 1}∗)k →
{0, 1}m is a function which takes as input strings νi ∈ {0, 1}∗ for each input wire
of g. For every wire w in the circuit g, we define the value of gH(ν1, . . . , νk) at
w inductively as:

– val(w) = H(νi) if w is the ith input wire of g.
– val(w) = H(val(w1), . . . , val(wt)) if w is the output wire of some gate with

input wires w1, . . . , wt.

We define the output of the function gH(ν1, . . . , νk) to be its its value at the
output wire of g.

Construction. Let HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) be a canoni-
cal fully homomorphic encryption scheme, where the encryption algorithm uses

r = r(n) = ω(log(n)) random bits. Let
{
fK : {0, 1}∗ → {0, 1}r(n)

}
K∈{0,1}n

be

a (variable-input-length) pseudo-random function PRF family. LetH be a family
of (variable-length) collision-resistant hash functions (CRHF) H : {0, 1}∗ →
{0, 1}m(n)

. We define the authenticator scheme Π = (KeyGen,Auth,Eval,Ver) as
follows:

KeyGen(1n): Choose a PRF key K ← {0, 1}n and a CRHF H ← H. Choose an
encryption key (pk, evk′, sk′) ← HE.KeyGen(1n). Select a subset S ⊆ [n] by
choosing whether to add each index i ∈ [n] to the set S independently with
probability 1

2 . Output evk = (evk′, H), sk = (pk, evk′, H, sk′,K, S).
Authsk(b, τ): Given b ∈ {0, 1} and τ ∈ {0, 1}∗ do the following:

1. Choose random coins rand1, . . . , randn by setting randi = fK((τ, i)).
Set ν := fK(τ).

2. Create n ciphertexts c1, . . . , cn as follows. For i ∈ [n] \ S, choose ci =
HE.Encpk(b; randi) as encryptions of the bit b. For i ∈ S, choose ci =
HE.Encpk(0; randi) as encryption of 0.

3. Output σ = (c1, . . . , cn, ν).
Evalevk(g,σ): Given σ = (σ1, . . . , σt), parse each σj = (c1,j , . . . , cn,j , νj).

– For each i ∈ [n], compute c∗i = HE.Evalevk′(g, ci,1, . . . , ci,t).
– Compute ν∗ = gH(ν1, . . . , νt) to be the output of the hash-tree of g

evaluated at ν1, . . . νt.

Output ψ = (c∗1, . . . , c
∗
n, ν
∗).

Versk(e,P, ψ): Parse P = (g, τ1, . . . , τt) and ψ = (c∗1, . . . , c
∗
n, ν
∗).

1. Compute ν1 := fK(τ1), . . . , νt = fK(τt) and ν′ := gH(ν1, . . . , νt). If
ν′ 6= ν∗, output reject.

2. For i ∈ S, j ∈ [t], compute randi,j := fK((τj , i)) and set ci,j :=
HE.Encpk(0; randi,j).
For each i ∈ S, evaluate c′i := HE.Evalevk′(g, ci,1, . . . , ci,t) and if c′i 6= c∗i
output reject.

3. For each i ∈ [n] \ S, decrypt ei := HE.Decsk′(c
∗
i) and if e 6= ei output

reject.
If the above doesn’t reject, output accept.

Theorem 1. If {fK} is a PRF family, H is a CRHF family and HE is a se-
mantically secure canonical FHE, then the homomorphic authenticator scheme
Π is secure without verification queries.

Proof. It is easy to verify that the authentication correctness of Π just follows
from the encryption correctness of HE, and the evaluation correctness of Π
follows from that of HE, along with the fact that HE is canonical.

We now prove the security of Π (without verification queries). Let A be some
PPT attacker and let µ(n) = Pr[ForgeGameA(1n) = 1]. We use a series of hybrid
games modifying ForgeGame to prove that µ(n) must be negligible.

Game1: We modify ForgeGame so as to replace the PRF outputs with truly
random consistent values. That is, the challenger replaces all calls to fK
needed to answer authentication queries and to check the winning condi-

tion Versk(e∗,P∗, ψ∗) ?
= accept, with calls to a completely random function

F : {0, 1}∗ → {0, 1}r(n), whose outputs it chooses efficiently “on the fly”.
By the pseudo-randomness of {fK}, we must have Pr[GameA1 (n) = 1] ≥
µ(n)− negl(n).

Game2: We now define Game2 by modifying the winning condition, so that the
attacker only wins (the game outputs 1) if the attacker outputs a valid type
(II) forgery (and the game outputs 0 on a type I forgery). Let E be the event
that attacker wins with a type I forgery in Game1. Then we claim that, under
the collision-resistance of H, we have Pr[E] = negl(n) and therefore:

Pr[GameA2 (n) = 1] ≥ Pr[GameA1 (n) = 1]− Pr[E] ≥ µ(n)− negl(n)

Assume otherwise that Pr[E] is non-negligible. Recall that the event E only
occurs when the attacker submits a forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t), ψ∗ = (c∗1, . . . , c

∗
n, ν
∗)

such that the attacker never asked any authentication query containing one
of the labels τ∗j for some j ∈ [t], and verification accepts. During the com-
putation of Versk(e∗,P∗, ψ∗), when checking that verification accepts in

Game1, the challenger chooses the value νj = F (τ∗j) ← {0, 1}r(n) freshly

at random, since the label τ∗j was never queried before. If we rewind and

re-sample ν′j ← {0, 1}
r(n)

freshly an independently at random again, then
the probability that verification accepts both times, which we denote by the
event E2, is at least Pr[E2] ≥ Pr[E]2. Let C be the event that E2 occurs
and the values νj 6= ν′j are distinct, so that Pr[C] ≥ Pr[E]2 − 2−r(n) =

Pr[E]2 − negl(n) is non-negligible. When the event C occurs then we must
have ν∗ = gH(ν1, . . . , νj , . . . , νt) = gH(ν1, . . . , ν

′
j , . . . , νt) which immediately

gives us some collision on H at some level of the hash tree gH . Therefore,

A can be used to efficiently find collisions on H
$← H with non-negligible

probability, which gives us a contradiction.
Game3: In Game3 we modify the winning condition yet again. When answering

authentication queries, the challenger now also remembers the tag σ that it
uses, storing (τ, b, σ) in T . If the attacker outputs a type II forgery

e∗,P∗ = (g, τ∗1 , . . . , τ
∗
t), ψ∗ = (c∗1, . . . , c

∗
n, ν
∗),

we modify how the challenger checks Versk(e∗,P∗, ψ∗) ?
= accept. Recall

that for a type II forgery, the tags τ∗i were previously used in authentication
queries, so that T must contain some tuples

((τ∗1 , b1, σ1 = (c1,1, . . . , cn,1, ν1)), . . . , (τ∗t , bt, σt = (c1,t, . . . , cn,t, νt)).

Let ĉi := HE.Evalevk(g, ci,1, . . . , ci,t) for i ∈ [n] be the “honest ciphertexts”
that would be included in an honestly generated tag ψ for the program P∗.
In Game3, we replace steps (2), (3) of the verification procedure as follows:

2’. For each i ∈ S: if ĉi 6= c∗i then output reject.
3’. For each i ∈ [n] \ S: if ĉi = c∗i then output reject.

Notice that step (2’) is actually the same as the original step (2) used in
Game2, since in both cases we just check the forgery ciphertexts c∗i against
the honest ciphertexts c′i = ĉi. The only difference is that previously we
re-computed c′i from scratch by re-encrypting ci,j , and now we compute ĉi
using the stored ciphertexts ci,j in T (but the values are equivalent).
Step (3’), in Game3 is different from the original step (3) in Game2. In the
original step (3), we decrypted the forgery ciphertexts for i ∈ [n] \ S and

checked that they decrypt to the claimed output e∗
?
= Decsk′(c

∗
i). Let e =

g(b1, . . . , bt) be the correct output of g on previously authenticated data. In
an accepting type II forgery, we must have e∗ 6= e but the decryption of the
“honest ciphertexts” will satisfy HE.Decsk′(ĉi) = e. So it must be the case
that c∗i 6= ĉi for all i ∈ [n] \ S for any accepting type II forgery in Game2.
Therefore, any type II forgery that’s accepting in Game2 is also accepting in
Game3 and hence: Pr[GameA3 (n) = 1] ≥ Pr[GameA2 (n) = 1] ≥ µ(n)− negl(n).

Game4: We modify Game3 so that, when answering authentication queries, the
challenger computes all of the ciphertexts ci (even for i ∈ S) as encryptions
of the correct bit b in step (2) of the authentication procedure. In particular,
the choice of S is ignored when answering authentication queries.

We claim that:

Pr[GameA4 (n) = 1] ≥ Pr[GameA3 (n) = 1]− negl(n) ≥ µ(n)− negl(n). (1)

This simply follows by the semantic security of the encryption scheme HE.
Given challenge ciphertexts which either encrypt the attacker’s bits b or 0,
we can embed these into the authentication procedures for positions i ∈ S
and either simulate Game3 or Game4. We can efficiently determine if the
output of the game is 1, since the decryption secret key sk′ is never used in
these games. Therefore, if the above didn’t hold, the attacker A would break
semantic security.

Negligible Advantage. We now claim that, information theoretically, Pr[GameA4 (n) =
1] ≤ 2−n. Together with equation (1), this shows that µ(n) ≤ 2−n+negl(n) =
negl(n), as we wanted to show.

In Game4, the choice of the set S ⊆ [n] is not used at all when answering au-
thentication queries and so we can think of the challenger as only picking the
set S during verification. For any type II forgery e∗,P∗, ψ∗ = (c∗1, . . . , c

∗
n, ν
∗),

let c′1, . . . , c
′
n be the “honest ciphertexts” that would be included in an hon-

estly generated tag ψ for the output of P∗ (see description of Game3). Let
S′ := {i ∈ [n] : c∗i = c′i} be the indices on which the forged and honest
ciphertexts match. The attacker only wins if steps (2’), (3’) of verification
pass, which only occurs if S = S′. But this only occurs with probability 2−n

over the random choice of S.

3.1 Fully Homomorphic Authenticator-Encryption

We can also extend homomorphic message authenticators to homomorphic authenticator-
encryption. Given the secret key sk, it should be possible to decrypt the correct
bit b from the tag authenticating it, but given only the evaluation key evk, the
tags should not reveal any information about the authenticated bits.

We can allow decryption generically. Take any homomorphic authenticator
scheme (KeyGen, Auth, Eval, Ver) and define VerDec(P, ψ) → {0, 1, reject} as
follows: run Ver(e,P, ψ) for both choices of e ∈ {0, 1} and, if exactly one of the
runs is accepting, return the corresponding e, else return reject.

We notice that our specific construction of homomorphic authenticators al-
ready provides chosen-plaintext-attack (CPA) security for the above authenticator-
encryption scheme. Even if the attacker gets evk and access to the authentication
oracle Authsk(·, ·), if he later sees a tag σ ← Authsk(b, τ) for a fresh label τ , he
cannot distinguish between the cases b = 0 and b = 1.

3.2 Security with Verification Queries?

The scheme presented in Section 3 only provides security without verification
queries, and it remains an interesting open problem to construct fully homomor-
phic authenticators that allow for the stronger notion of security with verification
queries. We make several observations here.

An Efficient Attack. We note that there is an efficient attack against our
basic scheme from Section 3, in the setting of security with verification queries.

The attacker gets evk and makes a single authentication query to get a tag
σ ← Authsk(1, τ), authenticating the bit b = 1 under some arbitrary label τ . We
parse σ = (c1, . . . , cn, ν).

The attacker then makes several verification queries whose aim is to learn
the secret set S ⊆ [n]. It does so as follows: for each i ∈ [n] he computes c′i by
adding an encryption of 0 to ci (or performing any homomorphic operation that
changes the ciphertext while preserving the plaintext) and sets the modified tag
σi to be the same as σ, but with ci replaced by c′i. Then, for each i ∈ [n], the
attacker makes a verification query Versk(1, Iτ , σi) to test if the modified tag σi
is valid. If the query rejects then the attacker guesses that i ∈ S and otherwise
guesses i 6∈ S. With overwhelming probability the attacker correctly recovers the
entire set S.

Now the attacker can construct a type II forgery for the identity program Iτ ,
claiming that its value is 0 (recall, that we previously authenticated b = 1 under
the label τ). To do so, the attacker takes the tag σ and, for i 6∈ S, replaces the
ciphertexts ci with fresh encryptions of 0. Let’s call the resulting modified tag
σ∗. Then it’s easy to see that (0, Iτ , σ∗) is a valid type II forgery.

Bounded Verification Queries. The above attack requires n verification
queries to break the scheme. It is relatively easy to show that the scheme is
secure against O(log(n)) verification queries. In particular, the attacker only
gets O(log(n)) bits of information about the set S, which is not enough to break
the scheme. Similarly, for any a-priori bound q, we can modify our scheme so that
the tags contain n+ q ciphertexts to get security against q verification queries.

Computation with Long Output. Our basic scheme considers homomor-
phic authentication for a program P with a 1-bit output. Of course, we can
extend the scheme to authenticate a program with longer output, by simply au-
thenticating each bit of the output separately. However, this means that the tag
is proportional to the output size of the computation. A simple trick allows us
to authenticate a long output of some program P with only a short tag which
is independent of the output size. Instead of homomorphically authenticating
the output of the program P, we just authenticate the output of a program
H(P) which first computes the output y of P and then outputs H(y) where
H is a collision-resistant hash function. Since H(P) has a short output even
when P has a long output, the resulting tag is short. Moreover, by getting the
short tag ψ computed as above and the long output y, the verifier can check
Versk(H(y), H(P), ψ) = accept to ensure that y is the output of the computa-
tion P over previously authenticated data.

4 Improving Verification Complexity

One of the main limitations of our homomorphic authenticator scheme from the
previous section is that the complexity of the verification algorithm is no better

than that of executing the program P. Therefore, although the scheme saves on
the communication complexity of transmitting the input data, it does not save on
the computation complexity of executing P. As we discussed in the introduction,
works in the area of delegating computation obtain efficient verification whose
complexity is independent (or at least much smaller than) the computation of
P, but require that the user knows the entire input x. We explore the idea
of “marrying” these two techniques by delegating the computation required to
verify the authentication tag in our homomorphic authenticator scheme.

Firstly, we notice that the verification procedure Versk(e,P, ψ) of our scheme
as described in Section 3 has special structure. The only “expensive” computa-
tion (proportional to the complexity of the the program P) is independent of
the tag ψ. In particular, this computation uses the secret key sk and the pro-
gram P to compute the output of the “hash-tree” ν′ and the ciphertexts c′i for
i ∈ S derived by evaluating P over the pseudorandom encryptions of 0. We call
this computation Expensive(P, sk). Given the outputs of Expensive(P, sk), the
rest of the verification procedure Versk(e,P, ψ) consists of simple comparisons
and is incredibly efficient (independent of the complexity of P). Therefore, we
can delegate the computation of Expensive(P, sk) prior to knowing the tag ψ
that needs to be verified. One issue is that the computation does depend on
the secret key sk, which needs to be kept private. We note that we can always
(generically) keep the input of a delegated computation private by encrypting
it under an FHE scheme. In our context, we can encrypt the value sk under an
independently chosen FHE key, and publish this ciphertext Csk in the evaluation
key. We can then delegate the computation Expensive′(P, Csk) which takes P
as an input and homomorphically executed Expensive(P, sk).

We now explore the advantages of using the above approach with some con-
crete delegation schemes.

Using SNARGs. We can use succinct non-interactive arguments for polynomial-
time computation (P-SNARGs). This primitive allows anyone to provide a short
proof π certifying the correctness of an arbitrary polynomial-time computation
y = f(x), where f is a Turing Machine. The tuple (f, y, x, π) can be verified in
some fixed polynomial-time p(|x|, |y|, |f |), that only depends on the description-
length of the machine f , but is independent of the running time of f . Given
P-SNARGs, we get a completely non-interactive delegation of computation (as-
suming the computation has a short uniform description). Therefore, using the
above approach, we get homomorphic authenticators satisfying our original non-
interactive syntax and security, but also allowing efficient verification for pro-
grams P having a short uniform description. During evaluation, we simply also
have the server compute Expensive′(P, Csk) and provide a SNARG proof π that
it was done correctly. Recall that, in the introduction, we described a significantly
simpler solution to the problem of efficiently verifiable homomorphic authentica-
tors (and signatures) using succinct non-interactive argument of knowledge for
all of NP, or NP-SNARKs. Therefore, the main advantage of the above tech-
nique is that now we only require P-SNARGs, which is a much weaker primitive.
For example, if we instantiate the random-oracle CS-Proofs of Micali [30] with

some cryptographic hash function, it may be more reasonable to assume that we
get a P-SNARG, than it is to assume that we get an NP-SNARK. In particular,
the former is a falsifiable assumption whereas the latter cannot be proved under
any falsifiable assumption (see [25]).

Using Delegation with Pre-Processing. Alternatively, we can use the del-
egation techniques in the “pre-processing” model [21, 16, 2] to outsource the com-
putation of Expensive′(P, Csk) where P is given as an input. This scheme will
have many of the same advantages and disadvantages as the approach of using
delegation with “pre-processing” directly to outsource the data (see a descrip-
tion of this latter approach in Section 1.3). In particular, in both approaches, the
verification will be efficient but the scheme will now require one round of interac-
tion, where the user needs to create a challenge chall(P) for the computation P
that she wants to verify. The main advantages of our approach, combining dele-
gation with homomorphic authenticators, over a direct delegation-based scheme
is the following. When using delegation directly, the user needs to outsource all
of the data in one shot and remember some short partial information about it;
now the user can arbitrarily authenticate fresh labeled data “on the fly” and
verify computations over all of it using a single independent secret key.

5 Conclusions

In this work we give the first solution to fully homomorphic message authentica-
tors, allowing a user to verify computations over previously authenticated data.
The authentication tag is short, independent of the size of the authenticated in-
put to the computation. Our work leaves many interesting open questions. Per-
haps the most ambitious one is to construct fully homomorphic signatures with
public verification. Less ambitiously, construct fully homomorphic authenticators
that allow an unbounded number of verification queries. Lastly, it would be in-
teresting to improve the verification efficiency of our construction. One pressing
question is to make the verification complexity independent of the complexity of
the program P while maintaining all of the advantages of our scheme (standard
assumptions, no interaction). But a less ambitious, still interesting question is
to just reduce the tag size from O(n) ciphertexts to something smaller, say a
single ciphertext.

6 Acknowledgement

We thank Craig Gentry for his valuable comments. In particular, a prior version
of this work included a speculative suggestion for achieving security with veri-
fication queries via “randomness-homomorphic encryption”; Craig pointed out
that this latter primitive cannot exist.

References

1. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network
coding. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
ACNS 09, volume 5536 of LNCS, pages 292–305. Springer, June 2009.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner,
F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP 2010, Part I, volume
6198 of LNCS, pages 152–163. Springer, July 2010.

3. G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,
and D. Song. Provable data possession at untrusted stores. In P. Ning, S. D. C. di
Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 598–609. ACM Press,
Oct. 2007.

4. G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identifi-
cation protocols. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 319–333. Springer, Dec. 2009.

5. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the
standard model. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 17–34. Springer, Mar. 2011.

6. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In Rogaway [32], pages 111–131.

7. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
Goldwasser [26], pages 326–349.

8. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. Cryptology ePrint Archive,
Report 2012/095, 2012. http://eprint.iacr.org/.

9. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In S. Jarecki and G. Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 68–87. Springer, Mar. 2009.

10. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–
168. Springer, May 2011.

11. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 1–16. Springer,
Mar. 2011.

12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Goldwasser [26], pages 309–325.

13. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In R. Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.

14. D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In
Eurocrypt, 2013.

15. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in
the standard model. In Fischlin et al. [19], pages 680–696.

16. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 483–501. Springer, Aug. 2010.

17. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In Rogaway
[32], pages 151–168.

18. Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness ampli-
fication. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127.
Springer, Mar. 2009.

19. M. Fischlin, J. Buchmann, and M. Manulis, editors. Public Key Cryptography -
PKC 2012 - 15th International Conference on Practice and Theory in Public Key
Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293
of Lecture Notes in Computer Science. Springer, 2012.

20. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In Fischlin et al. [19], pages 697–714.

21. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 465–482. Springer, Aug. 2010.

22. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. Cryptology ePrint Archive, Report 2012/215, 2012.
http://eprint.iacr.org/.

23. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of
LNCS, pages 142–160. Springer, May 2010.

24. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

25. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011.

26. S. Goldwasser, editor. Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012. ACM, 2012.

27. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: in-
teractive proofs for muggles. In R. E. Ladner and C. Dwork, editors, 40th ACM
STOC, pages 113–122. ACM Press, May 2008.

28. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In
M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Dec. 2010.

29. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature
schemes. In B. Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–
262. Springer, Feb. 2002.

30. S. Micali. CS proofs (extended abstracts). In FOCS, pages 436–453. IEEE Com-
puter Society, 1994.

31. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In
TCC, pages 222–242, 2013.

32. P. Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
volume 6841 of Lecture Notes in Computer Science. Springer, 2011.

33. H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Dec.
2008.

34. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In H. Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 24–43. Springer, May 2010.

