
Constrained Pseudorandom Functions
and Their Applications ?

Dan Boneh1 and Brent Waters2

1 Stanford University, dabo@cs.stanford.edu
2 U.T. Austin, bwaters@cs.utexas.edu

Abstract. We put forward a new notion of pseudorandom functions
(PRFs) we call constrained PRFs. In a standard PRF there is a mas-
ter key k that enables one to evaluate the function at all points in the
domain of the function. In a constrained PRF it is possible to derive
constrained keys ks from the master key k. A constrained key ks en-
ables the evaluation of the PRF at a certain subset S of the domain and
nowhere else. We present a formal framework for this concept and show
that constrained PRFs can be used to construct powerful primitives such
as identity-based key exchange and a broadcast encryption system with
optimal ciphertext size. We then construct constrained PRFs for sev-
eral natural set systems needed for these applications. We conclude with
several open problems relating to this new concept.

1 Introduction

Pseudorandom functions(PRF) [20] are a fundamental concept in modern cryp-
tography. A PRF is a function F : K × X → Y that can be computed by a
deterministic polynomial time algorithm: on input (k, x) ∈ K×X the algorithm
outputs F (k, x) ∈ Y. Note that given the key k ∈ K, the function F (k, ·) can be
efficiently evaluated at all points x ∈ X .

In this paper we put forward a new notion of PRFs we call constrained
PRFs. Consider a PRF F : K × X → Y and let k0 ∈ K be some key for F .
In a constrained PRF one can derive constrained keys ks from the master PRF
key k0. Each constrained key ks corresponds to some subset S ⊆ X and enables
one to evaluate the function F (k0, x) for x ∈ S, but at no other points in the
domain X . A constrained PRF is secure if given several constrained keys for sets
S1, . . . , Sq of the adversary’s choice, the adversary cannot distinguish the PRF
from random for points x outside these sets, namely for x 6∈ ∪qi=1Si. We give
precise definitions in Section 3.

While constrained PRFs are a natural extension of the standard concept of
PRFs, they have surprisingly powerful applications beyond what is possible with
standard PRFs. We list a few examples here and present more applications in
Section 6:

? The full version is available as Cryptology ePrint Archive, Report 2013/352.

– Left-right PRFs: Let F : K × X 2 → Y be a secure PRF. Its domain is
X × X . Now, suppose that for every w ∈ X there are two constrained keys
kw,left and kw,right. The key kw,left enables the evaluation of F (k0, ·) at the
subset of points {(w, y) : y ∈ X} (i.e. at all points where the left side is
w). The key kw,right enables the evaluation of F (k0, ·) at the subset of points
{(x,w) : x ∈ X} (i.e. at all points where the right side is w). We show
that such a constrained PRF can be used to construct an identity-based
non-interactive key exchange (ID-NIKE) system [31, 14, 27, 16].

– Bit-fixing PRFs: Let X = {0, 1}n be the domain of the PRF. For a vector
v ∈ {0, 1, ?}n let Sv ⊆ X be the set of n-bit strings that match v at all
the coordinates where v is not ’?’. We say that Sv is bit-fixed to v. For
example, the set containing all n-bit strings starting with 00 and ending in
11 is bit-fixed to v = 00? . . .?11.
Now, suppose that for every bit-fixed subset S of {0, 1}n there is a con-
strained key ks that enables the evaluation of F (k0, x) at x ∈ S and nowhere
else. We show that such a constrained PRF can be used to construct an opti-
mal secret-key3 broadcast encryption system [15]. In particular, the length of
the private key and the broadcast ciphertext are all independent of the num-
ber of users. We compare these constructions to existing broadcast systems
in Section 6.1.

– Circuit PRFs: Let F : K×{0, 1}n → Y be a secure PRF. Suppose that for
every polynomial size circuit C there is a constrained key kc that enables the
evaluation of F (k0, x) at all points x ∈ {0, 1}n such that C(x) = 1. We show
that such a constrained PRF gives rise to a non-interactive policy-based key
exchange mechanism: a group of users identified by a complex policy (en-
coded as a circuit) can non-interactively setup a secret group key that they
can then use for secure communications among group members. A related
concept was studied by Gorantla et al. [21], but the schemes presented are
interactive, analyzed in the generic group model, and only apply to policies
represented as polynomial size formulas.

In the coming sections we present constructions for all the constrained PRFs
discussed above as well as several others. Some of our constructions use bilinear
maps while others require κ-linear maps [7, 17, 11] for κ > 2. It would be quite
interesting and useful to develop constructions for these constrained PRFs from
other assumptions such as Learning With Errors (LWE) [28]. This will give new
key exchange and broadcast encryption systems from the LWE problem.

In defining security for a constrained PRF in Section 3 we allow the adver-
sary to adaptively request constrained keys of his choice. The adversary’s goal is
to distinguish the PRF from a random function at input points where he cannot
compute the PRF using the constrained keys at his disposal. The definition of
security allows the adversary to adaptively choose the challenge point at which
he tries to distinguish the PRF from random. However, to prove security of our
constructions we require that the attacker commit to the challenge point ahead

3 Secret-key broadcast encryption refers to the fact that the broadcaster’s key is known
only to the broadcaster.

of time thereby only proving a weaker notion of security called selective security.
A standard argument called complexity leveraging (see e.g. [4, Sec. 7.1]) shows
that selective security implies adaptive security via a non-polynomial time re-
duction. Therefore, to obtain adaptive security we must increase the parameters
of our schemes so that security is maintained under the complexity leveraging re-
duction. A fascinating open problem is to construct standard model constrained
PRFs that are adaptively secure under a polynomial time reduction.

Related work. Concurrently with this paper, similar notions to constrained PRFs
were recently proposed by Kiayias et al. [24] where they were called delegatable
PRFs and Boyle et al. [9] where they were called functional PRFs. Both papers
give constructions for prefix constraints discussed in Section 3.3. A related con-
cept applied to digital signatures was explored by Bellare and Fuchsbauer [1]
where it was called policy-based signatures and by Boyle et al. [9] where it was
called functional signatures.

2 Preliminaries: bilinear and κ-linear maps

Recently, Garg, Gentry, and Halevi [17] proposed candidate constructions for lev-
eled multilinear forms. Building on their work Coron, Lepoint, and Tibouchi [11]
gave a second candidate. We will present some of our constructions using the
abstraction of leveled multilinear groups.

The candidate constructions of [17, 11] implement an abstraction called graded
encodings which is similar, but slightly different from multilinear groups. In the
full version [8] we show how to map our constructions to the language of graded
encodings.

Leveled multilinear groups. We assume the existence of a group generator G,
which takes as input a security parameter 1λ and a positive integer κ to indicate
the number of levels. G(1λ, κ) outputs a sequence of groups G = (G1, . . . ,Gκ)
each of large prime order p > 2λ. In addition, we let gi be a canonical generator
of Gi that is known from the group’s description. We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi×Gj → Gi+j | i, j ≥
1; i+ j ≤ κ}. The map ei,j satisfies the following relation:

ei,j
(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each
valid i, j. When the context is obvious, we will sometimes drop the subscripts
i, j, For example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j

.
We define the κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assump-

tion as follows:

Assumption 1 (κ-Multilinear Decisional Diffie-Hellman: κ-MDDH) The
κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) problem states the following:
A challenger runs G(1λ, κ) to generate groups and generators of order p. Then
it picks random c1, . . . , cκ+1 ∈ Zp.

The assumption then states that given g = g1, g
c1 , . . . , gcκ+1 it is hard to

distinguish the element T = g
∏
j∈[1,κ+1] cj

κ ∈ Gκ from a random group element in
Gκ, with better than negligible advantage in the security parameter λ.

3 Constrained Pseudorandom Functions

We now give a precise definition of constrained Pseudorandom Functions. We
begin with the syntax of the constrained PRF primitive and then define the
security requirement.

3.1 The Constrained PRF Framework

Recall that a pseudorandom function (PRF) [20] is defined over a key space K, a
domain X , and a range Y (and these sets may be parameterized by the security
parameter λ). The PRF itself is a function F : K×X → Y that can be computed
by a deterministic polynomial time algorithm: on input (k, x) ∈ K × X the
algorithm outputs F (k, x) ∈ Y. A PRF can include a setup algorithm F.setup(1λ)
that takes a security parameter λ as input and outputs a random secret key
k ∈ K.

A PRF F : K×X → Y is said to be constrained with respect to a set system
S ⊆ 2X if there is an additional key space Kc and two additional algorithms
F.constrain and F.eval as follows:

– F.constrain(k, S) is a randomized polynomial-time algorithm that takes as
input a PRF key k ∈ K and the description of a set S ∈ S (so that S ⊆ X).
The algorithm outputs a constrained key kS ∈ Kc. This key kS enables the
evaluation of F (k, x) for all x ∈ S and no other x.

– F.eval(kS , x) is a deterministic polynomial-time algorithm (in λ) that takes
as input a constrained key ks ∈ Kc and an x ∈ X . If kS is the output of
F.constrain(k, S) for some PRF key k ∈ K then F.eval(kS , x) outputs

F.eval(kS , x) =

{
F (k, x) if x ∈ S
⊥ otherwise

where⊥ 6∈ Y. As shorthand we will occasionally write F (kS , x) for F.eval(kS , x).

Note that while in general deciding if x ∈ S may not be a poly-time problem,
our formulation of F.eval effectively avoids this complication by requiring that
all S ∈ S are poly-time decidable by the algorithm F.eval(kS , ·). This poly-time
algorithm outputs non-⊥ when x ∈ S and ⊥ otherwise thereby deciding S in
polynomial time.

Occasionally it will be convenient to treat the set system S ⊆ 2X as a fam-
ily of predicates PP =

{
p : X → {0, 1}

}
. For a predicate p ∈ PP we have

F.eval(kp, x) = F (k, x) whenever p(x) = 1 and ⊥ otherwise. In this case we say
that the PRF F is constrained with respect to the family of predicates PP.

The trivial constrained PRF. All PRFs F : K × X → Y are constrained with
respect to the set system S consisting of all singleton sets: S =

{
{x} : x ∈ X

}
.

To see why, fix some PRF key k ∈ K. Then the constrained key k{x} for the
singleton set {x} is simply k{x} = F (k, x). Given this key k{x}, clearly anyone
can evaluate F (k, x) at the point x. This shows that we may assume without loss
of generality that set systems S used to define a constrained PRF contain all
singleton sets. More generally, we may also assume that S contains all polynomial
size sets (polynomial in the security parameter λ). The constrained key kS for a
polynomial size set S ⊆ X is simply the set of values F (k, x) for all x ∈ S. This
construction fails for super-polynomial size sets since the constrained key kS for
such sets is too large.

3.2 Security of Constrained Pseudorandom Functions

Next, we define the security properties of constrained PRFs. The definition cap-
tures the property that given several constrained keys as well as several function
values at points of the attacker’s choosing, the function looks random at all
points that the attacker cannot compute himself.

Let F : K × X → Y be a constrained PRF with respect to a set system
S ⊆ 2X . We define constrained security using the following two experiments
denoted EXP(0) and EXP(1) with an adversary A. For b = 0, 1 experiment
EXP(b) proceeds as follows:

First, a random key k ∈ K is selected and two helper sets C, V ⊆ X are
initialized to ∅. The set V ⊆ X will keep track of all the points at which the
adversary can evaluate F (k, ·). The set C ⊆ X will keep track of the points
where the adversary has been challenged. The sets C and V will ensure that
the adversary cannot trivially decide whether challenge values are random
or pseudorandom. In particular, the experiments maintain the invariant that
C ∩ V = ∅.
The adversary A is then presented with three oracles as follows:

– F.eval: given x ∈ X from A, if x 6∈ C the oracle returns F (k, x) and
otherwise returns ⊥. The set V is updated as V ← V ∪ {x}.

– F.constrain: given a set S ∈ S from A, if S ∩ C = ∅ the oracle returns a
key F.constrain(k, S) and otherwise returns ⊥. The set V is updated as
V ← V ∪ S.

– Challenge: given x ∈ X from A where x 6∈ V , if b = 0 the adversary
is given F (k, x); otherwise the adversary is given a random (consistent)
y ∈ Y. The set C is updated as C ← C ∪ {x}.

Once the adversary A is done interrogating the oracles it outputs b′ ∈ {0, 1}.

For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b). We define the adversary’s
advantage as AdvPRFA,F (λ) = |Pr[W0]− Pr[W1]|.

Definition 1. The PRF F is a secure constrained PRF with respect to S if for
all probabilistic polynomial time adversaries A the function AdvPRFA,F (λ) is
negligible.

When constructing constrained functions it will be more convenient to work
with a definition that slightly restricts the adversary’s power, but is equivalent
to Definition 1. In particular, we only allow the adversary to issue a single
challenge query (but multiple queries to the other two oracles). A standard
hybrid argument shows that a PRF secure under this restricted definition is also
secure under Definition 1.

3.3 Example Predicate Families

Next we introduce some notation to capture the predicate families described in
the introduction.

Bit-fixing predicates. Let F : K×{0, 1}n → Y be a PRF. We wish to support
constrained keys kv that enable the evaluation of F (k, x) at all points x that
match a particular bit pattern. To do so define for a vector v ∈ {0, 1, ?}n the
predicate p(BF)

v : {0, 1}n → {0, 1} as

p(BF)

v (x) = 1 ⇐⇒ (vi = xi or vi =?) for all i = 1, . . . , n .

We say that F : K × {0, 1}n → Y supports bit fixing if it is constrained with
respect to the set of predicates

PBF =
{
p(BF)

v : v ∈ {0, 1, ?}
}

Prefix predicates. Prefix predicates are a special case of bit fixing predicates
in which only the prefix is fixed. More precisely, we say that F : K×{0, 1}n → Y
supports prefix fixing if it is constrained with respect to the set of predicates

PPRE =
{
p(BF)

v : v ∈ {0, 1}` ?n−`, ` ∈ [n]
}

Secure PRFs that are constrained with respect to PPRE can be constructed
directly from the GGM PRF construction [20]. For a prefix v ∈ {0, 1}` the
constrained key kv is simply the secret key in the GGM tree computed at the
internal node associated with the string v. Clearly this key enables the evalu-
ation of F (k, v‖x) for any x ∈ {0, 1}n−|v|. A similar construction, in a very
different context, was used by Fiat and Naor [15] and later by Naor, Naor, and
Lotspiech [25] to construct combinatorial broadcast encryption systems. The se-
curity proof for this GGM-based prefix constrained PRF is straight forward if
the adversary commits to his challenge point ahead of time (a.k.a selective se-
curity). Full security can be achieved, for example, using standard complexity
leveraging by guessing the adversary’s challenge point ahead of time as in [4,
Sec. 7.1].

Left/right predicates. Let F : K×X 2 → Y be a PRF. For all w ∈ X we wish
to support constrained keys kw,left that enable the evaluation of F

(
k, (x, y)

)
at all points (w, y) ∈ X 2, that is, at all points in which the left side is fixed to
w. In addition, we want constrained keys kw,right that fix the right hand side
of (x, y) to w. More precisely, for an element w ∈ X define the two predicates
p(L)
w , p(R)

w : X 2 → {0, 1} as

p(L)

w (x, y) = 1 ⇐⇒ x = w and p(R)

w (x, y) = 1 ⇐⇒ y = w

We say that F supports left/right fixing if it is constrained with respect to the
set of predicates

PLR =
{
p(L)

w , p(R)

w : w ∈ X
}

Constructing left/right constrained PRFs. We next show that secure PRFs that
are constrained with respect to PLR can be constructed straightforwardly in
the random oracle model [3]. Constructing left/right constrained PRFs without
random oracles is a far more challenging problem. We do so, and more, in the
next section.

To construct a left/right constrained PRF in the random oracle model let
e : G × G → GT be a bilinear map where G and GT are groups of prime order
p. Let H1, H2 : X → G be two hash functions that will be modeled as random
oracles. The setup algorithm will choose such a group and a random key k ∈ Zp.
Define the following PRF:

F
(
k, (x, y)

)
= e
(
H1(x), H2(y)

)k
. (1)

For (x∗, y∗) ∈ X 2 the constrained keys for the predicates p(L)

x∗ and p(R)

y∗ are

kx∗ = H1(x∗)k and ky∗ = H2(y∗)k

respectively. Clearly kx∗ is sufficient for evaluating f(k, y) = F
(
k, (x∗, y)

)
and

ky∗ is sufficient for evaluating g(k, x) = F
(
k, (x, y∗)

)
, as required. We note the

structural similarities between the above construction and the Boneh-Franklin [5]
IBE system and the Sakai-Ohgishi-Kasahara [31] non-interactive key exchange
system.

Theorem 2. The PRF F defined in Eq. (1) is a secure constrained PRF with re-
spect to PLR assuming the decision bilinear Diffie-Hellman assumption (DBDH)
holds for (G, GT , e) and the functions H1, H2 are modeled as random oracles.

Due to space constraints the proof, which uses a standard argument, is given in
the full version of the paper [8].

Circuit predicates. Let F : K× {0, 1}n → Y be a PRF. For a boolean circuit
c on n inputs we wish to support a constrained key kc that enable the evaluation
of F (k, x) at all points x ∈ X for which c(x) = 1.

Let C be the set of polynomial size circuits. We say that F supports circuit
predicates if it is constrained with respect to the set of predicates

Pcirc =
{
c : c ∈ C

}

4 A Bit-Fixing Construction

We now describe our bit-fixing constrained PRF. We will present our construc-
tion in terms of three algorithms which include a setup algorithm F.setup in ad-
dition to F.constrain and F.eval. Our construction builds on the Naor-Reingold
DDH-based PRF [26].

4.1 Construction

F.setup(1λ, 1n):
The setup algorithm takes as input the security parameter λ and the bit length,
n, of PRF inputs. The algorithm runs G(1λ, κ = n + 1) and outputs a se-
quence of groups G = (G1, . . . ,Gκ) of prime order p, with canonical generators
g1, . . . , gκ, where we let g = g1. It then chooses random exponents α ∈ Zp and
(d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Zp2 and computes Di,β = gdi,β for i ∈ [1, n] and
β ∈ {0, 1}. The PRF master key k consists of the group sequence (G1, . . . ,Gκ)
along with α, di,β and Di,β for i ∈ [1, n] and β ∈ {0, 1}.

The domain X is {0, 1}n and the range of the function is Gk.4 Letting xi
denote the i-th bit of x ∈ {0, 1}n, the keyed function is defined as

F (k, x) = g
α
∏
i∈[1,n] di,xi

κ ∈ Gκ .

F.constrain(k,v):
The constrain algorithm takes as input the master key k and a vector v ∈
{0, 1, ?}n. (Here we use the vector v to represent the set for which we want to
allow evaluation.) Let V be the set of indices i ∈ [1, n] such that vi 6=?. That is
the the indices for which the bit is fixed to 0 or 1.

The first component of the constrained key is computed as

k′v = (g1+|V |)
α
∏
i∈V di,vi

Note if V is the empty set we interpret the product to be 1. The constrained
key kv consists of k′v along with Di,β ∀i /∈ V, β ∈ {0, 1}.

F.eval(kv, x):
Again let V be the set of indices i ∈ [1, n] such that vi 6=?. If ∃i ∈ V such that
xi 6= vi the algorithm aborts. If |V | = n then all bits are fixed and the output
of the function is kv. Otherwise, using repeated application of the pairing and
Di,β ∀i /∈ V, β ∈ {0, 1} the algorithm can compute the intermediate value

T = (gn−|V |)
∏
i∈[1,n]\V (di,xi) .

Finally, it computes e(T, k′v) = g
α
∏
i∈[1,n] di,xi

κ = F (k, x).

4 In practice one can use an extractor on the output to produce a bit string.

A few notes. We note that the values Di,β = gdi,β for i ∈ [1, n] and β ∈ {0, 1}
could either be computed in setup and stored or computed as needed during
the F.constrain function. As an alternative system one might save storage by
utilizing a trusted common setup and make the group description plus the Di,β

values public. These values would be shared and only the α parameter would be
chosen per key. Our proof though will focus solely on the base system described
above.

In the full version [8] we show how to map the construction above stated
using multilinear maps to the language of graded encodings for which [17, 11]
provide a candidate instantiation.

4.2 Proof of Security

To show that our bit-fixing construction is secure we show that for an n-bit
domain, if the κ = n+1-Multilinear Decisional Diffie-Hellman assumption holds
then our construction is secure for appropriate choice of the group generator
security parameter.

As stated in Section 3 a standard hybrid argument allows us to prove security
in a definition where the attacker is allowed a single query x∗ to the challenge
oracle. Our proof will use the standard complexity leveraging technique of guess-
ing the challenge x∗ technique to prove adaptive security. The guess will cause a
loss of 1/2n factor in the reduction. An interesting problem is to prove security
with only a polynomial factors. The reduction will program all values of Di,β to
be gci if xi = β and gzi otherwise for known zi.

Theorem 3. If there exists a poly-time attack algorithm A that breaks our bit-
fixing construction n-bit input with advantage ε(λ) there there exists a poly-time
algorithm B that breaks the κ = n + 1-Multilinear Decisional Diffie-Hellman
assumption with advantage ε(λ)/2n.

Proof. We show how to construct B. The algorithm B first receives an κ =
n+ 1-MDDH challenge consisting of the group sequence description G and g =

g1, g
c1 , . . . , gcκ+1 along with T where T is either g

∏
j∈[1,k+1] cj

k or a random group
element in Gκ. It then chooses a value x∗ ∈ {0, 1}n uniformly at random. Next,
it chooses random z1, . . . , zn (internally) sets

Di,β =

{
gci if x∗i = β

gzi if x∗i 6= β

for i ∈ [1, n], β ∈ {0, 1}. This corresponds to setting di,β = ci if x∗i = β and
zi otherwise. We observe this is distributed identically to the real scheme. In
addition, it will internally view α = ck · ck+1.

Constrain Oracle We now describe how the algorithm responds to the key query
oracle. Suppose a query is made for a secret key for v ∈ {0, 1, ?}n. Let V be the
set of indices i ∈ [1, n] such that vi 6=?. That is the the indices for which the bit

is fixed to 0 or 1. B identifies an arbitrary i ∈ V such that vi 6= x∗i . If no such
i exists this means that the key cannot be produced since it could be used to
evaluate F (k, x∗). In this case abort and output a random guess for δ′ ∈ {0, 1}.

If the query did not cause an abort, B first computes gα2 = e(gck , gck+1). It
then gathers all Dj,vj for j ∈ V/i. It uses repeated application of the pairing with

these values to compute (g1+|V |)
α
∏
j∈V/i dj,vj . (Recall, our previous assignments

to dj , β.) Finally, it raises this value to di,vI = zi which is known to the attacker

to get. k′vv = (g1+|V |)
α
∏
j∈V/i dj,vj . The rest of the key is simply the Dj,β values

for j /∈ V, β ∈ {0, 1}.

Evaluate Oracle To handle the evaluation oracle, we observe that the output
of F (k, x) for x ∈ {0, 1} is identical to asking a key for kv=x (a key with no ?
symbols. Therefore, queries to this oracle can be handled as secret key queries
described above.

Challenge Finally, the attacker can query a challenge oracle once. If the query
to this oracle is not equal to x∗ then B randomly guesses δ′ ∈ {0, 1}. Otherwise,
it outputs T as a response to the oracle query.

The attack algorithm will eventually output a guess b′. If B has not aborted,
it will simply output δ′ = b′.

We now analyze the probability that B’s guess δ′ = δ, where δ indicates if T
was an MDDH tuple. We have

Pr[δ′ = δ] = Pr[δ′ = δ|abort] · Pr[abort] + Pr[δ′ = δ|abort] · Pr[abort]

=
1

2
(1− 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1

2
(1− 2−n) + (

1

2
+ ε(λ)) · (2−n)

=
1

2
+ ε(λ) · (2−n)

The set of equations shows that the advantage of B is ε(λ)2−n. The second
equation is derived since the probability of B not aborting is 2−n. The third
equation comes from the fact that the probability of the attacker winning given
a conditioned on not aborting is the same as the original probability of the
attacker winning. The reason is that the attacker’s success is independent of
whether B guessed x∗. This concludes the proof.

5 Constrained PRFs for Circuit predicates

Next we build constrained PRFs where the accepting set for a key can be de-
scribed by a polynomial size circuit. Our construction utilizes the structure used
in a recent Attribute-Based Encryption scheme due to Garg, Gentry, Halevi,
Sahai, and Waters [18].

We present our circuit construction for constrained PRFs in terms of three
algorithms which include a setup algorithm F.setup in addition to F.constrain

and F.eval. The setup algorithm will take an additional input ` which is the
maximum depth of circuits allowed. For simplicity we assume all circuits are
depth ` and are leveled. We use the same notation for circuits as in [18]. We
include the notation in Appendix A for completeness. In addition, like [18] we
also build our construction for monotone circuits (limiting ourselves to AND and
OR gates); however, we make the standard observation that by pushing NOT
gates to the input wires using De Morgan’s law we obtain the same result for
general circuits.

5.1 Construction

F.setup(1λ, 1n, 1`):
The setup algorithm takes as input the security parameter λ and the bit length,
n, of inputs to the PRF and ` the maximum depth of the circuit. The algorithm
runs G(1λ, κ = n + `) and outputs a sequence of groups G = (G1, . . . ,Gκ) of
prime order p, with canonical generators g1, . . . , gκ, where we let g = g1. It then
chooses random exponents α ∈ Zp and (d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Zp2 and
computes Di,β = gdi,β for i ∈ [1, n] and β ∈ {0, 1}. The key k consists group
sequence (G1, . . . ,Gk) along with α, di,β and Di,β for i ∈ [1, n] and β ∈ {0, 1}.

The domain X is {0, 1}n and the range of the function is Gk. Letting xi
denote the i-th bit of x ∈ {0, 1}n, the keyed function is defined as

F (k, x) = g
α
∏
i∈[1,n] di,xi

κ ∈ Gκ .

F.constrain
(
k, f = (n, q,A,B, GateType)

)
:

The constrain algorithm takes as input the key and a circuit description f . The
circuit has n+ q wires with n input wires, q gates and the wire n+ q designated
as the output wire.

To generate a constrained key kf the key generation algorithm chooses ran-
dom r1, . . . , rn+q−1 ∈ Zp, where we think of the random value rw as being
associated with wire w. It sets rn+q = α. The first part of the constrained key
is given out as simply all Di,β for i ∈ [1, n] and β ∈ {0, 1}.

Next, the algorithm generates key components for every wire w. The structure
of the key components depends upon if w is an input wire, an OR gate, or an
AND gate. We describe how it generates components for each case.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The
key component is:

Kw = g
rwdw,1
2

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let
j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp. Then the algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. The algorithm will choose random
aw, bw ∈ Zp.

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j

The constrained key kf consists of all these n + q key components along with
{Di,β} for i ∈ [1, n] and β ∈ {0, 1}.

F.eval(kf , x):
The evaluation algorithm takes as input kf for circuit f = (n, q,A,B, GateType)
and an input x. The algorithm first checks that f(x) = 1; it not it aborts.

The goal of the algorithm is to compute F (k, x) = (gκ=n+`)
α
∏
i∈[1,n] di,xi .

We will evaluate the circuit from the bottom up. Consider wire w at depth j; if
fw(x) = 1 then, our algorithm will compute Ew = (gj+n)rw

∏
i di,xi . (If fw(x) = 0

nothing needs to be computed for that wire.) Our decryption algorithm proceeds
iteratively starting with computing E1 and proceeds in order to finally compute
En+q. Computing these values in order ensures that the computation on a depth
j − 1 wire (that evaluates to 1) will be defined before computing for a depth j
wire. Since rn+q = α, En+q = F (k, x).

We show how to compute Ew for all w where fw(x) = 1, again breaking the
cases according to whether the wire is an input, AND or OR gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose

that xw = fw(x) = 1. The algorithm computes Ew = g
rw

∏
i di,xi

n+1 . Using the

pairing operation successively it can compute g
∏
i6=w di,xi

n−1 from the values
Dxi,β for i ∈ [1, n] 6= w. It then computes

Ew = e(Kw, g
∏
i6=w di,xi

n−1) = e(g
rwdw,1
2 , g

∏
i6=w di,xi

n−1) = g
rw

∏
i di,xi

n+1

– OR gate
Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =

depth(w) be the depth of wire w. For exposition we define D(x) = g
∏
i di,xi

n .
This is computable via the pairing operation from Dxi,β for i ∈ [1, n].
The computation is performed if fw(x) = 1. If fA(w)(x) = 1 (the first input
evaluated to 1) then we compute:

Ew = e(EA(w),Kw,1) · e(Kw,3, D(x)) =

= e((gj+n−1)rA(w)

∏
i di,xi , gaw) · e(grw−aw·rA(w)

j , g
∏
i di,xi

n) = (gj+n)rwg
∏
i di,xi

n

Otherwise, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = e(EB(w),Kw,2) · e(Kw,4, D(x)) =

= e((gj+n−1)rB(w)

∏
i di,xi , gbw) · e(grw−bw·rB(w)

j , g
∏
i di,xi

n) = (gj+n)rwg
∏
i di,xi

n

– AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition,
let j = depth(w) be the depth of wire w. Suppose that fw(x) = 1. Then
fA(w)(x) = fB(w)(x) = 1 and we compute:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, D(x))

= e
(
(gj+n−1)rA(w)

∏
i di,xi , gaw

)
· e
(
(gj+n−1)rB(w)

∏
i di,xi , gbw

)
·

· e
(
g
rw−aw·rA(w)−cw·rB(w)

j , g
∏
i di,xi

n

)
= (gj+n)rw

∏
i di,xi

The procedures above are evaluated in order for all w for which fw(x) = 1. The
final output gives En+q = F (k, x).

5.2 Proof of Security

We now prove security of the circuit constrained construction. We show that for
an n-bit domain and circuits of depth `, if the κ = n+ `-Multilinear Decisional
Diffie-Hellman assumption holds then our construction is secure for appropriate
choice of the group generator security parameter.

Our proof begins as in the bit-fixing proof where a where we use the stan-
dard complexity leveraging technique of guessing the challenge x∗ ahead of time
to prove adaptive security. The guess will cause a loss of 1/2n factor in the
reduction. The delegate oracle queries, however, are handled quite differently.

Theorem 4. If there exists a poly-time attack algorithm A that breaks our cir-
cuit constrained construction n-bit input and circuits of depth ` with advan-
tage ε(λ) there there exists a poly-time algorithm B that breaks the κ = n + `-
Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Due to space constraints the proof appears in the full version of the paper [8].

6 Applications

Having constructed constrained PRFs for several predicate families we now ex-
plore a number of remarkable applications for these concepts. Our primary goal
is to demonstrate the versatility and general utility of constrained PRFs.

6.1 Broadcast encryption with optimal ciphertext length

We start by showing that a bit-fixing constrained PRF leads a broadcast en-
cryption system with optimal ciphertext size. Recall that a broadcast encryption
system [15] is made up of three randomized algorithms:

Setup(λ, n) Takes as input the security parameter λ and the number of re-
ceivers n. It outputs n private keys d1, . . . , dn and a broadcaster key bk. For
i = 1, . . . , n, recipient number i is given the private key di.

Encrypt(bk, S) Takes as input a subset S ⊆ {1, . . . , n}, and the broadcaster’s
key bk. It outputs a pair (hdr, k) where hdr is called the header and k ∈ K is
a message encryption key chosen from the key space K. We will often refer
to hdr as the broadcast ciphertext.
Let m be a message to be broadcast that should be decipherable precisely
by the receivers in S. Let cm be the encryption of m under the symmetric
key k. The broadcast data consists of (S, hdr, cm). The pair (S, hdr) is often
called the full header and cm is often called the broadcast body.

Decrypt(i, di, S,hdr) Takes as input a subset S ⊆ {1, . . . , n}, a user id i ∈
{1, . . . , n} and the private key di for user i, and a header hdr. If i ∈ S the
algorithm outputs a message encryption key k ∈ K. Intuitively, user i can
then use k to decrypt the broadcast body cm and obtain the message m.

In what follows the broadcaster’s key bk is a secret key known only to the
broadcaster and hence our system is a secret-key broadcast encryption.

The length efficiency of a broadcast encryption system is measured in the
length of the header hdr. The shorter the header the more efficient the system.
Remarkably, some systems such as [6, 13, 12, 7, 30] achieve a fixed size header
that depends only on the security parameter and is independent of the size of
the recipient set S.

As usual, we require that the system be correct, namely that for all subsets

S ⊆ {1, . . . , n} and all i ∈ S if (bk, (d1, . . . , dn))
R← Setup(n) and (hdr, k)

R←
Encrypt(bk, S) then Decrypt(i, di, S, hdr) = k.

A broadcast encryption system is said to be semantically secure if an adaptive
adversary A that obtains recipient keys di for i ∈ S of its choice, cannot break
the semantic security of a broadcast ciphertext intended for a recipient set S∗

in the complement of S, namely S∗ ⊆ [n] \ S. More precisely, security is defined
using the following experiment, denoted EXP(b), parameterized by the total
number of recipients n and by a bit b ∈ {0, 1}:

(bk, (d1, . . . , dn))
R← Setup(λ, n)

b′ ← ARK(·),SK(·),RoR(b,·)(λ, n)
where

RK(i) is a recipient key oracle that takes as input i ∈ [n] and returns di,
SK(S) takes as input S ⊆ [n] and returns Encrypt(bk, S), and
RoR(b, S∗) is a real-or-random oracle: it takes as input b ∈ {0, 1} and

S∗ ⊆ [n], computes (hdr, k0)
R← Encrypt(bk, S∗) and k1

R← K,
and returns (hdr, kb).

We require that all sets S∗ given as input to oracle RoR are distinct from all
sets S given as input to SK and that S∗ does not contain any index i given as
input to RK. For b = 0, 1 let Wb be the event that b′ = 1 in EXP(b) and as usual
define AdvBEA(λ) = |Pr[W0]− Pr[W1]|.

Definition 2. We say that a broadcast encryption is semantically secure if for
all probabilistic polynomial time adversaries A the function AdvBEA(λ) is neg-
ligible.

An length-optimal broadcast encryption construction. A bit-fixing PRF such as
the one constructed in Section 4 gives a broadcast encryption system with op-
timal ciphertext length. Specifically, the header size is always 0 for all recipient
sets S ⊆ [n]. The system, denoted BEF works as follows:

Setup(λ, n): Let F : K × {0, 1}n → Y be a secure bit-fixing constrained PRF.

Choose a random key bk
R← K and for i = 1, . . . , n compute

di ← F.constrain(bk, pi)

where pi : {0, 1}n → {0, 1} is the bit-fixing predicate satisfying pi(x) = 1
iff xi = 1. Thus, the key di enables the evaluation of F (bk, x) at any point
x ∈ {0, 1}n for which xi = 1. Output (bk, (d1, . . . , dn)).

Encrypt(bk, S): Let x ∈ {0, 1}n be the characteristic vector of S and compute
k ← F (bk, x). Output the pair (hdr, k) where hdr = ε. That is, the output
header is simply the empty string.

Decrypt(i, di, S,hdr): Let x ∈ {0, 1}n be the characteristic vector of S. If i ∈ S
then the bit-fixing predicate pi satisfies pi(x) = 1. Therefore, di can be used
to compute F (bk, x), as required.

Theorem 5. BEF is a semantically secure broadcast encryption system against
adaptive adversaries assuming that the underlying constrained bit-fixing PRF is
secure.

Proof. Security follows immediately from the security of the bit-fixing PRF.
Specifically, oracle RK in the broadcast encryption experiment is implemented
using oracle F.constrain in the constrained security game (Section 3.2). Oracle SK
is implemented using oracle F.eval in the constrained security game. Finally, the
broadcast encryption real-or-random oracle is the same as the Challenge oracle in
the constrained security game. Therefore, an attacker who succeeds in breaking
semantic security of the broadcast encryption system will break security of the
bit-fixing PRF.

Comparison to existing fully collusion resistant schemes. While our primary goal
is to illustrate applications of abstract constrained PRFs, it is instructive to ex-
amine the specific broadcast system that results from instantiating the system
above with the bit-fixing PRF in Section 4. We briefly compare this system to
existing broadcast encryption systems such as [6, 13, 12, 30]. These existing sys-
tems are built from bilinear maps, they allow the broadcaster’s key to be public,
and the broadcast header contains a constant number of group elements. The
benefit of the instantiated system above is that the header length is smaller: its
length is zero. However, the system uses multi-linear maps and the broadcaster’s
key is secret. The system is closely related to the multilinear-based broadcast

system of Boneh and Silverberg [7] which has similar parameters. To re-iterate,
our goal is to show the general utility of constrained PRFs. Nevertheless, we hope
that future constrained PRFs will lead to new families of broadcast systems.

6.2 Identity-based key exchange

Next, we show that a left/right constrained PRF directly implies an identity-
based non-interactive key exchange (ID-NIKE) system [31, 14, 27, 16]. Recall that
such a system is made up of three algorithms:

– Setup(λ) outputs public parameters pp and a master secret msk,
– Extract(msk, id) generates a secret key skid for identity id, and
– KeyGen(pp, skid, id

′) outputs a shared key kid,id′ .

For correctness we require that KeyGen(pp, skid, id
′) = KeyGen(pp, skid′ , id) for

all id 6= id′ and pp generated by Setup.

Briefly, the security requirement, defined by Dupont and Enge [14] and fur-
ther refined by Paterson and Srinivasan [27], is that an adversary A who obtains
secret keys skid for all identities id ∈ S for a set S of his choice, cannot dis-
tinguish the shared key kid∗,id′∗ from random for identities id∗, id

′
∗ 6∈ S of his

choice. The adversary may also ask to reveal the shared key kid,id′ for any pair
of identities (id, id′) 6= (id∗, id

′
∗).

Identity-based key exchange from left/right constrained PRFs. The system works
as follows:

– Setup(λ) : let F : K × X 2 → Y be a secure left/right constrained PRF.

Choose a random msk
R← K and output msk. The public parameters pp are

the (optional) public parameters of the PRF.

– Extract(msk, id): compute dl = F.constrain(msk, p(L)

id) and
dr = F.constrain(msk, p(R)

id). Output skid = (dl, dr).

– KeyGen(skid, id
′): We assume that the identity strings are lexicographically

ordered. Output kid,id′ = F
(
msk, (id, id′)

)
if id < id′ using dl. Output

kid,id′ = F
(
msk, (id′, id)

)
if id > id′ using dr. By definition of a left/right

constrained PRF, both values can be computed just given skid.

Correctness of the system follows directly from the correctness of the constrained
PRF and lexicographic convention. Security again follows directly from the se-
curity definition of a constrained PRF. Oracle F.constrain in the constrained
security game (Section 3.2) enables the adversary A to request the secret keys
for any set of identities S of her choice. Oracle F.eval enables the adversary
A to reveal the shared key kid,id′ for any pair of identities (id, id′). If A could
then distinguish F (msk, (id∗, id

′
∗)) from random for some id∗, id

′
∗ 6∈ S and for

which reveal was not called then she would solve the challenge in the constrained
security game.

Comparison to existing ID-NIKE. While our primary goal is to explore ap-
plications of general constrained PRFs, it is instructive to examine the specific
ID-NIKE systems obtained by instantiating the ID-NIKE above with our specific
PRFs. The first concrete ID-NIKE is obtained from the left/right constrained
PRF in Eq. (1). This ID-NIKE is identical to the Sakai-Ohgishi-Kasahara [31]
ID-NIKE which was analyzed in [14, 27]. A second ID-NIKE is obtained by us-
ing the bit-fixing constrained PRF in Section 4 as a left/right constrained PRF.
The resulting ID-NIKE is related to a recent ID-NIKE due to Freire et al. [16]
which is the first ID-NIKE proven secure in the standard model. While KeyGen
in our instantiated ID-NIKE uses fewer group elements than [16], we achieve
adaptive security via complexity leveraging which forces our multilinear groups
to be substantially larger. This likely results in an overall less efficient ID-NIKE
when compared to [16].

As stated above, our primary goal here is to explore the power of constrained
PRFs. We hope that future constrained PRFs, especially ones built from the
learning with errors (LWE) assumption, will give new ID-NIKE systems.

6.3 Policy-based key distribution

More generally, our constrained PRF construction for circuit predicates (Sec-
tion 5) gives rise to a powerful non-interactive group key distribution mecha-
nism.

Suppose each user in the system is identified by a vector id ∈ {0, 1}n that
encodes a set of attributes for that user. Our goal is that for any predicate
p : {0, 1}n → {0, 1}, users whose id satisfies p(id) = 1 will be able to com-
pute a shared key kp. However, a coalition of users for which p(id) = 0 for all
members of the coalition learns nothing about kp. We call this mechanism non-
interactive policy-based key exchange (PB-NIKE) since only those users whose
set of attributes satisfies the policy p are able to compute the shared key kp.

For example, consider the policy p that is true for users who are members of
the IACR and have a driver’s license. All such users will be able to derive the
policy shared key kp, but to all other users the key kp will be indistinguishable
from random. This kp can then be used for secure communication among the
group members. This functionality is related to the concept of Attribute-Based
Encryption [29, 22].

We implement policy-based key agreement using a constrained PRF F :
K × {0, 1}m → Y for circuit predicates. To do so, let U(·, ·) denote a universal
circuit that takes two inputs: an identity id ∈ {0, 1}n and an m-bit description
of a circuit for a predicate p : {0, 1}n → {0, 1}. The universal circuit U(id, p) is
defined as:

U(id, p) = p(id) ∈ {0, 1}
We define the secret key skid given to user id to be the constrained PRF key that
lets user id evaluate F (msk, p) for all p for which U(id, p) = p(id) = 1. Thus,
users whose set of attributes id satisfies p(id) = 1 can compute the policy key
kp = F (msk, p) using their secret key skid. All other users cannot.

In more detail, the system works as follows:

– Setup(λ) : let F : K × {0, 1}m → Y be a secure constrained PRF for circuit
predicates. The master secret msk is chosen as a random key in K.

– Extract(msk, id): output skid = F.constrain
(
msk, U(id, ·)

)
. By definition,

this key skid enables the evaluation of F (msk, p) at all p such that U(id, p) =
p(id) = 1, as required.

The properties of F imply that for any predicate p (whose description is at most
m bits), the group key kp = F (msk, p) can be computed by any user whose id
satisfies p(id) = 1. Moreover, the security property for constrained PRFs implies
that a coalition of users for which p(id) = 0 for all members of the coalition
cannot distinguish kp from random.

7 Extensions and open problems

We constructed constrained PRFs for several natural predicate families and
showed applications for all these constructions. Here we point out a few pos-
sible directions for future research.

First, it would be interesting to generalize the constrained concept to allow
for multiple levels of delegation. That is, the master key for the PRF can be
used to derive a constrained key ks for some set S ⊂ X . That key ks can be used
in turn to derive a further constrained key k′s for some subset S′ ⊂ S, and so
on. This concept is in similar spirit to Hierarchical IBE [23, 19, 10] or delegation
in ABE [22]. For the GGM prefix system, this is straightforward. Some of our
constructions, such as the bit fixing PRF, extend naturally to support more than
one level of delegation while others do not.

Second, for the most interesting predicate families our constructions are based
on multilinear maps. It would be quite useful to provide constructions based on
other assumptions such as Learning With Errors (LWE) or simple bilinear maps.

Acknowledgments

Dan Boneh is supported by NSF, the DARPA PROCEED program, an AFO SR
MURI award, a grant from ONR, an IARPA project provided via DoI/NBC,
and by a Google faculty research award.

Brent Waters is supported by NSF CNS-0915361, CNS-0952692, CNS-1228599,
DARPA N00014-11-1-0382, DARPA N11AP20006, Google Faculty Research award,
the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard Foun-
dation Fellowship.

Opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
DARPA or IARPA.

References

1. M. Bellare and G. Fuchsbauer. Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413, 2013.

2. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM
Conference on Computer and Communications Security, pages 784–796, 2012.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238, 2004.

5. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003. extended abstract in Crypto 2001.

6. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In CRYPTO, pages 258–275, 2005.

7. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71–90, 2003.

8. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. Cryptology ePrint Archive, Report 2013/352, 2013.

9. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. Cryptology ePrint Archive, Report 2013/401, 2013.

10. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

11. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. Cryptology ePrint Archive, Report 2013/183, 2013.

12. C. Delerablée. Identity-based broadcast encryption with constant size ciphertexts
and private keys. In ASIACRYPT, pages 200–215, 2007.

13. C. Delerablée, P. Paillier, and D. Pointcheval. Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. In Pairing,
pages 39–59, 2007.

14. R. Dupont and A. Enge. Provably secure non-interactive key distribution based
on pairings. Discrete Applied Mathematics, 154(2):270–276, 2006.

15. A. Fiat and M. Naor. Broadcast encryption. In Proceedings of Crypto ’93, volume
773 of LNCS, pages 480–491. Springer-Verlag, 1993.

16. E. Freire, D. Hofheinz, K. Paterson, and C. Striecks. Programmable hash functions
in the multilinear setting. In CRYPTO, pages 513–530, 2013.

17. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices
and applications. In EUROCRYPT, 2013.

18. S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption
for circuits from multilinear maps. In CRYPTO, pages 479–499, 2013.

19. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT,
pages 548–566, 2002.

20. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 34(4):792–807, 1986.

21. M. C. Gorantla, C. Boyd, and J. M. G. Nieto. Attribute-based authenticated key
exchange. In ACISP, pages 300–317, 2010.

22. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer
and Communications Security, pages 89–98, 2006.

23. J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In EU-
ROCRYPT, pages 466–481, 2002.

24. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. In Proceedings ACM CCS, 2013.

25. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In Proceedings of Crypto ’01, volume 2139 of LNCS, pages 41–62, 2001.

26. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In FOCS’97, pages 458–67, 1997.

27. K. Paterson and S. Srinivasan. On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptography, 52(2):219–241, 2009.

28. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proc. of STOC’05, pages 84–93, 2005.

29. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

30. R. Sakai and J. Furukawa. Identity-based broadcast encryption. Cryptology ePrint
Archive, Report 2007/217, 2007.

31. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In SCIS,
2000.

A Circuit Notation

We now define our notation for circuits that adapts the model and notation of
Bellare, Hoang, and Rogaway [2] (Section 2.3). For our application we restrict
our consideration to certain classes of boolean circuits. First, our circuits will
have a single output gate. Next, we will consider layered circuits. In a layered
circuit a gate at depth j will receive both of its inputs from wires at depth j−1.
Finally, we will restrict ourselves to monotonic circuits where gates are either
AND or OR gates of two inputs. 5

Our circuits will be a five tuple f = (n, q,A,B, GateType). We let n be the
number of inputs and q be the number of gates. We define inputs = {1, . . . , n},
Wires = {1, . . . , n + q}, and Gates = {n + 1, . . . , n + q}. The wire n + q is
the designated output wire. A : Gates →Wires/outputwire is a function where
A(w) identifies w’s first incoming wire and B : Gates → Wires/outputwire is
a function where B(w) identifies w’s second incoming wire. Finally, GateType :
Gates → {AND,OR} is a function that identifies a gate as either an AND or
OR gate.

We require that w > B(w) > A(w). We also define a function depth(w) where
if w ∈ inputs depth(w) = 1 and in general depth(w) of wire w is equal to the
shortest path to an input wire plus 1. Since our circuit is layered we require that
for all w ∈ Gates that if depth(w) = j then depth(A(w)) = depth(B(w)) = j−1.

We will abuse notation and let f(x) be the evaluation of the circuit f on
input x ∈ {0, 1}n. In addition, we let fw(x) be the value of wire w of the circuit
on input x.

5 These restrictions are mostly useful for exposition and do not impact functionality.
General circuits can be built from non-monotonic circuits. In addition, given a circuit
an equivalent layered exists that is larger by at most a polynomial factor.

