
Tamper Resilient Circuits: The Adversary at the
Gates

Aggelos Kiayias†, Yiannis Tselekounis†

†Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens

Abstract. We initiate the investigation of gate-tampering attacks against
cryptographic circuits. Our model is motivated by the plausibility of tam-
pering directly with circuit gates and by the increasing use of tamper
resilient gates among the known constructions that are shown to be re-
silient against wire-tampering adversaries. We prove that gate-tampering
is strictly stronger than wire-tampering. On the one hand, we show that
there is a gate-tampering strategy that perfectly simulates any given
wire-tampering strategy. On the other, we construct families of circuits
over which it is impossible for any wire-tampering attacker to simulate
a certain gate-tampering attack (that we explicitly construct). We also
provide a tamper resilience impossibility result that applies to both gate
and wire tampering adversaries and relates the amount of tampering to
the depth of the circuit. Finally, we show that defending against gate-
tampering attacks is feasible by appropriately abstracting and analyzing
the circuit compiler of Ishai et al. [18] in a manner which may be of
independent interest. Specifically, we first introduce a class of compil-
ers that, assuming certain well defined tamper resilience characteristics
against a specific class of attackers, can be shown to produce tamper
resilient circuits against that same class of attackers. Then, we describe
a compiler in this class for which we prove that it possesses the necessary
tamper-resilience characteristics against gate-tampering attackers.

Keywords: tamper resilient circuits, attack modeling.

1 Introduction

Traditionally, cryptographic algorithms are designed under the assumption that
adversaries have black box access to the algorithms’ implementation and private
input. In this setting, the adversary chooses an input, supplies the algorithm
with it, receives the corresponding output, and it is not allowed to alter the
algorithm’s internals during its execution. This mode of interaction is usually
being modeled as a security game (e.g., chosen-ciphertext attack against an
encryption scheme or chosen message attack against a digital signature) and the
underlying cryptographic scheme is proven secure based on it. In reality though,
besides observing the algorithms’ input-output behaviour, an adversary may also
land physical attacks on the algorithm’s implementation. For instance, she may
learn the secret key of an encryption scheme by measuring the power consumed

by the device during the encryption operation [23], or by measuring the time
needed for the encryption to complete [22]. Besides passive attacks, the class
of active attacks includes inducing faults to the computation [4, 6, 22], exposing
the device to electromagnetic radiation [14, 28, 29], and several others [17, 24, 21,
1, 7, 30]. Such attacks have proven to be a significant threat to the real-world
security of cryptographic implementations.

1.1 Related work & Motivation

The work of [18] followed by [11, 9] undertook the difficult task of modeling
and defending against adversaries that tamper directly with the implementation
circuit. In this setting the adversary is given access to a circuit equipped with
secret data stored in private memory; it is allowed to modify a bounded number
of circuit wires and/or memory gates in each circuit invocation. The objective is
to suitably modify the circuit operation so that tampering gives no (or -at least-
bounded) advantage to the adversary.

In [18] the adversary is allowed to tamper with a bounded number of wires or
memory gates in each computation, and for each component she may set its value
to 1, reset it to 0, or toggle its value. The tampering effect can be persistent, i.e., if
the value of a circuit wire or memory gate is modified during one run, it remains
modified for all subsequent runs. Hence, the adversary can tamper with the entire
circuit by persistently tampering with a bounded number of wires in each run.
The proposed compiler, which is parameterized by t ∈ N, transforms any boolean
circuit C into C ′, where C ′ realizes the same functionality with C and is secure
against adversaries who tamper with up to t of its wires in each computation,
i.e., any adversary who tampers with up to t circuit wires of C ′ in one circuit
invocation, cannot learn anything more about the circuit’s private information
than an adversary having black-box access to C. Formally, this notion is captured
by the following simulation-based security definition: for every PPT adversary A
tampering with C ′, there exists a simulator S having black-box access to C such
that the output distribution of A and S are indistinguishable. The construction
is based on a randomized secret sharing scheme which shares the bit-value of a
wire in C among k wires, and then introduces redundancy by making 2kt copies
of each wire, where k denotes the security parameter. The randomized encoding
guarantees that any tampering with C ′ will produce an invalid encoding with
high probability, triggering the circuit’s self-destruction mechanism that erases
the circuit’s secret memory. Since this mechanism is also prone to tampering, the
adversary could try to deactivate it so as to tamper with the rest of the circuit
while keeping the secret state intact. In order to prevent such a scenario, C ′

incorporates an error-propagation mechanism which permeates the circuit and
propagates errors induced by tampering attacks. The size of C ′ is larger than C
by a factor of O(t · log3(1

ε)) where ε represents the simulation error.
In [11] the authors consider a different adversarial model, in which the adver-

sary is allowed to tamper with every circuit wire, but each tampering attempt
fails with probability δ ≥ 0 (noisy tampering). Moreover, they put forward a
relaxed security definition in which the simulator does not have black-box access

2

to the circuit, but requires logarithmically many bits of information about the
circuit’s secret memory. The resulting circuit is augmented by a O(δ−1 log(1

ε))
factor for the simulation to fail with probability at most ε. Furthermore, it uses
no randomness during execution and consists of subcircuits which perform com-
putations over Manchester encodings, which encode a single bit into four bits.
For each subcircuit, the compiler randomly encodes the 0,1-bits to elements in
{0, 1}4\{0000}, and employs tamper-proof gates that handle computations over
these encodings. If the inputs are invalid, the gates output 0000 and the er-
ror propagates to the self-destruction mechanism, which is similar to the one
employed in [18] but uses some additional tamper-proof gadgets. Besides error
propagation and memory erasure, the self-destruction mechanism verifies that
all subcircuits produce consistent outputs. Hence, in order to alter the compu-
tation effectively, an adversary needs to tamper with all k subcircuits in a way
such that (i) all attacks produce valid, probably different due to randomization,
encodings, and (ii) the encodings must produce the same decoded output. As it
is proved in [11], this happens with negligible probability in k.

The adversarial model considered in [9] is similar to [18]. The main difference
is that now persistent tampering is not allowed on circuit wires and, similarly,
to [11] the simulator is allowed a logarithmic amount of leakage from the com-
putation. Regarding the construction, [9] combines error-correcting codes and
probabilistically checkable proofs of proximity (PCPP) in the following way: the
circuit’s secret state s and input x are encoded into S and X, respectively. Then
the transformed circuit computes1 y = Cs(x) and a PCPP proof π for the va-
lidity of the tuple (y,S ◦ X) with respect to the error-correcting code and C.
The proof is verified by polynomially many verifiers who output 1 in case of
validity, and 0 otherwise, and their output (i) is fed to a (tamper-proof) AND
gate with unbounded fan-in and fan-out that erases the circuit’s secret state if
a verifier rejects π, and (ii) together with y they feed a (tamper-proof) AND
gate with unbounded fan-in and one output wire, which is the circuit’s output
wire. If one of the verifiers outputs 0, then the circuit outputs the zero bit. The
resulting circuit size is polynomial on the input circuit but a constant ratio of
wire tampering can be tolerated.

Besides tampering against circuits’ wires or memory gates, some works con-
sider adversaries who tamper exclusively with memory gates [15, 25, 10, 8]. In
[15] the authors give an impossibility result on tamper resilience by showing that
without using secure hardware an adversary can extract the circuit’s private in-
formation, by sequentially setting or resetting the memory bits and observing
the tampering effects on the circuit output. Apparently, [18, 11, 9] circumvent the
impossibility result by erasing the private information in case of error detection.
In [25] the authors consider adversaries who tamper and probe with the circuits’
private memory and they give an impossibility result for circuits that do not have
access to a source of random bits, with respect to both tampering and probing
attacks. [10] introduces the notion of non-malleable codes. Such codes ensure
that any adversary who tampers with a codeword, with respect to some specific

1 Their construction [9] considers circuits that output one bit.

3

class of tampering functions, will either lead the decoding algorithm to output
⊥, or output a codeword which is irrelevant to the original word. Moreover,
they show how to construct non-malleable codes for specific classes of tampering
functions. Finally, in [8] the authors introduce the notion of Built-in Tamper
Resilience, which defines security for cryptographic protocols where some of the
parties are implemented by hardware tokens that resist tampering attacks.

The above state of the art in tamper resilient circuits suggests a fundamental
issue that is a source of theoretical motivation for our work. While tampering
circuit wires seems to be a strong adversarial model, recent constructions do
heavily exploit tamper-proof gates (e.g., the gate with unbounded high fan-in in
[9]). This suggests that tampering gates directly might be an even stronger (and
possibly in some cases even more plausible) adversarial model; how do wire and
gate adversaries fare against each other? and is it possible to protect against
both? what are the upper bounds in terms of amount of tampering that can be
tolerated? Our work initiates the investigation of gate-tampering attacks and
takes steps towards answering all those questions as explained below.

Besides its theoretical interest, our work is also motivated by practical attacks
on circuit gates. For example, in [30] it is explained how illumination of a target
transistor can cause it to conduct. Transistors are used to implement logical
gates so such an optical probe attack will amount to gate tampering in a circuit
(effectively changing the gate for another gate). Beyond that, fault injection in
the SRAM of an FPGA also results to switching the computation of the FPGA
circuit (because the program of the FPGA is stored in memory).

1.2 Our contributions

Impossibility results. Informally, the main idea behind our impossibility result
(section 3) is the following: we define the notion of non-triviality of a crypto-
graphic circuit which attempts to capture the essence of a meaningful crypto-
graphic implementation. According to non-triviality, for every PPT algorithm A
and circuit C with private memory s, where C implements some cryptographic
functionality, A should not be able to learn s, while having black box access to
C (observe that if A learns s then the implementation becomes obsolete as A
can simulate it). Then we prove that any circuit C that satisfies non-triviality
possesses necessarily a weakly unpredictable bit, i.e., there exists a secret state
bit that cannot be extracted with probability very close to 1, while having black
box access to C. Now, let d be the depth of C and assume it consists of gates
with fan-in at most 2. If the adversary is allowed to tamper with up to d cir-
cuit components (we prove our result for either wires or gates), there exists a
strategy that extracts the circuit’s unpredictable bit with probability equal to
1. The impossibility result follows from this, since any simulator with black-box
access to C only has no capability to predict the unpredictable bit as good as
the tampering adversary. The main observation here is that for any d ∈ N, and
every compiler T that receives a circuit C and produces a circuit C ′ of depth
at most d, T cannot be secure against an adversary who tampers with d circuit
gates or wires, regardless of the size of C ′.

4

It is worth contrasting our result to that of [15], where the authors consider
an adaptive adversary who is capable of tampering with private memory bits; by
correlating circuit outputs to tampering set/reset operations within the secret-
state they show that the whole secret state can be reconstructed. This suggests
that the only way to attain tamper resilience of the secret-state is by employ-
ing internal integrity detection mechanisms and have the circuit self-destruct
in any case of fault detection. With our impossibility result however we show
that simulation will inevitably fail even in the presence of error-detection and
self-destruction mechanisms in case we allow tampering with up to d circuit
components (wires or gates), where d is the circuit’s depth. This underlines the
strength of tampering with circuit components vs. tampering the secret state.

Gate adversaries are strictly stronger than wire adversaries. We pro-
ceed to explore the relationship between gate and wire adversaries. In section 4
we first prove that any tampering attack on up to t circuit wires can be simulated
by an adversary who tampers with up to t circuit gates, i.e., for every circuit Cs

and any PPT adversary A who tampers with up to t wires of Cs, there exists a
PPT adversary A′ who tampers with up to t circuit gates, such that the output
of A and A′ are exactly the same. Then we proceed to prove the other direction
which is the most technically involved. Note that in the presence of unbounded
fan-out (or fan-in) gates in a circuit it is clear that a gate adversary has an ad-
vantage since a wire adversary may be incapable of controlling sufficiently many
wires to modify the behavior of the gate. However we demonstrate that even
w.r.t. to bounded fan-in/fan-out circuits, gate adversary are strictly stronger.
Specifically, we show that there exist a family of circuits C̃s̃ parameterized by
n, t and a PPT adversary A who tampers with up to n circuit gates, such that
for all PPT adversaries A′ who tamper with up to t circuit wires (where t can
be arbitrarily larger than n), A′ fails to simulate A. Intuitively, the idea behind
our proof is the following. We construct a circuit that has a “critical area” com-
prised of n AND-gates. The input to the critical area is provided by a sub-circuit
(referred to as C1) that implements a PRF, a digital signature and a counter.
The output of the critical area is fed to a second sub-circuit (referred to as C2)
that calculates a digital signature and a second counter. The key point is that a
gate-adversary can transform all AND-gates of the critical area into XOR-gates.
This enables the gate-attacker to produce a circuit output with a certain specific
distribution that is verifiable in polynomial-time. The main technical difficulty is
assembling the circuits C1, C2 suitably so that we can show that no matter what
the wire-attacker does, it is incapable of simulating the distribution produced by
the gate-attacker. Note that the wire-attacker is fully capable of controlling the
input to the C2 sub-circuit (by tampering with all the output wires of the critical
area). Hence by running the circuit several times, the wire-attacker can attempt
to learn the proper output distribution of the critical region and feed it to C2. In
our explicit construction, by appropriately assembling the main ingredients of
each sub-circuit (PRF, digital signatures and counters) we show that there exists
no efficient wire-tampering strategy that simulates the gate-tampering strategy

5

assuming the security of the PRF and the digital signature. The circuit family
we construct is executable an unbounded number of times (by either attacker).
If one restricts the number of times the implementation can be executed by the
tampering attackers (by having the implementation always self-destruct by de-
sign after one invocation) then the circuit family can be simplified (due to lack
of space we provide this construction in the full version of the paper).

Tamper resilience against gate adversaries. Given our separation result,
the question that remains is whether it is possible to defend cryptographic im-
plementations against gate adversaries. Towards that direction, we show (section
5) that gate attackers compromise the security of [18] by effectively eliminating
the circuit’s randomness, when it is produced by randomness gates, and then
we prove that if we substitute those gates with pseudo-random generators, then
[18] can be shown to be secure against gate adversaries. Based on [18], we give
a general characterization (Definition 10) of a secure class of compilers and we
use it in order to present our result in a self-contained way. The way we present
our positive result may also be of independent interest: first, we define a class of
compilers (Definition 10) that have the property that if they have certain tam-
per resilience characteristics against an arbitrary class of adversaries, then the
circuits that they produce are tamper-resilient against that class of adversaries.
Seen in this light, the result of [18] is a specific instance that belongs to this
class of compilers that satisfies the basic tamper resilience characteristics of the
class against appropriately bounded wire adversaries. We proceed analogously to
prove that the circuit transformation that removes the randomness gates satis-
fies the necessary tamper resilience characteristics against appropriately bounded
gate adversaries. The resulting compiler produces circuits of comparable size to
those of [18] however the parameter t in our case reflects the bound on the
gate-tampering adversary.

2 Preliminaries

Definition 1 (Circuit) A Boolean circuit C, over a set of gates G, with n input
bits and q output bits, is a directed acyclic graph C = (V,E), such that every
v ∈ V belongs to one of the following sets of nodes:

– VI (Input): For all v ∈ VI , the indegree is zero, the outdegree is greater than
1, and each v represents one input bit. We label these nodes by i1, . . . , in.

– VG(Gate): Each v ∈ VG represents a logic gate in G, and its indegree is equal
to the arity of the logic gate. The outdegree is at least 1.

– VO (Output): For all v ∈ VO, the indegree is one and the outdegree is zero,
and each v represents one output bit. We label these nodes by o1, . . . , oq.

The cardinalities of the sets defined above are n, s and q respectively. Finally,
the edges of the graph represent the wires of the circuit. The set of all circuits
with respect to a set of gates G, will be denoted by CG.

6

The circuit’s private memory is considered as a peripheral component and con-
sists of m additional gates. The value m is the memory’s storage capacity in
bits.2 Formally,

Definition 2 (Circuit with Private memory) A graph C is a circuit with
private memory provided that its set of vertices can be partitioned into two sets
V, V ′ such that (i) the graph C \ V ′ is a DAG conforming to definition 1, (ii)
there are no edges between nodes in V ′, (iii) each vertex v ∈ V ′ possesses at most
one incoming and exactly one outgoing edge. The set V ′ represents the memory
gates of C; in this case, we refer to C as a circuit with private memory V ′ and
we also denote by E′ the edges of C that are incident to V ′. We denote |V ′| = m.

From now on we will use the terms Circuit and Graph interchangeably, as well
as the terms wire/edge.

Definition 3 (Computation) Let C be a circuit with private memory V ′ that
contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit input. The computation
y = Cs(x) consists of the following steps:

i. Memory access: for each v ∈ V ′, the value of v propagates to the outgoing
edge.

ii. Breadth-first traversal of C:

– Assign to each input node ij, for j ∈ [n], the value xj and propagate xj
to its outgoing wires.

– For v ∈ VG (gate node), apply the boolean function that corresponds to
v on the incoming edges and propagate the result to the outgoing edges.

– Every output node oi, for i ∈ [m], evaluates to the incoming value, and
determines the value yi.

iii. Memory update: every v ∈ V ′ is updated according to its incoming value.

Informally, in each computation the circuit receives an input x, produces an
output y, and it may also update its private memory from s to some value s′.
From now on, a circuit with secret state s will be denoted by Cs, or by C, if
there is no need to refer to s explicitly.

In the following, we give a generalization of the above definition for multiple
rounds and we formally define the adversarial models we consider.

Definition 4 (v-round computation) Let C be a circuit and Env = (s,v) a
pair of random variables. A v-round circuit execution w.r.t. Env is a random
variable (v,AC(·)(v)) s.t. A is a polynomial-time algorithm that is allowed to
submit v queries to the circuit which is initialized to state s and in each query
it performs a calculation over its input as in Definition 3.

2 In many circumstances we refer to private memory using the terms secret state or
private state.

7

In the above definition, v represents all public information related to private
memory s. For instance, if C implements the decryption algorithm of a public-
key encryption scheme with secret key s, then v should contain information such
as the length of s and the corresponding public-key. Now we define the adversary
of [18].

Definition 5 (t-wire tampered computation) Let C be a circuit with pri-
vate memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit
input. The t-wire tampered computation y = CTs (x) for some tampering strategy
T is defined as follows.

1. T is a set of up to t triples of the form (α, e, p), where e is an edge of C,
and α may be one of the following tampering attacks:

– Set: set the value of e to 1,

– Reset: set the value of e to 0,

– Toggle: flip the value of e,

and if p ∈ {0, 1} is set to 1 then the attack is persistent, i.e., the modification
made by α is preserved in all subsequent computations. For non-persistent
attacks we write (α, e, 0) or just (α, e).

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Next we define gate-tampered computation.

Definition 6 (t-gate tampered computation) Let C be a circuit with pri-
vate memory V ′ that contains s ∈ {0, 1}m, and let x ∈ {0, 1}n be the circuit
input. The t-gate tampered computation y = CTs (x) for some tampering strategy
T is defined as follows.

1. T is a set of up to t triples of the form (f, g, p), where g ∈ VG ∪ V ′, f
can be any function f : {0, 1}l → {0, 1}, where l is the arity of the gate
represented by g, and p defines persistent (or not) attacks as in definition 5.
The tampering substitutes the gate functionality of g to be the function f .

2. The computation of the circuit is executed as in definition 3 taking into
account the tampering instructions of T .

Definition 7 (v-round wire (resp. gate) tampered computation) Let C
be a circuit and Env = (s,v) a pair of random variables. A v-round tam-
pered computation w.r.t. Env is a random variable (v,AC∗(·)(v)) s.t. A is a
polynomial-time algorithm that is allowed to submit v queries to the circuit which
is initialized to state s and in the i-th query it performs a wire (resp. gate) tam-
pered computation according to tampering instructions Ti specified by A. Note
that the computation respects persistent tampering as specified by A.

8

Notation. We will denote wire and gate adversaries respectively by Aw and Ag.
Moreover, Atw (resp. Atg) denotes a wire (resp. gate) adversary who tampers
with t circuit wires (resp. gates). The output of a single-round wire (resp. gate)
adversary Aw (resp. Ag) with strategy Tw (resp. Tg) who performs a tampered

computation on C is denoted by A[C,Tw]
w (resp. A[C,Tg]

g). The output of a multi-

round adversary Ag (resp. Aw) is denoted by AC
∗(·)

g (resp. AC
∗(·)

w). For n ∈ N,
[n] is the set {1, . . . , n}. The statistical distance between two random variables
X, Y , with range D, is denoted by ∆(X,Y), i.e., ∆(X,Y) = 1

2

∑
u∈D |Pr[X =

u] − Pr[Y = u]|. Finally, if D is a distribution over D, X ∼ D indicates that
variable X follows distribution D.

3 Impossibility results

In this section we prove that for any non-trivial cryptographic device imple-
mented by some circuit C ∈ CG of depth d, where G contains boolean logic
gates, tamper-resilience is impossible (i) when wire adversaries land d(k − 1)
non-persistent tampering attacks on the wires of C, where k is the maximum
fan-in of the elements in G, and (ii) when gate adversaries non-persistently tam-
per with d gates of C. In order to do so, we define the notion of non-triviality,
which characterizes meaningful implementations and then we prove that every
non-trivial circuit C possesses a weakly unpredictable bit (Lemma 1). Then we
define an adversarial strategy T , such that for any x ∈ {0, 1}n, CT (x) is statis-
tically far from the output of SC(·), for any PPT algorithm S.

A non-trivial cryptographic device is one that contains a circuit for which no
adversary can produce its entire secret-state in polynomial-time when allowed
black-box access to it. Formally,

Definition 8 (non-triviality property) Let Env = (s,v) be a pair of ran-
dom variables, and let Cs be a circuit with secret state s. We say that Cs satisfies
the non-triviality property w.r.t. environment Env if for every PPT algorithm
A there exists a non-negligible function f(m) such that

Pr[ACs(·)(v) = s] < 1− f(m).

The above definition is a necessary property from a cryptographic point of
view, since its negation implies that the device can be replicated with only black-
box access. Thus any attacker can render it redundant by recovering its secret
state and instantiating it from scratch. We then focus on specific bits of the
secret state. We define a bit to be weakly unpredictable if predicting its value
always involves a non-negligible error given black-box access to the device.

Definition 9 (weakly unpredictable bit) Let Env = (s,v) be a pair of ran-
dom variables, and Cs be a circuit with secret state s. Then Cs possesses a weakly
unpredictable bit w.r.t. environment Env if there exists an index i, 1 ≤ i ≤ m,
such that for every PPT algorithm A there exists a non-negligible function δ(m)
such that

Pr[ACs(·)(v) = si] < 1− δ(m).

9

Armed with the above definitions we demonstrate that any non-trivial circuit
possesses at least one weakly unpredictable bit.

Lemma 1 Let Env = (s,v) be a pair of random variables. Then for every
circuit Cs, if Cs satisfies the non-triviality property w.r.t. enviroment Env, then
Cs possesses a weakly unpredictable bit, again w.r.t. Env.

The above lemma is proved3 by contradiction: we consider a circuit Cs which
satisfies the non-triviality property and none of its bits is a weakly unpredictable
bit. Then we construct an algorithm which extracts s with probability 1−f(m),
for some non-negligible function f(m).

We next give the impossibility result for circuits that consist of standard
AND, NOT and OR gates, and for the case of wire adversaries. The impossibil-
ity is via a construction: we design a specific single round adversary A that is
non-simulatable in polynomial time. The main idea behind the construction is
exploiting the tampering instructions so that we correlate the output of the cir-
cuit with the weakly unpredictable bit contained in the secret state. Concretely,
in the proof of theorem 1 we define a wire adversary Aw who acts as follows:
she targets the weakly unpredictable bit si and a path P from the i-th memory
gate to one output gate, say yj . Then she chooses a tampering strategy Tw on
wires which ensures that si remains unchanged during its pass through the cir-
cuit gates. For instance, if at some point the circuit computes g(si, x), where x
is an input or secret state bit, then (i) if g is an AND (resp. OR) gate then Aw

sets (resp. resets) the wire that carries x, and the circuit computes ∧(si, 1) = si
(resp. ∨(si, 0) = si). After defining Tw, Aw executes CTws (x) for some x ∈ {0, 1}n
of her choice and outputs si. The challenge for S is to output the unpredictable
bit with probability close to 1, while having only black box access to Cs.

Theorem 1 (Wire Adversaries - Binary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where
G = {∧,∨,¬} and s ∈ {0, 1}m, that satisfies the non-triviality property w.r.t.
Env, there exists a single round adversary Aw with strategy Tw, where |Tw| ≤ d,
such that for every PPT simulator S having black-box access to Cs, it holds that

∆(SCs(·)(v), A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible function f(m).

The above theorem also holds for circuits that contain NAND gates, when the
adversary is allowed to tamper with 2d circuit wires. Concretely, the adversarial
strategy against g(si, x), where g is a NAND gate, is the following: Aw resets
the wire that carries x and toggles the wire that carries si. The next corollary
generalizes the above theorem for circuits that consist of gates with fan-in greater
than two. Consider for example an AND gate with fan-in k, which receives the
weakly unpredictable bit, si, on some of its input wires. If the adversary sets the
k − 1 remaining wires, then the gate outputs si.

Corollary 1 (Wire Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where

3 For detailed proofs see the paper’s full version.

10

s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the non-
triviality property, there exists a single round adversary Aw with strategy Tw,
where |Tw| ≤ d(k − 1), such that for every PPT simulator S having black-box

access to Cs, ∆(SCs(·)(v),A[Cs,Tw]
w (v)) ≥ f(m), for some non-negligible function

f(m).

Finally, we give an impossibility result with respect to gate adversaries. The
main idea behind Ag’s strategy in the following theorem, e.g. against an AND
gate with fan-in k that receives the weakly unpredictable bit si, is the following:
Ag substitutes the AND gate with the function that projects the value of the
incoming wire that carries si to all outgoing wires.

Theorem 2 (Gate Adversaries - Arbitrary Fan-in) Let Env = (s,v) be a pair
of random variables. Then for every circuit Cs ∈ CG of depth d ∈ N, where
s ∈ {0, 1}m and G = {∧,∨,¬} with bounded fan-in k, that satisfies the non-
triviality property, there exists a single round adversary Ag with strategy Tg,
where |Tg| ≤ d, such that for every PPT simulator S having black-box access to

Cs, ∆(SCs(·)(v),A[Cs,Tg]
g (v)) ≥ f(m), for some non-negligible function f(m).

Notice here that |Tg| does not depend on k.

4 Wire vs. Gate Adversaries

In this section we investigate the relation between wire and gate adversaries
of Definitions 5 and 6, respectively. Concretely, we prove that for any boolean
circuit Cs and PPT adversary Atw with strategy Tw, t ∈ N, there exists a PPT
adversary Atg with strategy Tg, such that for any tampering action in Tw, there
exists an action in Tg that produces the same tampering effect (Theorem 3).
Then we show that the other direction does not hold, i.e., we prove that gate
adversaries are strictly stronger than wire ones (Theorem 4).

Wire adversaries are subsumed by Gate adversaries. We show that any wire
tampering strategy is possible to be simulated by a suitable gate tampering
strategy.

Now we briefly discuss the main idea behind Theorem 3, i.e., we describe
how the gate adversary simulates tampering attacks on circuit wires w.r.t. to
an AND gate g with two input wires, x, y, and one output wire w. So, if Atw,
t ≥ 3, resets x or y, then At′g , t′ ≥ 1, replaces g with the zero function, and if Atw
sets both x and y, then the gate adversary replaces g with f(x, y) = 1. On the
other hand, if Atw sets x (resp. y) then Atg substitutes g with f(x, y) = y (resp.
f(x, y) = x). The other cases consider more complex tampering combinations
on input and output wires, as well as, tampering with memory gates, and they
can be similarly dealt with.

Theorem 3 Let Env = (s,v) be a pair of random variables. For every circuit C
with gates G = {∧,∨,¬}, t ∈ N, and any v-round PPT wire adversary Atw, there

11

exists a v-round gate adversary Alg, for some l ∈ N, l ≤ t, such that AC
∗
s (·)

w (v)

is identically distributed to AC
∗
s (·)

g (v).

Gate adversaries are stronger than wire adversaries. Consider a PPT gate ad-
versary Atg, t = 1, who tampers with an AND or an OR gate g that consists of
two input wires x, y, and a single output wire w, by replacing g with some g′ that
implements one of the 16 possible binary boolean functions4 fi : {0, 1}2 → {0, 1},
i ∈ [16]. For each fi, i ∈ [16]\{7, 10}, we give a tampering strategy for Atw, t ≤ 3,
that simulates the tampering effect of fi, for both AND and OR gates. Here we
abbreviate the attacks set, reset and toggle by S,R and T, respectively.

In the following, the variables x, y, w, will denote both circuit wires, as well
as their bit-values.

(0, 0) (0, 1) (1, 0) (1, 1) Repr. 1 Repr. 2

f1 1 1 1 1 1 ∧ 1 1 ∨ y

f2 1 1 1 0 ¬(x ∧ y) (¬x ∨ ¬y)

f3 1 1 0 1 ¬(x ∧ ¬y) ¬x ∨ y

f4 1 1 0 0 ¬x ∧ 1 ¬x ∨ 0

f5 1 0 1 1 ¬(¬x ∧ y) x ∨ ¬y
f6 1 0 1 0 ¬y ∧ 1 ¬y ∨ 0

f7 1 0 0 1 x == y (x ∧ y) ∨ (¬x ∧ ¬y)

f8 1 0 0 0 ¬x ∧ ¬y ¬(x ∨ y)

f9 0 1 1 1 ¬(¬x ∧ ¬y) x ∨ y

f10 0 1 1 0 x 6= y (x ∧ ¬y) ∨ (¬x ∧ y)

f11 0 1 0 1 1 ∧ y 0 ∨ y

f12 0 1 0 0 ¬x ∧ y ¬(x ∨ ¬y)

f13 0 0 1 1 x ∧ 1 x ∨ 0

f14 0 0 1 0 x ∧ ¬y ¬(¬x ∨ y)

f15 0 0 0 1 x ∧ y ¬(¬x ∨ ¬y)

f16 0 0 0 0 0 ∧ y 0 ∨ 0

At
w’s strategy − AND gate At

w’s strategy − OR gate

((S, x), (S, y)) (S, x)

(T, w) ((T, x), (T, y))

((T, y), (T, w)) (T, x)

((T, x), (S, y)) ((T, x), (R, y))

((T, x), (T, w)) (T, y)

((T, y), (S, x)) ((T, y), (R, x))

— —

((T, x), (T, y)) (T, w)

((T, x), (T, y), (T, w)) No action

— —

(S, x) (R, x)

(T, x) ((T, y), (T, w)

(S, y) (R, y)

(T, y) ((T, x), (T, w)

No action ((T, x), (T, y), (T, w))

(R, x) ((R, x), (R, y))

Table 1: All boolean functions from {0, 1}2 to {0,1} and At
w’s tampering strategy.

We observe that there is no tampering strategy for Atw consisting of set, reset
or toggle attacks on x, y and w, that simulates the tampering effect of f7(x, y) =
(x == y) (NXOR) and f10(x, y) = (x 6= y) (XOR). We use this observation as
a key idea behind theorem 4 which provides a “qualitative” separation between
the two classes of adversaries.

In the following we prove that for any n, l, k ∈ N, there exist a circuit C̃
whose size depends on n, l, k, and a PPT adversary Ang , such that for all PPT
adversaries Atw, where t ≤ l, Atw fails to simulate the view of Ang while interact-

ing with C̃. Our construction for the counterexample circuit C̃ is presented in
Figure 1. It consists of two subcircuits, C1, C2, which will be protected against
adversaries who tamper with up to l of their wires (l-wire secure). C1 is the
secure transformation of some circuit C ′1 which implements a pseudorandom
function Fs(x), together with a counter (Cra) and a signing algorithm (Signsk′)
of a digital signature scheme Π =(Gen,Sign,Vrfy) with secret key sk′, |sk′| = 2n.
C1 computes Fs(c) and produces two n-bit strings s′a and s′b. Here, c denotes the
current counter value and the computation is based on the secret s. Afterwards,
the computation σ1 =Signsk′(c, s

′
a,s′b) takes place and m1 = ((c, s′a, s

′
b), σ1) is

given as input to C2, which is the l-wire secure transformation of a circuit C ′2.
Furthermore, the two n-bit strings s′a and s′b, are given as input to the AND gates

4 For clarity, and besides f7 and f10, we give the functions’ representation by logic
formulas with respect to both ∧ (Repr. 1) and ∨ (Repr. 2) operators.

12

which compute s′a ∧ s′b. The result z is given as input to C2 which implements
another instantiation of the signing algorithm on input z and the counter (Cr2).
Eventually C2 computes σ2=Signsk′(c, z,m1) and outputs m2 = ((c, z,m1), σ2).
Notice that Cr1 and Cr2 produce the same output in every round and their
initial value is zero.

In order to construct the l-wire secure circuits C1, C2, we employ the compiler
of [18]. This compiler receives the security parameter k, the maximum number
of tampering attacks l, C ′1, and outputs C1. In the same way we transform C ′2 to
C2. Since [18] considers reversible NOT gates, i.e., gates on which any tampering
action on either side propagates to the other side as well, the NOT gates of C1,
C2, are also reversible. The final circuit C̃ is the composition of C1, C2, as shown
in Figure 1. Now, the area between C1 and C2 (we call this the critical area) is

z1 zn. . .

s′ns′1 . . .s′n+1 s′2n

Cr1

(counter)

(counter)

Cr2

s1

∧· · ·∧

. . .

c

Secret key

C1

C2

· · ·

Fs(c)
(PRF)

c

c

z

s′bs′a

m1 = ((c, s′a, s
′
b), σ1)

l-wire secure implementation

l-wire secure implementation

m2 = ((c, z,m1), σ2)

Signsk′(c, s
′
a, s

′
b)

Signsk′(c, z,m1)

s2n

C̃

Fig. 1: The circuit C̃ for the separation theorem.

the part of C that the gate adversary will tamper with by substituting each AND
gate with an XOR gate. This will be the main challenge for the wire adversary
and its reason to fail the simulation. Specifically, in order to succeed in the
simulation the wire adversary should produce two valid signatures σ1 and σ2

13

on the messages (c, s′a, s
′
b) and (c, z,m1) where c is an integer representing the

number of rounds the circuit has been executed and z = s′a ⊕ s′b. Now observe
that in normal execution the value z is defined as s′a ∧ s′b and it is infeasible
for the wire adversary to simulate XOR gates using wire tampering directly in
the critical area. We emphasize that even by fully controlling the input z to the
second circuit C2 (and thus entirely circumventing the difficulty of manipulating
the ∧ gates) the wire adversary is insufficient since it will have to provide a valid
signature in order to execute a proper C2 evaluation and the only way such a
string can come to its possession is via a previous round of circuit execution; this
will make the counter found inside each of the two signatures of the final output
to carry different values and thus be detectable as a failed simulation attempt.

Using the above logic we now proceed as follows. For the circuit that we
have described we consider a simple one-round gate adversary Ang that tampers
with the gates in the critical area transforming them into XOR gates and then
returns the output of the circuit. Then we show that there exists a polynomial-
time distinguisher that given any wire-adversary operating on the same circuit
for any polynomial number of rounds is capable of essentially always telling
apart the output of the wire adversary from the output of the gate adversary.
The impossibility result follows: the knowledge gained by the gate adversary
from interacting with the circuit (just once!) is impossible to be derived by any
wire adversary (no matter the number of rounds it is allowed to run the circuit).

In the following, the circuit defined above is called C̃s̃ with parameters
n, k, l ∈ N, where s̃ denotes its secret state. Now we define a distinguisher

D w.r.t. C̃s̃, which receives the public information v related to s̃ and AC̃∗s̃ (·), for
some tampering adversary A, and distinguishes the output of the gate adversary
from the output of the wire adversary.

Distinguisher D(v,m2) w.r.t. C̃s̃:
Distinguisher precondition: The environment variable Env = (s̃,v) where s̃
determines the secret-state of C̃ is such that v consists of the public key pk of
the digital signature Π and s̃ contains two copies of the secret key of Π, sk′, the
secret-key of the PRF and the two counters initialized to 0.

Verification: On input m2 = ((c′,d,m1), σ2), where m1 = ((c,da,db), σ1):

if Vrfypk((c
′,d,m1), σ2) = 0, output 0,

else if Vrfypk((c,da,db), σ1)) = 0, output 0,

else if d 6= da ⊕ db, output 0,

else if c′ 6= c, output 0,

else output 1.

Fig. 2: The distinguisher D

14

Theorem 4 For all l, k ∈ N, polynomial in n, for the circuit C̃s̃ of Figure 1 with
parameters n, k, l and Env as in Figure 2, there exists 1-round gate adversary
Ang such that for every (multi-round) PPT wire adversary Alw it holds for the
distinguisher D defined in Figure 2:

|Pr[D(v,AC̃
∗
s̃ (·)

w) = 1]− Pr[D(v,AC̃
∗
s̃ (·)

g) = 1]| = 1− negl(n).

In the above theorem, the circuit C̃s̃ which distinguishes wire and gate ad-
versaries has a persistent private state which is a random cryptographic key and
is operational for an unbounded number of invocations. If one accepts more re-
stricted circuits to be used as counterexamples for separation, specifically circuits
that self-destruct after one invocation, we can simplify the separation result via
a much simpler circuit. For more details we refer the reader to the paper’s full
version.

5 Protecting against Gate Adversaries

5.1 Properties that ensure security

The following definition generalizes the properties of the compiler presented in
[18] and formalizes the functionality for the main parts of the transformed circuit.
Definition 10 is a versatile tool for providing tamper-resilient compilers that may
be of independent interest. The logic is as follows: we define a (t, k)-secure circuit
compiler to be a mapping that produces a circuit accompanied with certain
distributions and gate encodings. Specifically the compiler substitutes each wire
of the given circuit with a wire-bundle and each gate with a gate that operates
over wire-bundles. Within each wire-bundle a specific probability distribution is
supposed to exist that encodes probabilistically the 0’s and 1’s of the original
circuit. We note that in the definition below we purposefully leave the exact
nature of the class of tampering attacks undetermined.

Definition 10 ((t, k)-secure circuit compiler) For every t, k ∈ N, the map-
ping T over circuits C ∈ CG with n input bits and m output bits where G = {∧,¬}
and n, m ∈ N and memory strings s,

(C, s)→ 〈D0,D1,D⊥〉 , 〈C∧, C¬〉 ,
〈
Cenc, Cdec, Ĉ, s

′, Ccascade

〉
is a (t, k)-secure circuit compiler if the circuit C ′s′ = Cdec ◦Ccascade ◦ Ĉs′ ◦Cenc re-
alizes the same functionality with Cs and for any PPT adversary A with strategy
T , where |T | ≤ t, the following hold

1. (Encoding) D0, D1 are distributions of strings in {0, 1}p, which correspond
to valid encodings of the bits 0 and 1, respectively. The length of the encoding,
p, depends on the security parameter k and also on t. Moreover, let Si be
the support set of Di, for i ∈ {0, 1}. Then, the aforementioned distributions
must satisfy the following properties:

15

(a) S0 ∩ S1 = ∅. The set of invalid encodings is S⊥ = {0, 1}p\(S0 ∪ S1).
(b) Each tampering attack against a circuit component that affects a wire-

bundle that contains either a sample from D0 or D1 may (i) leave the
value unchanged, or (ii) produce an element in S⊥. Moreover, there is
an efficient way to predict the effect of the tampering (as a distribution
over the two events (i) and (ii)).

2. (Encoder-decoder) The circuit Cenc for each input bit 0 (resp. input bit
1) samples D0 (resp. D1). Moreover, for any x ∈ {0, 1}n the distribution
of CTenc(x) is predictable given the tampering strategy T and x. Cdec is a
deterministic circuit which maps any element of S0 to 0 and any element of
S1 to 1.

3. (Circuit gates) The secret state of C, s, is substituted by s′, where s′ is the
encoding of s. Additionally, every gate in C with functionality f ∈ {∧,¬},
n′ input wires and m′ output wires, is being substituted with the circuit Cf
with pn′ input wires and pm′ output wires. Every wire of C is substituted by
a bundle of wires w, which carries an element in S0 ∪ S1.
The resuling circuit is Ĉ and the following hold:
(a) (Correctness) For i, j ∈ {0, 1}, if x ∼ Di, y ∼ Dj then it holds that

C∧(x,y) ∼ D∧(i,j) and C¬(x) ∼ D¬i.
(b) (Error propagation) If x ∈ S⊥ or y ∈ S⊥, then C∧(x,y) ∼ D⊥ and

CT∧ (x,y) ∈ S⊥. The case for C¬ is similar.
(c) (Simulatability) For i, j ∈ {0, 1}, x ∼ Di, y ∼ Dj, one of the following

must hold: (i) CT∧ (x,y) = C∧(x,y) or (ii) CT∧ (x,y) ∈ S⊥. Moreover,
there is an efficient way to predict the effect of the tampering as a distri-
bution over the events (i) and (ii), given T . The case for C¬ is similar.

4. (Error propagation & self destruction) Ccascade is a circuit which re-
ceives ({0, 1}p)m′ wires and returns output in ({0, 1}p)m′ , i.e., it receives m′

wire-bundles and outputs m′ wire-bundles. It is applied on the output wire-
bundles of Ĉ as well as the wire-bundles of Ĉ that update the circuit’s secret
state (therefore m ≤ m′ ≤ m+q). Its purpose is to propagate encoding errors
and erase the circuit memory (if needed); it works as follows:
(a) If for all i ∈ {1, . . . ,m′}, yi ∈ S0 ∪ S1, then (1) for all i ∈ {1, . . . ,m′},

the i-th output wire-bundle of Ccascade(y1, . . . ,ym′) is equal to yi, and (2)
the output distributions of Ccascade(y1, . . . ,ym′) and CTcascade(y1, . . . ,ym′)
are simulatable given T and Cs(x), where x ∈ {0, 1}n denotes the circuit
input.

(b) If there exists i ∈ {1, . . . ,m′}, s.t. yi ∈ S⊥, then, (1) all output wire-
bundles of Ccascade(y1, . . . ,ym′)) will be distributed according to D⊥, (2)
all output wire-bundles of CTcascade(y1, . . . ,ym′) will be in S⊥, and (3)
the distribution of all output wire-bundles of CTcascade(y1, . . . ,ym′) will be
simulatable given the tampering strategy T and Cs(x).

5.2 Tamper-resilient circuits against gate adversaries

Now we give a high level overview of [18] casted as an instance of Definition
10, and we define a gate adversary that compromises its security by attacking

16

randomness gates. Then we prove that by substituting randomness gates with
PRNGs, we receive a (t, k)-secure circuit compiler against gate adversaries who
tamper with up to t circuit gates. Finally, we prove security for any compiler
that satisfies the properties of Definition 10.

A high level description. In [18] the authors consider an encoding in which each
input or secret state bit, say x, in the original circuit is encoded into a string of
2k2t bits (r2kt1 || . . . ||r2ktk), where each ri is a random bit, i ∈ [k − 1], and rk =
x⊕r1⊕. . .⊕rk−1. Here, k denotes the security parameter and t is the upper bound
on the number of wires that the adversary may tamper with in each computation.
The resulting encoding is handled by circuits that implement the functionality of
the atomic AND and NOT gates, perform computations over encoded values and
satisfy the properties of Definition 10 against wire adversaries. Concretely, let C
be a circuit, x an input bit to C and s a secret state bit, and assume that some
part of C computes z = x ∧ s. According to the aforementioned encoding, the
transformed circuit C ′ encodes x to (r2kt1 || . . . ||r2ktk), where ri, i ∈ [k− 1], is the
output of a randomness gate with fan-out (2kt), 5 and computes z = C∧(x, e),
using a subcircuit C∧ that handles the encoded circuit values and “securely”
implements the AND gate. Here, e and z denote the encoded version of s and
z, respectively, and z = (z2kt1 || . . . ||z2ktk) is the output of C∧ which satisfies
zi = risi⊕

⊕
j 6=iRi,j , for 1 ≤ i < j ≤ k, Ri,j is the output of a randomness gate

with fan-out a multiple of 2kt and Rj,i = (Ri,j ⊕ risj) ⊕ rjbi. The number of

randomness gates employed by C∧ is k(k−1)
2 . Observe that the value of each wire

in the original circuit is shared among k wires and each one of them is replicated
2kt times, i.e., each “bundle” consists of k “subbundles” with 2kt wires each. The
negation of an encoding e is computed by a circuit C¬ which consists of 2kt NOT
gates that simply negate one of the subbundles of e. The whole transformation
is the composition of three compilers, and the above description refers to the the
second compiler, say Trand. The third compiler replaces randomness gates with
circuits that generate pseudo-random bits.

Fact: The compiler of [18] conforms to Definition 10. Let Atw be a wire adversary
for C ′, which is the t-secure transformation of C with respect to Trand, and let
s be a secret state bit of C. As we discussed above, s is encoded into e =
(e2kt1 || . . . ||e2ktk), where each ei, i ∈ [k−1], is a random bit, and ek = s⊕e1⊕. . .⊕
ek−1. Let us consider what happens if Atw tampers with up to t wires of C ′, where
t can be greater than k, and moreover, assume that she tampers with at most
k−1 different “subbundles” that carry randomized shares of the value s. In such
a scenario, the size of each subbundle, which is 2kt, and the randomization of the
carrying values ensure that the adversary may leave the value of each subbundle
unchanged or she may alter the value of up to t of its wires, in which case she
instantly produces an invalid encoding. Moreover, the effect of the tampering
is simulatable in the following way. The simulator simulates the output of the

5 Besides the 2kt wires employed by the encoding, some extra copies of r2kti are needed
for computing r2ktk , i ∈ [k − 1].

17

randomness gates by producing her own randomness, and then she decides the
effect of the tampering without touching the distribution of s. On the other
hand, if the adversary tampers with all subbundles, and since the randomization
on the circuit’s signals ensures that each tampering attack produces a fault
with constant probability, the simulator knows that the probability that none of
the attacks produce an invalid encoding is exponentially small in k. Therefore,
with all but negligible (in k) probability an error is induced and propagated
by the following circuit components: the cascade phase (Property 4) and the
circuits that implement the standard gates of the original circuit (Property 3).
Since C∧ and C¬ also produce randomized shares, a similar argument gives us
simulatability against adversaries who tamper with such encodings.

Reversible gates. As we have already discussed in section 4, [18] assumes re-
versible NOT gates. As in [18], in this section we will consider reversible tam-
pering, i.e., the adversary who tampers with a reversible NOT gate produces
a tampering effect that propagates to the gate’s incoming wire (note also that
w.r.t. NOT gates the wire and gate adversaries are equivalent).

The compiler Trand is insecure against gate tampering. Let x, s, z and x, e, z
be the values defined above and consider an adversary who (i) sets to zero the
k − 1 randomness gates Ri,i+1, for i ∈ [k − 1], that lie on C∧, (ii) sets to zero
the k − 1 randomness gates that lie on Cenc and produce the randomness which
is used to encode an input bit x into x = (r2kt1 || . . . ||r2ktk), and (iii) tampers
with a gate that outputs zk. Apparently, the 2(k−1) attacks on the randomness
gates are fully simulatable. Nevertheless, we have zi = 0, for i ∈ [k − 1] and
zk = x · s. Hence, in order to simulate the attack on the gate that outputs zk,
the simulator has to make a “guess” on s and the simulation breaks. Notice, that
since we consider persistent tampering, an adversary Atg, with t < k, can land the

aforementioned attack in 2dkt e rounds by tampering with t circuit gates in each
round. In general any persistent gate adversary may completely eliminate the
circuit’s randomness, and the second stage compiler Trand of [18] collapses when
subjected to this gate adversary attack. Now, we describe how to circumvent
such attacks.

In the full version of the paper we describe how to substitute randomness
gates with pseudo-random generators, and then we prove that the resulting com-
piler, named Tcomp, satisfies the properties of Definition 10 against gate adver-
saries. Here we give the intuition on why this construction retains its properties
against gate adversaries. The key idea is that eliminating randomness gates ef-
fectively removes the advantage of the gate adversary. This is the case because
all other gates employed by Trand even those whose fan-out is somehow big (and
hence may be thought to be higher value targets for a gate attack), lead to
different wire-subbundles. Therefore, a gate adversary that induces a fault will
spread the fault to multiple circuit gates. The circuit’s defense mechanisms of
[18] will then be able to detect the invalid encodings with high probability.

Theorem 5 For every t, k ∈ N, the compiler Tcomp is a (t, k)-secure circuit
compiler per definition 10 w.r.t. the class of PPT gate attackers Atg.

18

The final theorem (which may be of independent interest) states that any com-
piler which satisfies the properties of definition 10, produces tamper resilient
circuits with respect to the standard simulation based security definition.

Theorem 6 Let Cs any boolean circuit, Tcomp a (t, k)-secure circuit compiler,
t, k ∈ N, and let C ′s′ be the secure transformation of Cs w.r.t. Tcomp. Then
for every tampering adversary A for which definition 10 applies, there exists a

simulator S such that ∆(SCs(·)(v),AC
′∗
s′ (·)(v)) is negligible in k.

The proofs of the above theorems are given in the full version of this paper.

Acknowledgements. This research was supported by ERC project CODAMODA.
The second author was also supported by EU FP7 project UaESMC.

References

1. Ross Anderson and Markus Kuhn. Tamper resistance-a cautionary note. In Pro-
ceedings of the second Usenix workshop on electronic commerce, volume 2, pages
1–11, 1996.

2. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In
Advances in Cryptology-CRYPTO 2001, pages 1–18. Springer, 2001.

3. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Robust pcps of proximity, shorter pcps and applications to coding. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
1–10. ACM, 2004.

4. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology-CRYPTO’97, pages 513–525. Springer, 1997.

5. Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the ad-
vanced encryption standard (AES). In Financial Cryptography, pages 162–181.
Springer, 2003.

6. Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance
of checking cryptographic protocols for faults. In Advances in Cryptology-
EUROCRYPT’97, pages 37–51. Springer, 1997.

7. Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of
eliminating errors in cryptographic computations. Journal of cryptology, 14(2):101–
119, 2001.

8. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in tamper resilience.
In Advances in Cryptology–ASIACRYPT 2011, pages 740–758. Springer, 2011.

9. Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-
rate tampering. In Advances in Cryptology–CRYPTO 2012, pages 533–551.
Springer, 2012.

10. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434–452. Tsinghua University Press, 2010.

11. Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits:
How to trade leakage for tamper-resilience. In Automata, Languages and Program-
ming, pages 391–402. Springer, 2011.

12. Péter Gács and Anna Gál. Lower bounds for the complexity of reliable boolean
circuits with noisy gates. Information Theory, IEEE Transactions on, 40(2):579–
583, 1994.

19

13. Anna Gal and Mario Szegedy. Fault tolerant circuits and probabilistically checkable
proofs. In Structure in Complexity Theory Conference, 1995., Proceedings of Tenth
Annual IEEE, pages 65–73. IEEE, 1995.

14. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Cryptographic Hardware and Embedded SystemsCHES
2001, pages 251–261. Springer, 2001.

15. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Theory of Cryptography, pages 258–277. Springer,
2004.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

17. Sudhakar Govindavajhala and Andrew W Appel. Using memory errors to attack
a virtual machine. In Security and Privacy, 2003. Proceedings. 2003 Symposium
on, pages 154–165. IEEE, 2003.

18. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private cir-
cuits ii: Keeping secrets in tamperable circuits. In Advances in Cryptology-
EUROCRYPT 2006, pages 308–327. Springer, 2006.

19. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology-CRYPTO 2003, pages 463–481.
Springer, 2003.

20. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chap-
man & Hall, 2008.

21. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel crypt-
analysis of product ciphers. In Computer Security-ESORICS 98, pages 97–110.
Springer, 1998.

22. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology-CRYPTO’99, pages 388–397. Springer, 1999.

23. Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology-CRYPTO’96, pages 104–113.
Springer, 1996.

24. Markus G Kuhn and Ross J Anderson. Soft tempest: Hidden data transmission
using electromagnetic emanations. In Information Hiding, pages 124–142. Springer,
1998.

25. Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof security un-
der probing attacks. In Security and Cryptography for Networks, pages 106–120.
Springer, 2010.

26. Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory
of Cryptography, pages 278–296. Springer, 2004.

27. Nicholas Pippenger. On networks of noisy gates. In Foundations of Computer
Science, 1985., 26th Annual Symposium on, pages 30–38. IEEE, 1985.

28. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Smart Card Programming
and Security, pages 200–210. Springer, 2001.

29. Josyula R Rao and Pankaj Rohatgi. Empowering side-channel attacks. IACR
ePrint, 37, 2001.

30. Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002, pages 2–12. Springer,
2003.

20

