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Abstract. Functional encryption (FE) enables fine-grained access con-
trol of encrypted data while promising simplified key management. In the
past few years substantial progress has been made on functional encryp-
tion and a weaker variant called predicate encryption. Unfortunately,
fundamental impossibility results have been demonstrated for construct-
ing FE schemes for general functions satisfying a simulation-based defi-
nition of security.

We show how to use hardware tokens to overcome these impossibility re-
sults. In our envisioned scenario, an authority gives a hardware token and
some cryptographic information to each authorized user; the user com-
bines these to decrypt received ciphertexts. Our schemes rely on stateless
tokens that are identical for all users. (Requiring a different token for each
user trivializes the problem, and would be a barrier to practical deploy-
ment.) The tokens can implement relatively “lightweight” computation
relative to the functions supported by the scheme.

Our token-based approach can be extended to support hierarchal func-
tional encryption, function privacy, and more.

1 Introduction

In traditional public-key encryption, a sender encrypts a message M with respect
to the public key pk of a particular receiver, and only that receiver (i.e., the
owner of the secret key associated with pk) can decrypt the resulting ciphertext
and recover the underlying message. More recently, there has been an explosion
of interest in encryption schemes that can provide greater flexibility and more
refined access to encrypted data. Such schemes allow the sender to specify a
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policy at the time of encryption, and enable any user (decryptor) satisfying the
policy (within the given system) to decrypt the resulting ciphertext.

Work in this direction was spurred by constructions of identity-based en-
cryption (IBE) [8], fuzzy IBE [43], and attribute-based encryption [29]. Each of
these can be cast as special cases of predicate encryption [11, 35], which is in
turn a special case of the more powerful notion of functional encryption (FE)
recently introduced by Boneh, Sahai, and Waters [10]. Roughly speaking, in an
FE scheme a user’s secret key SKK is associated with a policy K. Given an
encryption of some message M , a user in possession of the secret key SKK as-
sociated with K can recover F (K,M) for some function F fixed as part of the
scheme itself. (In the most general case F might be a universal Turing machine,
but weaker F are also interesting.)

Security of functional encryption, informally, guarantees that a group of users
with secret keys SKK1

, . . . , SKK`
learn nothing from an encryption of M that

is not implied by F (K1,M), . . . , F (K`,M) (plus the length of M). As far
as formal definitions are concerned, early work on predicate encryption used
an indistinguishability-based definition of security, but Boneh et al. [10] and
O’Neill [41] independently showed that such a definitional approach is not,
in general, sufficient for analyzing functional encryption. They suggest to use
stronger, simulation-based definitions of security (similar in spirit to semantic
security) instead.

In the past few years substantial progress has been made in this area [42, 25,
4, 26, 17, 24, 18, 3, 14, 1]. Yet several open questions remain. First, it remains an
unsolved problem to construct an FE scheme for arbitrary functions F with un-
bounded collusion resistance. Second, it is unknown how to realize the strongest
simulation-based notion of security for functional encryption. In fact, Boneh et
al. [10] and Agrawal et al. [1] showed fundamental limitations on achieving such
definitions for FE schemes supporting arbitrary F .

Here we propose the use of (stateless) hardware tokens to solve both the
above issues. In our envisioned usage scenario, an authority gives a hardware
token along with a cryptographic key SKK to each authorized user; the user
combines these in order to decrypt received ciphertexts. We believe this would
be a feasible approach for realizing functional encryption in small- or medium-
size organizations where an authority could purchase hardware tokens, customize
them as needed, and then give them directly to users in the system.

The idea of using physical devices to bypass cryptographic impossibility re-
sults has been investigated previously. Katz [34] showed that hardware tokens
can be used for universally composable computation of arbitrary functions. His
work motivated an extensive amount of follow-up work [12, 40, 13, 27, 28, 15].
In the context of program obfuscation, several works [28, 6, 16] considered using
hardware tokens to achieve program obfuscation, which is impossible in the plain
model even for simple classes of programs [2].

A token-based approach should have the following properties:
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1. The tokens used should be universal, in the sense that every user in the
system is given an identical token. Having a single token used by everyone
appears to be the only way to make a token-based approach viable.

2. In applications where the complexity of F is high, it is desirable that tokens
be “lightweight” in the sense that the complexity of the token is smaller than
the complexity of F .

In this work, we show token-based solutions that satisfy the above requirements.
Additionally, our constructions satisfy a strong simulation-based notion of secu-
rity and have succinct ciphertexts (of size independent of F ). We provide the
intuition behind our approach in the next section.

1.1 Our Results

Let pk, sk denote the public and secret keys for a (standard) public-key en-
cryption scheme. Intuitively, a trivial construction of an FE scheme based on
(stateless) tokens is to let pk be the master public key, and to give the user asso-
ciated with key K a token which implements the functionality tokensk,K(C) =
F (K,Decsk(C)). In this scheme the tokens are not universal, as each user must
be given a token whose functionality depends on that user’s key K. Perhaps
more surprising is that this scheme is not secure: nothing prevents a user from
modifying C before feeding the ciphertext to its token; if the encryption scheme
scheme is malleable then a user might be able to use such a cheating strategy to
learn disallowed information about the underlying message M . We will address
both these issues in our solutions, described next.

Solution #1. We can address the universality issue by having the user provide
K along with C as input to the token. (The token will then implement the
functionality tokensk(K,C) = F (K,Decsk(C)).) Now we must prevent the user
from changing either K or C. Modifications of the key are handled by signing K
and hard-coding the verification key vk into the token; the token then verifies a
signature on K before decrypting as before. We show that illegal modification of
the ciphertext can be solved if the public-key encryption scheme is CCA2-secure;
we give the details in Section 4.2.

Solution #2. In the previous solution, the complexity of the token was (at least)
the complexity of computing F itself. We can use ideas from the area of veri-
fiable outsource of computation [19] in order to obtain a solution in which the
complexity of the token is independent of the complexity of F . The basic idea
here is for the token to “outsource” most of the computation of F to the user.
To do so, we now let the underlying public-key encryption scheme be fully ho-
momorphic [21]. Given a ciphertext C = Encpk(M), the user can now compute

the transformed ciphertext Ĉ = Encpk(F (K,M)) and feed this to the token for
decryption. To enforce correct behavior with lightweight tokens, we let the user
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provide a succinct non-interactive argument (SNARG) [23, 20, 5] that the compu-
tation is done correctly.4 The immediate problem with this approach is that any
fully-homomorphic encryption scheme is completely malleable! We here instead
rely on simulation-extractable non-interactive zero-knowledge proofs (NIZKs)
to deal with the malleable issue, where we let the encryptor provide an NIZK
proof that C = Encpk(M) is correctly encrypted. The computation done by the
token now involves (1) verifying the signature on K as in previous solution, and
(2) verifying the given SNARG and NIZK, (3) decrypting the given ciphertext,
all of which have complexity independent of F . We give the details in Section 4.3.

While both of our schemes are simple, we show in Section 6 that both schemes
satisfy a very strong notion of simulation-based security, where an adversary A
gets full access to the scheme (in particular, A can make an arbitrary number
of key queries and encryption queries in a fully adaptive way), yet cannot learn
any information beyond what it should have learnt through the access. At a high
level, our security proof crucially relies on the fact that in the simulation, the
simulator gets to simulate token’s answers to the queries made by the adversary,
which bypasses the information-theoretic arguments underlying the impossibility
results of Boneh et al. [10] and Agrawal et al. [1].

We remark that our constructions and the way we get around impossibility
results share some similarities to the work of Bitansky et al [6] on achieving
program obfuscation using stateless and universal hardware tokens, but the se-
curity notion of functional encryption and program obfuscation are different
and the results from both contexts does not seem to imply each other. For
example, one may think intuitively that by obfuscating the decryption circuit
Decsk,K(C) = F (K,Decsk(C)), one obtains a “trivial” construction of functional
encryption. However, such a construction cannot satisfy simulation-based secu-
rity as it does not bypass the impossibility results of [10, 1].

1.2 Extensions

Our approach can be extended in several ways; we sketch two extensions here.

Hierarchical functional encryption. Consider an encrypted database in a com-
pany where the top-level manager has the access control on the database that
allows different first-level departments to access different part of the data; then
any first level department, say, research department, allows different second level
sub-department to run different analytic/learning algorithms over the encrypted
data; this naturally induces a hierarchical access structure to the data. To sup-
port this natural variant of access control, we need hierarchical functional en-
cryption, which generalizes many primitives considered in the literature, such as
hierarchical IBE [33, 22, 7, 44, 37], hierarchical PE [36].

More precisely, to enable such a hierarchical structure, the global authority
may delegate a first level user Alice (under some functionality key KAlice with

4 As a technical note, while SNARGs are constructed based on knowledge-type as-
sumptions, we here rely on SNARGs for P, which can be formulated as a falsifiable
assumption.
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respect to functionality F1) the ability to generate a second level secret key
SKKAlice:KBob

of functionality key KBob with respect to functionality F2 for a
second level user Bob. For a message M encrypted under global master public
key, Bob should be able to decrypt F2(KBob, F1(KAlice,M)) using SKKAlice:KBob

.
Alice may further delegate Bob the ability to generate a third level secret key
SKKAlice:KBob:KCarol

of functionality key KCarol with respect to functionality F3,
and so on.

Our solution #1 can be readily extended to the hierarchical setting using
the idea of signature chains. Roughly, to delegate Alice such power, the global
authority generates a key pair (skAlice, vkAlice) of a digital signature scheme and
“authorizes” it by signing (KAlice, vkAlice); skAlice is given to Alice as a “dele-
gation key” and (KAlice, vkAlice) together with its signature are published. Alice
can then generate SKKAlice:KBob

by simply signing KAlice : KBob (using skAlice).
To decrypt, Bob queries the token with the ciphertext together with the chain of
signatures—including (KAlice, vkAlice) together with its signature and KAlice :
KBob together with its signature. The token returns F2(KBob, F1(KAlice,M)) if
the chain verifies. Alice can perform further delegation in a similar fashion.

The above solution has the drawback that all functionalities in the hierarchy
need to be determined in the global setup and hard-wired in the token. We
can further allow adaptively chosen functionalities by further “authorizing” the
functionality as well, but at the price that the token needs to receive a description
of the functionality (together with its authorization info) as its input, which
results in long query length. This issue can be addressed in the framework of our
solution #2, where the token only requires a succinct authorization information
of the functionality (as such, the complexity of the token remains independent of
the functionalities). We provide further details in the full version of this paper.

Function privacy. In a general FE scheme the secret key SKK may leak K.
Preventing such leakage is given as an interesting research direction in [10].
Very recently, Boneh et al. [9] studied the notion of function privacy for IBE,
and gave several constructions. We can modify our token-based constructions to
obtain function privacy in functional encryption: in the key generation, instead
of obtaining a signature of K, the users obtain an encrypted version signature
E(σ); the decryption key sk will be stored in token; at any moment when the
users receive a ciphertext C, instead of providing (C,K, σ), the tuple (C,K, E(σ))
will be given to token; the token would first decrypt E(σ) into σ and then verify
that σ is a valid signature on K and, if so, return the result F (K,Decsk(C)) as
in basic functional encryption constructions.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,
FHE.Eval) is a public-key encryption scheme that associates with an additional
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polynomial-time algorithm Eval, which takes as input a public key ek, a ci-
phertext ct = Encek(m) and a circuit C, and outputs, a new ciphertext ct′ =
Evalek(ct, C), such that Decdk(ct

′) = C(m), where dk is the secret key correspond-
ing to the public key ek. It is required that the size of ct′ = Evalek(Encek(m), C)
depends polynomially on the security parameter and the length of C(m), but is
otherwise independent of the size of the circuit C. We also require that Eval is
deterministic, and the scheme has perfect correctness (i.e. it always holds that
Decdk(Encek(m)) = m and that Decdk(FHE.Evalek(Encek(m), C)) = C(m)). Most
known schemes satisfies these properties. For security, we simply require that
FHE is semantically secure.

Since the breakthrough of Gentry [21], several fully homomorphic encryption
schemes have been constructed with improved efficiency and based on more
standard assumptions such as LWE (Learning With Error). In general, these
constructions achieve leveled FHE, where the complexity of the schemes depend
linearly on the depth of the circuits C that are allowed as inputs to Eval. However,
under the additional assumption that these constructions are circular secure (i.e.,
remain secure even given an encryption of the secret key), the complexity of the
schemes are independent of the allowed circuits, and the schemes can evaluate
any polynomial-sized circuit.

2.2 Non-interactive Zero-Knowledge Arguments

Let R be a binary relation that is efficiently computable. Let LR be the language
defined by the relation R, that is, LR = {x : ∃w s.t.(x,w) ∈ R}. For any pair
(x,w) ∈ R, we call x the statement and w the witness.

Definition 1 (NIZK). A tuple of ppt algorithms NIZK = (NIZK.Gen,NIZK.P,
NIZK.V ), is a non-interactive zero-knowledge (NIZK) argument system for R if
it has the following properties described below:

Completeness. For any (x,w) ∈ R it holds that

Pr[crs← NIZK.Gen(1κ);π ← NIZK.P (crs, x, w) : NIZK.V (crs, x, π) = 1] = 1.

Soundness. For any non-uniform ppt A, it holds that

Pr[crs← NIZK.Gen(1κ); (x, π)← A(crs) : NIZK.V (crs, x, π) = 1] ≤ negl(κ).

Zero-knowledge. For any non-uniform ppt A, there exists a ppt S = (S1,S2)
such that it holds that |p1 − p2| ≤ negl(κ), where

p1 = Pr[crs← NIZK.Gen(1κ) : ANIZK.P (crs,·,·)(crs) = 1]

p2 = Pr[(crs, τ, ξ)← S1(1κ) : ASim(crs,τ,·,·)(crs) = 1]

where Sim(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R. Both oracles NIZK.P ()
and Sim() output ⊥ if (x,w) 6∈ R.
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Next we define (unbounded) simulation-extractability of NIZK [30, 32]. In-
tuitively, it says that even after seeing many simulated proofs, whenever the
adversary makes a new proof we are able to extract a witness.

Definition 2 (Simulation-Extractability). Let NIZK = (NIZK.Gen,NIZK.P,
NIZK.V ) be a NIZK argument system for R. We say NIZK is simulation-
extractable if for all ppt adversaries A, there exists a ppt S = (S1,S2,S3)
so that

Pr

[
(crs, τ, ξ)← S1(1κ); (x, π)← AS2(crs,τ,·)(crs);w ← S3(crs, ξ, x, π) :

NIZK.V (crs, x, π) = 1 ∧ (x, π) 6∈ Q ∧ (x,w) 6∈ R

]
≤ negl(κ)

where Q is the list of simulation queries and responses (xi, πi) that A makes to
S2().

2.3 SNARG

We present the definition of succinct non-interactive arguments (abbreviated
SNARGs) [23, 20, 5]. A SNARG for a function class F = {Fκ}κ∈N consists of a
set of ppt algorithms SNARG = SNARG.{Gen, P, V }: The generation algorithm
Gen on input security parameter 1κ and a function F : {0, 1}n(κ) → {0, 1}m(κ) ∈
Fκ (represented as a circuit), outputs a reference string rs and a (short) verifica-
tion state vrs.5 The prover P on input rs and an input string x ∈ {0, 1}n, outputs
an answer y = F (x) together with a (short) proof $. The verifier algorithm V
on input vrs, x, y, and $ outputs a bit b ∈ {0, 1} represents whether V accepts
or rejects. We require the following properties for a SNARG scheme.

– Completeness: For every κ ∈ N, F ∈ Fκ, x ∈ {0, 1}n, the probability
that the verifier V rejects in the following experiment is negligible in κ: (i)
(rs, vrs)← Gen(1κ, F ), (ii) (y,$)← P (rs, x), and (iii) b← V (vrs, x, y,$).

– Soundness: For every efficient adversary P ∗, and every κ ∈ N, the proba-
bility that P ∗ makes V accept an incorrect answer in the following experi-
ment is negligible in κ: (i) P ∗ on input 1κ outputs a function F ∈ Fκ, (ii)
(rs, vrs) ← Gen(1κ, F ), (iii) P ∗ on input rs, outputs x, y,$ with y 6= F (x),
and (iv) b← V (vrs, x, y,$).

– Efficiency: The running time of the verifier is poly(κ, n+m, log |F |) (which
implies the succinctness of vrs and $). The running time of the generation
algorithm and the prover is poly(κ, |F |).

We say SNARG is publicly-verifiable if the verification state vrs is part of the
reference string rs.

We require a publicly-verifiable SNARG scheme SNARG for polynomial-
size circuits. Such a SNARG scheme can be obtained by using Micali’s CS
proof [39] (with random oracle instantiated by some hash function heuristically),
or provably secure based on publicly-verifiable succinct non-interactive argu-
ments (SNARGs), which in turn can be constructed based on (non-falsifiable)

5 We assume w.l.o.g. that rs contains a description of F .
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q-PKE (q-power knowledge of exponent) and q-PDH (q-power Diffie-Hellman)
assumptions on bilinear groups. Such SNARGs was first constructed implicitly
in [31] and later improved by [38, 20], where [20] explicitly constructs SNARGs.
In the scheme of [20], the generation algorithm and the prover run in time quasi-
linear in the size of F with rs length linear in |F |, and the verifier runs in linear
time in the input and output length.

3 Definition of Functional Encryption

Functional encryption was recently introduced by Boneh, Sahai, and Waters [10].
Let F = {Fκ}κ∈N where Fκ = {F : Kκ × Mκ → Mκ} be an ensemble of
functionality class indexed by a security parameter κ. A functional encryption
scheme FE for a functionality class F consists of four ppt algorithms FE =
FE.{Setup,Key,Enc,Dec} defined as follows.

– Setup: FE.Setup(1κ, F ) is a ppt algorithm takes as input a security param-
eter 1κ and a functionality F ∈ Fκ and outputs a pair of master public and
secret keys (MPK,MSK).

– Key Generation: FE.Key(MSK,K) is a ppt algorithm that takes as input
the master secret key MSK and a functionality key K ∈ Kκ and outputs a
corresponding secret key SKK .

– Encryption: FE.Enc(MPK,M) is a ppt algorithm that takes as input the
master public key MPK and a message M ∈ Mκ and outputs a ciphertext
CT.

– Decryption: FE.Dec(SKK ,CT) is a deterministic algorithm that takes as
input the secret key SKK and a ciphertext CT = Enc(MPK,M) and outputs
F (K,M).

Definition 3 (Correctness). A functional encryption scheme FE is correct if
for every κ ∈ N, F ∈ Fκ, K ∈ Kκ, and M ∈Mκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ, F );
FE.Dec(FE.Key(MSK,K),FE.Enc(MPK,M)) 6= F (K,M)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Key, and FE.Enc.

We next define a stronger simulation-based notion of security for functional
encryption than the existing simulation-based security notions in the literature.
We note that, while there are negative results [10, 1] showing that even signifi-
cantly weaker notions of security are impossible to achieve in the plain model,
our token-based construction in Section 4 achieves our strong security notion in
the token model.

Our definition is stronger in the sense that we allow the adversary A to take
full control over the access of the encryption scheme, where A can choose the
functionality F and request to see an arbitrary number of secret keys SKK ’s
and ciphtertexts CT’s in a fully adaptive fashion. Previous definitions either
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restrict the number of ciphertext queries and/or restrict the order of secret key
and ciphertext queries (e.g., require A to ask for all challenge ciphertexts at
once). Informally, the following definition says that even with full access to the
encryption scheme, A still cannot learn any additional information than what
it should have legally learnt from the received ciphertexts (using the received
secret keys). This, as usual, is formalized by requiring that the ciphertexts can
be simulated by an efficient simulator with only the “legal” information.

Definition 4 (Fully-Adaptive Simulation Security). Let FE be a func-
tional encryption scheme for a functionality class F . For every ppt stateful
adversary A and ppt stateful simulator Sim, consider the following two experi-
ments.

ExptrealFE,A(1κ)

1: F ← A(1κ);
2: (MPK,MSK)← FE.Setup(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← ASim{F (·,Mj)}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to Key(MSK, ·)
queries of A. During the execution of the ideal experiment, we say that Sim’s
query K to oracles {F (·,M1), . . . , F (·,Mi)} is legal if A already requested ci-
phertexts for M1, . . . ,Mi, and made oracle query K to Key(MSK, ·). We call a
simulator algorithm Sim admissible if it only makes legal queries to its oracle
throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-
secure if there is an admissible ppt stateful simulator Sim such that for every
ppt stateful adversary A, the following two distributions are computationally
indistinguishable: {

ExptrealFE,A(1κ)
}
κ

c
≈
{

ExptidealFE,A,Sim(1κ)
}
κ

4 Token Model and Constructions

4.1 Token-based FE

Here we introduce a simple token model for encryption schemes and provide
formal definitions of token-based functional encryption schemes. In our model,
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we consider stateless tokens that are initialized by the master authority in the
setup stage, and are only used by users in decryption. Furthermore, we require
token to be universal in the sense that tokens used by different users are identical.
Thus, tokens are simply deterministic oracles that are generated by the Setup
algorithm, and queried by the Dec algorithm.

Definition 5 (Token-based FE). A token-based functional encryption scheme
FE is defined identical to the definition of functional encryption scheme except
for the following modifications.

– Setup: In addition to MPK and MSK, the algorithm FE.Setup also outputs
a token T, which is simply a deterministic oracle.

– Key Generation : In addition to the keys SKK , the algorithm FE.Key also
returns a copy of the token T to users.

– Decryption: The decryption algorithm FE.DecT can query the T in order
to decrypt.

The correctness property extends straightforwardly. For security, we gener-
alize fully-adaptive simulation security to the token model. As before, we allow
the adversary A to take full control over the access of the encryption scheme; in
particular, A is given the oracle access to token after setup. In the ideal world,
the simulator is required to simulate answers to all queries made by A, including
the token queries, given only the “legal” information that A can learn from the
received ciphertexts using the received secret keys.

Definition 6 (Fully-Adaptive Simulation Security for Token-Based FE).
Let FE be a token-basd functional encryption scheme for a functionality class
F . For every ppt stateful adversary A and ppt stateful simulator Sim, consider
the following two experiments.

ExptrealFE,A(1κ)

1: F ← A(1κ);
2: (MPK,MSK,T)← FE.Setup(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·),T(·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← ASim{F (·,Mj)}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to both
Key(MSK, ·) and T(·) queries of A. During the execution of the ideal experi-
ment, we say that Sim’s query K to oracles {F (·,M1), . . . , F (·,Mi)} is legal
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if A already requested ciphertexts for M1, . . . ,Mi, and made oracle query K to
Key(MSK, ·). We call a simulator algorithm Sim admissible if it only makes legal
queries to its oracle throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-
secure if there is an admissible ppt stateful simulator Sim such that for every
ppt stateful adversary A, the following two distributions are computationally
indistinguishable: {

ExptrealFE,A(1κ)
}
κ

c
≈
{

ExptidealFE,A,Sim(1κ)
}
κ

4.2 Token-based FE Construction — Solution #1

Here we give the construction of a functional encryption scheme FE = FE.{Setup,
Key,Enc,Dec} for a functionality F based on stateless and universal tokens. Our
construction is based on a CCA2-secure public key encryption PKE.{Gen,Enc,Dec}
and a strongly unforgeable signature scheme SIG.{Gen,Sign,Vrfy}. In the setup
stage, the authority generates a key-pair (ek, dk) for encryption and a key-pair
(vk, sk) for digital signature, and set MPK = (ek, vk) and MSK = sk. Addition-
ally, the authority initializes the token T with the description of F , public keys
ek, vk, and secret decryption key dk.

To encrypt a message M , one simply encrypts it using the underlying CCA2
public key ek; that is, the ciphertext is ct ← PKE.Encek(M). The secret key
SKK for a functionality key K is simply a signature of K; that is, SKK =
σK ← SIG.Signsk(K). To decrypt ct using secret key SKK , the user queries
its token T with (ct,K, σK). T verifies if σK is valid, and if so, T returns
F (K,PKE.Decdk(ct)), and returns ⊥ otherwise. A formal description of our
scheme can be found in Figure 1.

Note that our scheme has succinct ciphertext size. Indeed, our ciphertext is
simply a CCA2 encryption of the message, which is independent of the complex-
ity of F . On the other hand, our token need to evaluate F to decrypt. Thus, our
solution #1 is suitable for lower complexity functionalities (e.g., inner product
functionality).

While our scheme is very simple, it satisfies the strong fully-adaptive simulation-
security as defined in Definition 6. In fact, the security proof is rather straight-
forward: The simulator simply simulates Setup and Key queries honestly, and
simulates encryption queries Mi by encryption of 0|Mi|. To answer a token query
(ct,K, σK), when σK verifies, the simulator checks if ct is one of the simulated
ciphertext (for some encryption query Mi). If so, the simulator queries its oracle
and returns F (K,Mi), and if not, it simulates the token honestly. Intuitively, the
simulation works since by strong unforgeability, the simulator can learn correct
answers for simulated ciphertexts from its oracle, and CCA2-security ensures
that the simulation works for other ciphertexts.

We note that our security proof crucially relies on the fact that in the sim-
ulation, the simulator gets to simulate token’s answers to the queries made by
the adversary, which bypasses the information-theoretic arguments underlying
the impossibility results of Boneh et al. [10] and Agrawal et al. [1].
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– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup algo-
rithm Setup() performs the following steps to generate MPK, MSK, and a deter-
ministic stateless token T.
• Execute (ek, dk)← PKE.Gen(1κ), and (vk, sk)← SIG.Gen(1κ).
• Initiate a token T with values (dk, ek, vk, F ).
• Output MPK = (ek, vk), and MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K,
the key generation algorithm Key() generates SKK as follows.
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public key MPK and a message M , the encryption
algorithm Enc() generates CT as follows.
• Execute ct← PKE.Encek(M ; ρ), where ρ is the randomness. Return CT = (ct).

– Decryption: on input SKK = (σK) and a ciphertext CT = (ct) of a message M ,
with access to a token T, the decryption algorithm DecT() performs the following
steps to decrypt m = F (K,M):
• Query the token m← T(CT,K, SKK). Output m.

– Token Operations: on query (CT,K, SKK), where CT = (ct) and SKK = (σK),
the token T carries out the following operations.
• Execute SIG.Vrfyvk(K,σK).
• If the above verification accepts, then compute M ← PKE.Decdk(ct) and return
m = F (K,M). Otherwise, return ⊥.

Fig. 1. Solution #1. Here PKE.{Gen,Enc,Dec} is a public-key encryption scheme, and
SIG.{Gen, Sign,Vrfy} is a signature scheme.

Theorem 1. If SIG is a strongly unforgeable signature scheme, PKE is a CCA2-
secure public key encryption, then the above functional encryption construction
FE is simulation-secure (Definition 6).

Proof: We here prove that our scheme achieves the strong fully-adaptive
simulation-security as defined in Definition 6. In order to prove the security, we
need to construct a simulator Sim which interacts with an adversary A. The
ideal experiment ExptidealFE,A,Sim(1κ) is as follows:

– Upon obtaining functionality F from the adversary, the simulator runs (vk, sk)←
SIG.Gen() and (ek, dk)← PKE.Gen(), and set MPK = (ek, vk), and give MPK
to the adversary. From now on, oracle access to the token will be simulated
for the adversary.

– In the key generation, upon receiving the request on K from the adver-
sary, the simulator computes σK ← SIG.Signsk(K), and returns σK to the
adversary. Note that now the simulator records (K,σK) into history.

– At any point when the adversary provides message M , the simulator is al-
lowed to see the length |M | and it is granted an oracle F (·,M). The simulator
then computes ct← PKE.Enc(0|M |;ω) where ω is randomly chosen, and sets
ct as a pointer to the oracle F (·,M). The simulator records (|M |, ct) into
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history, and returns ct to the adversary. If the same ct is recorded twice in
the history, then the simulator returns Abort.

– At any point when the adversary queries the token with tuple (ct,K, σK),
the simulator first checks if (K,σK) has been recorded in the history. If not,
then it returns ⊥. Else if the pair (K,σK) has been recorded, and ct has also
been recorded in the history, then the simulator queries the corresponding
oracle F (·,M), and learns m = F (K,M). Then the simulator returns m to
the adversary. Otherwise, if (K,σK) has been recorded but ct has not, the
simulator computes M ← PKE.Decdk(ct) and m← F (K,M), and returns m
to the adversary.

– Let M∗1 , . . . ,M
∗
n be the messages that the adversary queried for ciphertexts.

If the adversary finally outputs a value α, output (α, {M∗i }i∈[n]).

From the above simulation, we can easily see that only valid users who partic-
ipate in the key generation are able to use the token to decrypt ciphertexts.
Furthermore, for a ciphertext ct = PKE.Enc(M), the adversary cannot learn any
extra information beyond {F (Ki,M)}i where {Ki}i have been registered in the
key generation.

Next, we show that the ideal experiment is computationally close to the real
experiment, by developing a sequence of hybrids between them.

Hybrid 0: This is the real experiment ExptrealFE,A(1κ). As described in construc-
tion FE , upon obtaining functionality F , we first generate (MPK,MSK,T)←
FE.Setup(1κ, F ) where MPK = (ek, vk) and MSK = sk, and give MPK
to the adversary. At any moment when the adversary queries FE.Key()
with K, we return SKK = σK where σK ← SIG.Signsk(K). At any point
when the adversary outputs M∗i , we return the adversary with CT∗i = ct∗i
where ct∗i ← PKE.Encek(M

∗
i ;ω∗i ). At any point when the adversary queries

the token with tuple (ct,K, σK), the token will behave as follows: if the
pair (K,σK) is not verified, then return ⊥. Otherwise if the pair is ver-
ified, i.e., SIG.Vrfyvk(K,σK) = 1, then use dk to decrypt ct into M ←
PKE.Decdk(ct), and return m = F (K,M). We then return m to the adver-
sary. Let M∗1 , . . . ,M

∗
n be the values that the adversary queried for cipher-

texts. If the adversary finally outputs a value α, we output (α, {M∗i }i∈[n]).
Hybrid 1: This hybrid is the same as Hybrid 0 except the following: In this

hybrid, we change the token’s responses to the adversary. At any point when
the adversary queries the token with tuple (ct,K, σK), if SIG.Vrfyvk(K,σK) =
1 while the pair (K,σK) never appears in the queries to FE.Key(), then the
hybrid outputs Abort.
Hybrid 1 and Hybrid 0 are the same except that Abort occurs. Based on
the strong unforgeability of SIG, we claim the event of Abort occurs with
negligible probability. Therefore, Hybrid 1 and Hybrid 0 are computationally
indistinguishable. Towards contradiction, assume there is a distinguisher A
can distinguish Hybrid 0 from Hybrid 1. We next show an algorithm B that
breaks the strong unforgeability of SIG as follows:
– Upon receiving the encryption key vk, B internally simulates A. B works

the same as in Hybrid 0 except the following: At any point when the
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adversary provides functionality F , B computes (ek, dk) ← PKE.Gen(),
and sets MPK := (ek, vk). At any moment when the adversary queries
FE.Key() with K, B queries its own signing oracle with K and receives
σK , and then B returns σK to A as the response.

At any point when the adversary queries the token with tuple (ct,K, σK),
if SIG.Vrfyvk(K,σK) = 1, but (K,σK) never appears in the queries to
FE.Key(), then the event Abort occurs, B halts and output (K,σK) to
its challenger as the forged pair.

We note that the view of the above simulated A is the same as that in Hybrid
1. We further note that as long as the event Abort does not occur, A’s view is
the same as that in Hybrid 0. Since A is able to distinguish the two hybrids,
that means the event Abort will occur with non-negligible probability. That
says, B is a successful unforgeability attacker against SIG, which reaches a
contradiction. Therefore, Hybrid 0 and Hybrid 1 are computationally indis-
tinguishable.

Hybrid 2: This hybrid is the same as Hybrid 1 except the following: Whenever
the adversary queries on M∗i , we compute ĉt

∗
i ← PKE.Encek(M

∗
i ;ω∗i ), and

record (|M∗i |, ĉt
∗
i ). Here we can easily simulate an oracle F (·,M∗i ) based on

M∗i , and we set the ciphertext ct∗ as the pointer to the oracle. Furthermore,
we change the token’s responses to the adversary. At any point when the
adversary queries the token with tuple (ct,K, σK) where the pair (K,σK)
has been recorded, we carry out the following: if ct has been recorded then
we based on it query the corresponding oracle F (·,M∗i ) with K and receive
m = F (K,M∗i ). Then we return m to the adversary.

We can easily see that the views of A are the same in Hybrid 1 and Hybrid
2.

Hybrid 3.j, where j = 0, . . . , n : Here n is the total number of messages the
adversary has queried for ciphertexts. This hybrid is the same as Hybrid 2
except the following:

When the adversary queries on {M∗i }i∈[n], the messages {M∗1 , . . . ,M∗j } are
blocked; instead, we are allowed to see the length of the messages, i.e,
|M∗1 |, . . . , |M∗j |, and have oracle access to F (·,M∗1 ), . . . , F (·,M∗j ). Note that
we are now still allowed to see the messages {M∗j+1, . . . ,M

∗
n}, and therefore

we can easily simulate the oracles F (·,M∗j+1), . . . , F (·,M∗n).

We change the response to the adversary’s query on {M∗i }i=1,...,n. We now re-
turn the adversary with CT∗i = ĉt

∗
i for all i ∈ [n]. Here ĉt

∗
i ← PKE.Encek(0

|M∗i |;ω∗i )
for all i ∈ [1, . . . , j], and ĉt

∗
i ← PKE.Encek(M

∗
i ;ω∗i ) for all i ∈ [j + 1, . . . , n].

Based on the CCA2-security of PKE , we claim Hybrid 3.j and Hybrid 3.(j+
1) are computationally indistinguishable for all j = 0, . . . , n − 1. Towards
contradiction, assume there is a distinguisher A who can distinguish Hybrid
3.j from Hybrid 3.(j + 1). We next show an algorithm B that breaks the
CCA2-security of PKE as follows:

– Upon receiving the encryption key ek, B internally simulates A. B works
the same as in Hybrid 3.j except the following:
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• UponA’s query onM∗j+1, B queries LR-oracle LR with (M∗j+1, 0
|M∗j+1|);

in turn it gets back a ciphertext ct∗j+1 which is PKE.Enc(0|M
∗
j+1|) or

PKE.Enc(M∗j+1) from the LR-oracle.
• Upon receiving A’s query to the token with tuple (ct,K, σK) where

(K,σK) has been recorded, if ct has been recorded then B simulates
the corresponding oracle F (·,M∗i ) forK and providesm = F (K,M∗i )
to A. If ct has not been recorded, then B queries its decryption
oracle to obtain the plaintext M of the ciphertext ct, and then return
m = F (K,M) to the adversary.

– Finally, B outputs whatever A outputs.
Let β be the hidden bit associated with the LR oracle. We note that when
β = 0, the algorithm B exactly simulates the Hybrid 3.j to A; when β = 1, B
simulates exactly the Hybrid 3.(j+1) to A. Under the assumption, since A is
able to distinguish the two hybrids in non-negligible probability, that means
the constructed B is successful CCA2 attacker against PKE , which reaches a
contradiction. Therefore Hybrid 3.j and Hybrid 3.(j+1) are computationally
indistinguishable.
Furthermore, we note that Hybrid 3.0 is the same as Hybrid 2, and Hybrid
3.n is the ideal experiment. Based on the above argument we already see the
real experiment and the ideal experiment are in distinguishable. This means
the construction FE is simulation secure as defined in Definition 6.

4.3 Token-based FE Construction — Solution #2

In our solution #1 presented in the previous section, the token size is linear of
function F . Here we present our solution #2, a functional encryption scheme
FE = FE.{Setup,Key,Enc,Dec} in the token model where the complexity of
token is independent of the complexity of F . We use the following tools: FHE,
digital signature, publicly verifiable SNARG, and simulation-extractable NIZK.
(Please refer to Section 2 for the definitions.)

In the setup stage, the authority generates key pairs (ek, dk) and (vk, sk)
for FHE and for digital signature respectively. The authority also sets up the
reference strings crs and (rs, vrs) for NIZK and for SNARG respectively. Note that
the reference string vrs for SNARG verification is very short and it is independent
of F . The authority sets (ek, vk, crs, rs, vrs) as its master public key MPK, and sk
as the master secret key MSK. In addition, the authority initializes the token T
with the public information (ek, vk, crs, vrs), and the secret decryption key dk.

The key generation stage is the same as that in the previous solution; for
each user associated with a key K, the authority uses the MSK to generate a
signature σK on the key K; in addition the authority sends the user an identical
copy of the token. The encryption algorithm is different from that in the previous
solution: To encrypt a message M , one takes two steps: (1) encrypt it using the
FHE public key ek; that is, the ciphertext is ct← FHE.Encek(M); (2) generate an
NIZK that the ciphertext ct is honestly generated. The ciphertext for message
M is (ct, π).
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– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup
algorithm Setup() performs the following steps to generate MPK, MSK, and a
deterministic stateless token T.
• Execute (ek, dk) ← FHE.Gen(1κ), (vk, sk) ← SIG.Gen(1κ), and crs ←

NIZK.Gen(1κ).
• Define F̂ (K, ct) , FHE.Evalek(ct, F (K, ·)). Execute (rs, vrs) ←

SNARG.Gen(1κ, F̂ ).
• Initiate a token T with values (dk, ek, vk, crs, vrs).
• Output MPK = (ek, vk, crs, rs, vrs), MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K,
Key() generates SKK as:
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public key MPK and a messageM , the encryption
algorithm Enc() generates CT as follows.
• Execute ct ← FHE.Encek(M ;ω), where ω is the randomness used in the en-

cryption.
• Execute π ← NIZK.P (crs, (ek, ct), (M,ω)) with respect to the relation

RFHE = {((ek, ct), (M,ω)) : FHE.Encek(M ;ω) = ct}.

• Output CT = (ct, π)
– Decryption: on input SKK and a ciphertext CT = (ct, π) of a message M , with

access to a token T, the decryption algorithm DecT() performs the following steps
to decrypt m = F (K,M):
• Execute (c̃t, $) ← SNARG.P (rs, (K, ct)). Here c̃t = F̂ (K, ct) =

FHE.Evalek(ct, F (K, ·)).
• Query the token m← T(CT,K, SKK , c̃t, $). Output m.

– Token Operations: on query (CT,K, SKK , c̃t, $), where CT = (ct, π) and
SKK = σK , the token T carries out the following operations.
• Execute SIG.Vrfyvk(K,σK), NIZK.V (crs, (ek, ct), π), and

SNARG.V (vrs, (K, ct), c̃t, $).
• Return FHE.Decdk(c̃t) if all above verifications accept, and return ⊥ other-

wise.

Fig. 2. Solution #2. Here FHE.{Gen,Enc,Eval,Dec} is a fully homomorphic encryption,
SIG.{Gen, Sign,Vrfy} is a signature scheme, SNARG.{Gen, P, V } is a SNARG scheme,
NIZK.{Gen, P, V } is a NIZK scheme.
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The decryption algorithm is different from that in the previous solution as
well. Our goal as stated before is to obtain a solution in which the complexity
of the token is independent of the complexity of F . The idea is to let the token
to “outsource” most of the computation of F to the user. Concretely, to decrypt
a ciphertext (ct, π), the user who is associated with key K computes the trans-
formed ciphertext c̃t by homomorphically evaluating ct with F (K, ·); to be sure
that the transformation is carried out correctly, the user also provides a SNARG
$. Then the user queries the token T with an input tuple (ct, π,K, σK , c̃t, $);
the token first verifies if signature, NIZK, SNARG are all valid; if so, the to-
ken decrypts the ciphertext c̃t into message m and returns m, and it returns ⊥
otherwise. A formal description of our scheme can be found in Figure 2.

Note that, similar to solution #1, our scheme here also has succinct ciphertext
size. Our ciphertext consists of an FHE ciphertext and an NIZK, both of which
are independent of the complexity of F . On the other hand, here our token
does not need to evaluate F to decrypt, and thus the complexity of the token is
independent of the complexity of F .

Our scheme here also satisfies the strong fully-adaptive simulation-security
as defined in Definition 4. The proof idea is very similar to that in the previous
section, which crucially relies on the fact that in the simulation, the simulator
gets to simulate token’s answers to the queries made by the adversary. Next, we
briefly highlight the differences between the two solutions. In both constructions,
the user can only provide authenticated inputs to the hardware token, and digital
signature is used to authenticate K. But two different approaches are used to
authenticate the ciphertext: in solution #1, the authentication is guaranteed by
the CCA2 security of the encryption, while in solution #2, the authentication
is provided by the simulation-extractability of the NIZK, and the soundness of
the SNARG.

Theorem 2. If SNARG is a publicly verifiable SNARG scheme, NIZK is
a zero-knowledge and simulation-extractable NIZK scheme, SIG is a strong
unforgeable signature scheme, FHE is a secure fully homomorphic encryption
scheme, then the above construction FE is simulation-secure functional encryp-
tion scheme.

Proof can be found in the full version.
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References

1. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. Crypto 2013.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.



18 Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou

3. M. Barbosa and P. Farshim. On the semantic security of functional encryption
schemes. In Public Key Cryptography, volume 7778 of Lecture Notes in Computer
Science, pages 143–161. Springer, 2013.

4. M. Bellare and A. O’Neill. Semantically secure functional encryption: Possibility
results, impossibility results, and the quest for a general definition. Cryptology
ePrint Archive, Report 2012/515, 2012. http://eprint.iacr.org/.

5. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. STOC 2013.

6. N. Bitansky, R. Canetti, S. Goldwasser, S. Halevi, Y. T. Kalai, and G. N. Roth-
blum. Program obfuscation with leaky hardware. In Advances in Cryptology —
Asiacrypt 2011, vol. 7073 of LNCS, pages 722–739. Springer, 2011.

7. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, Advances in Cryptology — Euro-
crypt 2005, volume 3494 of LNCS, pages 440–456. Springer, 2005.

8. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, Advances in Cryptology — Crypto 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2001.

9. D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryp-
tion: Hiding the function in functional encryption. Crypto 2013.

10. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Theory of Cryptography Conference, volume 6597 of Lecture Notes in
Computer Science, pages 253–273. Springer, 2011.

11. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference, volume 4392 of Lecture Notes in
Computer Science, pages 535–554. Springer, 2007.

12. N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure computa-
tion using tamper-proof hardware. In Advances in Cryptology — Eurocrypt 2008,
volume 4965 of LNCS, pages 545–562. Springer, 2008.

13. I. Damg̊ard, J. B. Nielsen, and D. Wichs. Universally composable multiparty
computation with partially isolated parties. In Theory of Cryptography Conference,
volume 5444 of LNCS, pages 315–331. Springer, 2009.

14. A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On the
achievability of simulation-based security for functional encryption. Crypto 2013.
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