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Abstract. We present a constant-round unconditional black-box com-
piler that transforms any ideal (i.e., statistically-hiding and statistically-
binding) straight-line extractable commitment scheme, into an extractable
and equivocal commitment scheme, therefore yielding to UC-security [9].
We exemplify the usefulness of our compiler by providing two (constant-
round) instantiations of ideal straight-line extractable commitment based
on (malicious) PUFs [36] and stateless tamper-proof hardware tokens [26],
therefore achieving the first unconditionally UC-secure commitment with
malicious PUFs and stateless tokens, respectively. Our constructions are
secure for adversaries creating arbitrarily malicious stateful PUFs/tokens.
Previous results with malicious PUFs used either computational assump-
tions to achieve UC-secure commitments or were unconditionally secure
but only in the indistinguishability sense [36]. Similarly, with stateless
tokens, UC-secure commitments are known only under computational
assumptions [13,24,15], while the (not UC) unconditional commitment
scheme of [23] is secure only in a weaker model in which the adversary
is not allowed to create stateful tokens.
Besides allowing us to prove feasibility of unconditional UC-security with
(malicious) PUFs and stateless tokens, our compiler can be instantiated
with any ideal straight-line extractable commitment scheme, thus al-
lowing the use of various setup assumptions which may better fit the
application or the technology available.

Keywords: UC-security, hardware assumptions, unconditional security,
commitment scheme.

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

?? Work done while visiting Aarhus University. Research supported in part by NSF
grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS- 1136174; and
Defense Advanced Research Projects Agency through the U.S. Office of Naval Re-
search under Contract N00014-11-1-0392.



2 I. Damgård and A. Scafuro

1 Introduction

Unconditional security guarantees that a protocol is secure even when the ad-
versary is unbounded. While it is known how to achieve unconditional secu-
rity for multi-party functionalities in the plain model assuming honest majority
[4,14], obtaining unconditionally secure two-party computation is impossible in
the plain model. In fact, for all non-trivial two-party functionalities, achieving
unconditional security requires some sort of (physical) setup assumption.

Universally composable (UC) security [9] guarantees that a protocol is secure
even when executed concurrently with many other instances of any arbitrary
protocol. This strong notion captures the real world scenarios, where typically
many applications are run concurrently over the internet, and is therefore very
desirable to achieve. Unfortunately, achieving UC-security in the plain model is
impossible [11].

Hence, constructing 2-party protocols which are unconditionally secure or
universally composable requires the employment of some setup. One natural
research direction is to explore which setup assumptions suffice to achieve (un-
conditional) UC-security, as well as to determine whether (or to what extent)
we can reduce the amount of trust in a third party. Towards this goal, several
setup assumptions have been explored by the community.

In [12] Canetti et. al show that, under computational assumptions, any func-
tionality can be UC-realized assuming the existence of a trusted Common Refer-
ence String (CRS). Here, the security crucially relies on the CRS being honestly
sampled. Hence, security in practice would typically rely on a third party sam-
pling the CRS honestly and security breaks down if the third party is not honest.
Similar arguments apply to various assumptions like “public-key registration”
services [3,10].

Another line of research explores “physical” setup assumptions. Based on
various types of noisy channels, unconditionally secure Bit Commitment (BC)
and Oblivious Transfer (OT) can be achieved [16,17] for two parties, but UC
security has not been shown for these protocols and in fact seems non-trivial to
get for the case of [17].

In [26] Katz introduces the assumption of the existence of tamper-proof hard-
ware tokens. The assumption is supported by the possibility of implementing
tamper-proof hardware using current available technology (e.g., smart cards). A
token is defined as a physical device (a wrapper), on which a player can upload
the code of any functionality, and the assumption is that any adversary cannot
tamper with the token. Namely, the adversary has only black-box access to the
token, i.e., it cannot do more then observing the input/output characteristic of
the token. The main motivation behind this new setup assumption is that it
allows for a reduction of trust. Indeed in Katz’s model tokens are not assumed
to be trusted (i.e., produced by a trusted party) and the adversary is allowed to
create a token that implements an arbitrary malicious function instead of the
function dictated by the protocol. (However, it is assumed that once the token
is sent away to the honest party, it cannot communicate with its creator. This
assumption is necessary, as otherwise we are back to the plain model). A con-
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sequence of this model is that the security of a player now depends only on its
own token being good and holds even if tokens used by other players are not
genuine! This new setup assumptions has gained a lot of interest and several
works after [26] have shown that unconditional UC-security is possible [31,24],
even using a single stateful token [21,22]. Note that a stateful token, in contrast
with a stateless token, requires an updatable memory that can be subject to
reset attacks. Thus, ensuring tamper-proofness for a stateful token seems to be
more demanding than for a stateless token, and hence having protocols working
with stateless tokens is preferable.

However, the only constructions known for stateless tokens require computa-
tional assumptions [13,29,24,15] and a non-constant number of rounds (if based
on one-way functions only). In fact, intuitively it seems challenging to achieve
unconditional security with stateless tokens: A stateless token runs always on
the same state, thus an unbounded adversary might be able to extract the secret
state after having observed only a polynomial number of the token’s outputs.
This intuition is confirmed by [23] where it is proved that unconditional OT is im-
possible using stateless tokens. On the positive side, [23] shows an unconditional
commitment scheme (not UC) based on stateless tokens, but the security of the
scheme holds only if the adversary is not allowed to create malicious stateful to-
kens. This is in contrast with the standard tamper-proof hardware model, where
the adversary is allowed to construct any arbitrary malicious (hence possibly
stateful) token. Indeed, it seems difficult in practice to detect whether an adver-
sary sends a stateless or a stateful token. Therefore, the question of achieving
unconditional commitments (UC-secure or not) in the standard stateless token
model (where an adversary possibly plays with stateful tokens) is still open.

In this work we provide a positive answer showing the first UC-secure un-
conditional commitment scheme with stateless tokens.

Following the approach of [26], Brzuska et al. in [7] propose a new setup
assumption for achieving UC security, which is the existence of Physically Un-
cloneable Functions (PUFs). PUFs have been introduced by Pappu in [38,37], and
since then have gained a lot of interest for cryptographic applications [2,42,1,40].
A PUF is a physical noisy source of randomness. In other words a PUF is a device
implementing a function whose behavior is unpredictable even to the manufac-
turer. The reason is that even knowing the exact manufacturing process there
are parameters that cannot be controlled, therefore it is assumed infeasible to
construct two PUFs with the same challenge-response behavior. A PUF is noisy
in the sense that, when queried twice with the same challenge, it can output
two different, although close, responses. Fuzzy extractors are applied to PUF’s
responses in order to reproduce a unique response for the same challenge. The
“PUF assumption” consists in assuming that PUFs satisfy two properties: 1) un-
predictability: the distribution implemented by a PUF is unpredictable. That is,
even after a polynomial number of challenge/response pairs have been observed,
the response on any new challenge (sufficiently far from the ones observed so
far) is unpredictable; this property is unconditional; 2) uncloneability: as a PUF
is the output of a physical uncontrollable manufacturing process, it is assumed
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that creating two identical PUFs is hard even for the manufacturer. This prop-
erty is called hardware uncloneability. Software uncloneability corresponds to
the hardness of modeling the function implemented by the PUF and is enforced
by unpredictability (given that the challenge/response space of the PUF is ade-
quately large). Determining whether (or to what extent) current PUF candidates
actually satisfy the PUF assumption is an active area of research (e.g., [27,5])
but is out of the scope of this work. For a survey on PUF’s candidates the reader
can refer to [30], while a security analysis of silicon PUFs is provided in [27].

Designing PUF-based protocols is fundamentally different than for other
hardware tokens. This is due to the fact that the functional behavior of a PUF is
unpredictable even for its creator. Brzuska et al. modeled PUFs in the UC-setting
by formalizing the ideal PUF functionality. They then provided constructions for
Unconditional UC Oblivious Transfer and Bit Commitment. However, their UC-
definition of PUFs assumes that all PUFs are trusted. Namely, they assume that
even a malicious player creates PUFs honestly, following the prescribed gen-
eration procedure. This assumption seems too optimistic as it implies that an
adversary must not be capable of constructing hardware that “looks like” a PUF
but that instead computes some arbitrary function. The consequence of assum-
ing that all PUFs are trusted is that the security of a player depends on the
PUFs created by other players. (Indeed, in the OT protocol of [7], if the receiver
replaces the PUF with hardware implementing some predictable function, the
security of the sender is violated).

In [36] Ostrovsky et al. extend the ideal PUF functionality of [7] in order
to model the adversarial behavior of creating and using “malicious PUFs”. A
malicious PUF is a physical device for which the security properties of a PUF
are not guaranteed. As such, it can be a device implementing any function
chosen by the adversary, so that the adversary might have full control on the
answers computed by its own “PUF”. Similarly to the hardware-token model, a
malicious PUF cannot communicate with the creator once is sent away. A ma-
licious PUF can, of course, be stateful. The major advantage of the malicious
PUF model is that the security of a player depends only on the goodness of
its own PUFs. Obviously, the price to pay is that protocols secure in presence
of malicious PUFs are more complex than protocols designed to deal only with
honest PUFs. Nevertheless, [36] shows that even with malicious PUFs it is pos-
sible to achieve UC-secure computations relying on computational assumptions.
They also show an unconditional commitment scheme which is secure only in
the indistinguishability sense. Achieving unconditional UC-secure commitments
(and general secure computations) is left as an open problem in [36].

In this paper, we give a (partial) positive answer to this open problem by
providing the first construction of unconditional UC-secure Bit Commitment
in the malicious PUFs model. Whether unconditional OT (and thus general
secure computation) is possible with malicious PUFs is still an interesting open
question. Intuitively, since PUFs are stateless devices, one would think to apply
the arguments used for the impossibility of unconditional OT with stateless
tokens [23]. However, due to the unpredictability property of PUFs which holds



Unconditional UC-Secure Commitments from Physical Assumptions 5

unconditionally, such arguments do not carry through. Indeed, as long as there
is at least one honest PUF in the system, there is enough entropy, and this seems
to defeat the arguments used in [23]. On the other hand, since a PUF is in spirit
just a “random function”, it is not clear how to implement the OT functionality
when only one of the players uses honest PUFs.

Van Dijk and Rührmair in [19] also consider adversaries who create malicious
PUFs, that they call “bad PUFs” and they consider only the stand-alone setting.
They show that unconditional OT is impossible in the bad PUF model but this
impossibility proof works assuming that also honest parties play with bad PUFs.
Thus, such impossibility proof has no connection to the question of achieving
unconditional OT in the malicious PUF model (where honest parties play with
honest PUFs).

Our Contribution. In this work we provide a tool for constructing UC-secure
commitments given any straight-line extractable commitment. This tool allows
us to show feasibility results for unconditional UC-secure protocols in the state-
less token model and in the malicious PUF model. More precisely, we provide
an unconditional black-box compiler that transforms any ideal (i.e., statistically
hiding and binding) straight-line extractable commitment into a UC-secure com-
mitment. The key advantage of such compiler is that one can implement the ideal
extractable commitment with the setup assumption that is more suitable to the
application and the technology available.

We then provide an implementation of the ideal extractable commitment
scheme in the malicious PUFs model of [36]. Our construction builds upon the
(stand-alone) unconditional BC scheme shown in [36] 3 which is not extractable.
By plugging our extractable commitment scheme in our compiler we obtain the
first unconditional UC-secure commitment with malicious PUFs.

We then construct ideal extractable commitments using stateless tokens. We
use some of the ideas employed for the PUF construction, but implement them
with different techniques. Indeed, while PUFs are intrinsically unpredictable and
even having oracle access to a PUF an unbounded adversary cannot predict the
output on a new query, with stateless tokens we do not have such guarantee.
Our protocol is secure in the standard token model, where the adversary has no
restriction and can send malicious stateful tokens. By plugging such protocol in
our compiler, we achieve the first unconditional UC-secure commitment scheme
with stateless tokens. Given that unconditional OT is impossible with stateless
tokens, this result completes the picture concerning feasibility of unconditional
UC-security in this model.

Related Work. Our compiler can be seen as a generalization of the black-box
trapdoor commitment given by Pass and Wee [39] which is secure only in the
3 For completeness, we would like to mention that [41] claims an “attack” on such
construction. Such “attack" however arises only due to misunderstanding of conven-
tions used to write protocol specifications and does not bear any security threat. The
reader can refer to the discussion of [35] (full version of [36]) at Pag. 7, paragraph
"On [RvD13]", line 20–40 for more details.
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computational stand-alone setting. Looking ahead to our constructions of ex-
tractable commitment, the idea of querying the hardware token with the open-
ing of the commitment was first used by Müller-Quade and Unruh in [32,33],
and later by Chandran et al. in [13]. The construction of [13] builds UC-secure
multiple commitments on top of extractable commitments. Their compiler re-
quires computational assumptions, logarithmic number of rounds and crucially
uses cryptographic primitives in a non-black box manner.

Remark 1. In the rest of the paper it is assumed that even an unbounded ad-
versary can query the PUF/token only a polynomial number of times. We stress
that this is not a restriction of our work but it is a necessary assumption in all
previous works achieving unconditional security with PUFs and stateless tokens
(see pag.15 of [8] for PUFs, and pag. 5 of [23] for stateless tokens). Indeed, if we
allowed the adversary to query the PUF/token on all possible challenges, then
she can derive the truth table implemented by the physical device.

2 Definitions

Notation. We denote the security parameter by n, and the property of a proba-
bilistic algorithm whose number of steps is polynomial in its security parameter,
by PPT. We denote by (vA, vB)← 〈A(a), B(b)〉(x) the local outputs of A and B
of the random process obtained by having A and B activated with independent
random tapes, interacting on common input x and on (private) auxiliary inputs
a to A and b to B. When the common input x is the security parameter, we
omit it. If A is a probabilistic algorithm we use v $← A(x) to denote the output
of A on input x assigned to v. We denote by viewA(A(a), B(b))(x) the view of A
of the interaction with player B, i.e., its values is the transcript (γ1, γ2, ..., γt; r),
where the γi’s are all the messages exchanged and r is A’s coin tosses. We use
notation [n] to denote the set {1, . . . , n}. Let P1 and P2 be two parties running
protocol (A,B) as sub-routine. When we say that party “P1 runs 〈A(·), B(·)〉(·)
with P2” we always mean that P1 executes the procedure of party A and P2

executes the procedure of party B. In the following definitions we assume that
the adversary has auxiliary information, and assume that parties are stateful.

2.1 Ideal Extractable Commitment Scheme

We denote by Faux an auxiliary set-up functionality accessed by the real world
parties (and by the extractor).

Definition 1 (Ideal Commitment Scheme in the Faux-hybrid model). A
commitment scheme is a tuple of PPT algorithms Com = (C,R) having access to
an ideal set-up functionality Faux, implementing the following two-phase func-
tionality. Given to C an input b ∈ {0, 1}, in the first phase called commitment
phase, C interacts with R to commit to the bit b. We denote this interaction
by ((c, d), c) ← 〈C(com, b), R(recv)〉 where c is the transcript of the (possibly
interactive) commitment phase and d is the decommitment data. In the second
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phase, called decommitment phase, C sends (b, d) and R finally outputs “accept”
or “reject” according to (c, d, b). In both phases parties could access to Faux.
Com = (C,R) is an ideal commitment scheme if it satisfies the following proper-
ties.

Completeness. For any b ∈ {0, 1}, if C and R follow their prescribed strategy
then R accepts the commitment c and the decommitment (b, d) with proba-
bility 1.

Statistically Hiding. For any malicious receiver R∗ the ensembles {viewR∗

(C(com, 0), R∗) (1n)}n∈N and {viewR∗(C(com, 1), R∗) (1n)}n∈N are statisti-
cally indistinguishable, where viewR∗ (C(com, b), R∗) denotes the view of R∗
restricted to the commitment phase.

Statistically Binding. For any malicious committer C∗, there exists a negligi-
ble function ε, such that C∗ succeeds in the following game with probability at
most ε(n): On security parameter 1n, C∗ interacts with R in the commitment
phase obtaining the transcript c . Then C∗ outputs pairs (0, d0) and (1, d1),
and succeeds if in the decommitment phase, R(c, d0, 0) = R(c, d1, 1) = accept.

In this paper the term ideal is used to refer to a commitment which is
statistically-hiding and statistically-binding.

Definition 2 (Interface Access to an Ideal Functionality Faux). Let Π =
(P1, P2) be a two-party protocol in the Faux-hybrid model. That is, parties P1 and
P2 need to query the ideal functionality Faux in order to carry out the protocol.
An algorithmM has interface access to the ideal functionality Faux w.r.t. protocol
Π if all queries made by either party P1 or P2 to Faux during the protocol exe-
cution are observed (but not answered) by M , and M has oracle access to Faux.
Consequently, Faux can be a non programmable and non PPT functionality.

Definition 3 (Ideal Extractable Commitment Scheme in the Faux model).
IdealExtCom = (Cext,Rext) is an ideal extractable commitment scheme in the Faux

model if (Cext,Rext) is an ideal commitment and there exists a straight-line strict
polynomial-time extractor E having interface access to Faux, that runs the com-
mitment phase only and outputs a value b? ∈ {0, 1,⊥} such that, for all malicious
committers C∗, the following properties are satisfied.

Simulation: the view generated by the interaction between E and C∗ is iden-
tical to the view generated when C∗ interacts with the honest receiver Rext:
viewFaux

C∗ (C∗(com, ·),Rext(recv)) ≡ viewFaux

C∗ (C∗(com, ·), E)

Extraction: let c be a valid transcript of the commitment phase run between
C∗ and E. If E outputs ⊥ then probability that C∗ will provide an accepting
decommitment is negligible.

Binding: if b? 6= ⊥, then probability that C∗ decommits to a bit b 6= b? is
negligible.
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2.2 Physically Uncloneable Functions

Here we recall the definition of PUFs taken from [7]. A Physically Uncloneable
Function (PUF) is a noisy physical source of randomness. A PUF is evaluated
with a physical stimulus, called the challenge, and its physical output, called
the response, is measured. Because the processes involved are physical, the func-
tion implemented by a PUF can not necessarily be modeled as a mathematical
function, neither can be considered computable in PPT. Moreover, the output
of a PUF is noisy, namely, querying a PUF twice with the same challenge, could
yield to different outputs.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample
and Eval. Algorithm Sample abstracts the PUF fabrication process and works as
follows. Given the security parameter in input, it outputs a PUF-index id from
the PUF-family satisfying the security property (that we define soon) according
to the security parameter. Algorithm Eval abstracts the PUF-evaluation process.
On input a challenge s, it evaluates the PUF on s and outputs the response σ.
A PUF-family is parametrized by two parameters: the bound on the noisy of
the answers dnoise, and the size of the range rg. A PUF is assumed to satisfy
the bounded noise condition, that is, when running Eval(1n, id, s) twice, the
Hamming distance of any two responses σ1, σ2 is smaller than dnoise(n). We
assume that the challenge space of a PUF is the set of strings of a certain
length.

Security Properties. We assume that PUFs enjoy the properties of uncloneability
and unpredictability. Unpredictability is modeled in [7] via an entropy condition
on the PUF distribution. Namely, given that a PUF has been measured on
a polynomial number of challenges, the response of the PUF evaluated on a
new challenge has still a significant amount of entropy. The following definition
automatically implies uncloneability (see [8] pag. 39 for details).

Definition 4 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval)
for security parameter n is (dmin(n),m(n))-unpredictable if for any s ∈ {0, 1}n
and challenge list Q = (s1, . . . , spoly(n)), one has that, if for all 1 ≤ k ≤ poly(n)
the Hamming distance satisfies disham(s, sk) ≥ dmin(n), then the average min-
entropy satisfies H̃∞(PUF(s)|PUF(Q)) ≥ m(n), where PUF(Q) denotes a se-
quence of random variables PUF(s1), . . . ,PUF(spoly(n)) each one corresponding
to an evaluation of the PUF on challenge sk. Such a PUF-family is called a
(rg, dnoise, dmin,m)- PUF family.

Fuzzy Extractors. The output of a PUF is noisy. That is, querying the PUF
twice with the same challenge, one might obtain two distinct responses σ, σ′,
that are at most dnoise apart in hamming distance. Fuzzy extractors of Dodis et
al. [20] are applied to the outputs of the PUF, to convert such noisy, high-entropy
measurements into reproducible randomness. Very roughly, a fuzzy extractor is
a pair of efficient randomized algorithms (FuzGen,FuzRep), and it is applied to
PUFs ’responses as follows. FuzGen takes as input an `-bit string, that is the
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PUF’s response σ, and outputs a pair (p, st), where st is a uniformly distributed
string, and p is a public helper data string. FuzRep takes as input the PUF’s
noisy response σ′ and the helper data p and generates the very same string st
obtained with the original measurement σ.

The security property of fuzzy extractors guarantees that, if the min-entropy
of the PUF’s responses are greater than a certain parameter m, knowledge of the
public data p only, without the measurement σ, does not give any information
on the secret value st. The correctness property, guarantees that all pairs of
responses σ, σ′ that are close enough, i.e., their hamming distance is less then a
certain parameter t, will be recovered by FuzRep to the same value st generated
by FuzGen. In order to apply fuzzy extractors to PUF’s responses it is sufficient
to pick an extractor whose parameters match with the parameter of the PUF
being used. For formal definitions of fuzzy extractors and PUFs the reader is
referred to the full version [18].

Ideal Functionalities for Malicious PUFs and Stateless Tokens. We follow the
malicious PUF model introduced in [36]. In this model, the adversary is allowed
to create arbitrarily malicious PUFs. Very informally, a malicious PUF is any
physical device that “looks like” a PUF but it implements an arbitrary malicious,
possibly stateful, function. Such adversarial behaviour has been modeled in [36]
by extending the ideal functionality proposed in [7]. We denote by FPUF the
ideal functionality for malicious PUF. A stateless token is a wrapper that can be
programmed with any arbitrary stateless function. Tokens are modeled by [26,13]
as the ideal functionality Fwrap. For lack of space, the formal definitions of the
functionalities FPUF and Fwrap together with the UC-definition are provided in
the full version [18].

3 The Compiler

In this section we show how to transform any ideal extractable commitment
scheme into a protocol that UC-realizes the Fcom functionality, unconditionally.
Such transformation is based on the following building blocks.

Extractable Blobs. “Blob” was used in [6] to denote a commitment. In this paper
a blob is a pair of bit commitments such that the actual bit committed in the
blob is the xor of the pair. The representation of a bit as its exclusive-or allows
to prove equality of the bits committed in two blobs using commitments as black
boxes. Let IdealExtCom be any ideal extractable commitment scheme satisfying
Def. 3. If the commitment phase of IdealExtCom is interactive then the blob is
the pair of transcripts obtained from the interaction. Procedures to create a blob
of a bit b, and to reveal the bit committed in the blob, are the following.

Blob(b): Committer picks bits b0, b1 uniformly at random such that b = b0⊕ b1.
It commits to b0, b1 (in parallel) running IdealExtCom as sub-routine and
obtains commitment transcripts c0, c1, and decommitments d0, d1. Let B =
(c0, c1) be the blob of b.
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OpenBlob(B): Committer sends (b0, d0), (b1, d1) to Receiver. Receiver accepts
iff d0, d1 are valid decommitments of b0, b1 w.r.t. transcripts (c0, c1) and
computes b = b0 ⊕ b1.

A blob inherits the properties of the commitment scheme used as sub-protocol.
In particular, since IdealExtCom is used as sub-routine, each blob is statistically
hiding/binding and straight-line extractable.

Equality of Blobs. Given the representation of a bit commitment as a blob, a
protocol due to Kilian [28] allows to prove that two committed bits (two blobs)
are equal, without revealing their values. We build upon this protocol to con-
struct a “simulatable” version, meaning that (given some trapdoor) a simulator
can prove equality of two blobs that are not equal. Let Bi,Bj be two blobs. Let
bi = (b0i⊕b1i ) be the bit committed in Bi, and bj = (b0j⊕b1j ) be the bit committed
in Bj . Let P denote the prover and V the verifier. In the following protocol P
proves to V that Bi and Bj are the commitment of the same bit (i.e., bi = bj).

BobEquality(Bi,Bj)
1. V uniformly chooses e ∈ {0, 1} and commits to e using IdealExtCom.
2. P sends y = b0i ⊕ b0j to V .
3. V reveals e to P .
4. P reveals bei and bej (i.e., P sends decommitments dei , dej to V ). V accepts

iff y = bei ⊕ bej .

Protocol BobEquality satisfies the following properties. Soundness: if bi 6= bj ,
any malicious prover P ∗ convinces V with probability negligibly close to 1/2,
that is the probability of guessing the challenge e. Here we are using the statis-
tically hiding property of the ideal commitment IdealExtCom used to commit e.
Privacy: If bi = bj then after executing the protocol, the view of any verifier V ∗,
is independent of the actual value of bi, bj (given that Bi,Bj were secure at the
beginning of the protocol). Simulation: there exists a straight-line strictly PPT
simulator SimFalse such that, for any (Bi,Bj) that are not equal (i.e., bi 6= bj),
for any malicious verifier V ∗, produces a view that is statistically close to the
case in which (Bi,Bj) are equal (i.e., bi = bj) and V ∗ interacts with the honest
P . The above properties are formally proved in the full version [18]. Note that
the protocol uses blobs in a black-box way. Note also, that a blob can be involved
in a single proof only.

3.1 Unconditional UC-secure Commitments from Ideal Extractable
Commitments

We construct unconditional UC-secure commitments using extractable blobs and
protocol BobEquality as building blocks. We want to implement the following
idea. The committer sends two blobs of the same bit and proves that they are
equal running protocol BobEquality. In the decommitment phase, it opens only
one blob (a similar technique is used in [25], where instead the commitment
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scheme is crucially used in a non black-box way). The simulator extracts the bit
of the committer by exploiting the extractability property of blobs. It equivocates
by committing to the pair 0, 1 and cheating in the protocol BobEquality. In the
opening phase, it then opens the blob corresponding to the correct bit. Because
soundness of BobEquality is only 1/2 we amplify it via parallel repetition.

Specifically, the committer will compute n pairs of (extractable) blobs. Then
it proves equality of each pair of blobs by running protocol BobEquality with the
receiver. The commitment phase is successful if all equality proofs are accepting.
In the decommitment phase, the committer opens one blob for each pair. The
receiver accepts if the committer opens one blob for each consecutive pair and
all revealed blobs open to the same bit. The construction is formally described
in Fig. 1.

Protocol UCComCompiler

Committer’s input: b ∈ {0, 1}.
Commitment Phase

1. Committer: run Blob(b) 2n times. Let B1, . . . ,B2n be the blobs obtained.
2. Committer ⇔ Receiver: for i = 1; i = i + 2; i ≤ 2n − 1; run

BobEquality(Bi,Bi+1).
3. Receiver: if all equality proofs are accepting, accept the commitment phase.

Decommitment Phase
1. Committer: for i = 1; i = i + 2; i ≤ 2n − 1; randomly choose ` ∈ {i, i + 1}

and run OpenBlob(B`) with the Receiver.
2. Receiver: 1) check if Committer opened one blob for each consecutive pair;

2) if all n blobs open to the same bit b, output b and accept. Else output
reject.

Fig. 1. UCComCompiler: Unconditional UC Commitment from any Ideal Extractable
Commitment.

Theorem 1. If IdealExtCom is an ideal extractable commitment scheme in the
Faux-hybrid model, then protocol in Fig. 1 is an unconditionally UC-secure bit
commitment scheme in the Faux-hybrid model.

Proof Sketch. To prove UC-security we have to show a straight-line simulator Sim
which correctly simulates the view of the real-world adversary A and extracts her
input. Namely, when simulating the malicious committer in the ideal world, Sim
internally runs the real-world adversarial committer A simulating the honest
receiver to her, so to extract the bit committed to by A, and play it in the
ideal world. This property is called extractability. When simulating the malicious
receiver in the ideal world, Sim internally runs the real-world adversarial receiver
A simulating the honest committer to her, without knowing the secret bit to
commit to, but in such a way that it can be opened as any bit. This property is
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called equivocality. In the following, we briefly explain why both properties are
achieved.

Straight-line Extractability. It follows from the straight-line extractability and
binding of IdealExtCom and from the soundness of protocol BobEquality.
Roughly, Sim works as follows. It plays the commitment phase as an honest
receiver (and running the straight-line extractor of IdealExtCom having access
to Faux). If all proofs of BobEquality are successful, Sim extracts the bits of
each consecutive pair of blobs and analyses them as follows. Let b ∈ {0, 1}. If
all extracted pairs of bits are either (b, b) or (b̄, b), ( i.e. there are no pairs like
(b̄, b̄)), it follows that, the only bit that A can successfully decommit to, is b.
In this case, Sim plays the bit b in the ideal world. If there is at least a pair
(b, b) and a pair (b̄, b̄), then A cannot provide any accepting decommitment
(indeed, due to the binding of blobs, A can only open the bit b from one
pair, and the bit b̄ from another pair, thus leading the receiver to reject). In
this case Sim sends a random bit to the ideal functionality. If all the pairs
of blobs are not equal, i.e., all pairs are either (b̄, b) or (b, b̄), then A can
later decommit to any bit. In this case the simulator fails in the extraction
of the bit committed, and it aborts. Note that, this case happens only when
all the pairs are not equal. Thus A was able to cheat in all executions of
BobEquality. Due to the soundness of BobEquality, this event happens with
probability negligible close to 2−n.

Straight-line Equivocality. It follows from the simulation property of BobEquality.
Sim prepares n pairs of not equal blobs. Then it cheats in all executions of
BobEquality, by running the straight-line simulator associated to this proto-
col. In the decommitment phase, after having received the bit to decommit
to, for each pair, Sim reveals the blob corresponding to the correct bit.

Note that, in both cases Sim crucially uses the extractor associated to IdealExtCom,
that in turn uses the access to Faux. The formal proof of the above theorem can
be found in the full version [18].

In Section 4 we show an implementation of IdealExtCom with malicious PUFs,
while in Section 5, we show how to implement IdealExtCom using stateless token.
By plugging such implementations in protocol UCComCompiler we obtain the
first unconditional UC-secure commitment scheme with malicious PUFs (namely,
in the FPUF-hybrid model), and stateless tokens (namely, in the Fwrap-hybrid
model).

4 Ideal Extractable Commitment from (Malicious) PUFs

In this section we show a construction of ideal extractable commitment in the
FPUF model. Our construction builds upon the ideal commitment scheme pre-
sented in [36]. For simplicity, in the informal description of the protocol we omit
mentioning the use of fuzzy extractors.
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Ideal Commitment Scheme in the FPUF Model (from [36]). The idea behind
the protocol of [36], that we denote by CPuf = (CCPuf ,RCPuf), is to turn Naor’s
commitment scheme [34] which is statistically binding but only computationally
hiding, into statistically hiding and binding, by replacing the PRG with a (pos-
sibly malicious) PUF. Roughly, protocol CPuf goes as follows. At the beginning
of the protocol, the committer creates a PUF, that we denote by PS . It prelim-
inary queries PS with a random string s (of n bits) to obtain the response σS
(of rg(3n) bits, where rg is the PUF’s range) and finally sends the PUF PS to
the receiver. After receiving the PUF, the receiver sends a random string r (i.e.,
the first round of Naor’s commitment) to the committer. To commit to a bit
b, the committer sends c =σS ⊕ (r ∧ b|r|) to the receiver. In the decommitment
phase, the committer sends (b, s) to the receiver, who checks the commitment
by querying PS with s. For the formal description of CPuf the reader can refer
to [36] or to the full version of this work [18].

Our Ideal Extractable Commitment Scheme in the FPUF Model. We transform
CPuf into a straight-line extractable commitment using the following technique.
We introduce a new PUF PR, sent by the receiver to the committer at the
beginning of the protocol. Then we force the committer to query the PUF PR

with the opening of the commitment computed running CPuf. An opening of
protocol CPuf is the value σS4. This allows the extractor, who has access to the
interface of FPUF, to extract the opening. The idea is that, from the transcript
of the commitment (i.e., the value c = σS⊕ (r∧ b)) and the queries made to PR,
(the value σS) the bit committed if fully determined.

To force the committer to query PR with the correct opening, we require
that it commits to the answer σR obtained by PR. Thus, in the commitment
phase, the committer runs two instances of CPuf. One instance, that we call
ComBit, is run to commit to the secret bit b. The other instance, that we call
ComResp, is run to commit to the response of PUF PR, queried with the opening
of ComBit. In the decommitment phase, the receiver gets PR back, along with
the openings of both the bit and the PUF-response. Then it queries PR with
the opening of ComBit, and checks if the response is consistent with the string
committed in ComResp. Due to the unpredictability of PUFs, the committer
cannot guess the output of PR on the string σS without querying it. Due to
the statistically binding of CPuf, the committer cannot postpone querying the
PUF in the decommitment phase. Thus, if the committer will provide a valid
decommitment, the extractor would have observed the opening already in the
commitment phase with all but negligible probability.

However, there is one caveat. The unpredictability of PUFs is guaranteed
only for queries that are sufficiently apart from each other. Which means that,
given a challenge/response pair (c, r), the response on any strings c′ that is
“close” in hamming distance to c (“close” means that disham(c, c′) ≤ dmin), could
be predictable. Consequently, a malicious committer could query the PUF with

4 In the actual implementation we require the committer to query PR with the output
of the fuzzy extractor stS , i.e., (stS , pS)← FuzGen(σS).



14 I. Damgård and A. Scafuro

a string that is only “close” to the opening. Then, given the answer to such a
query, she could predict the answer to the actual opening, without querying the
PUF. Hence, the extraction fails.

We overcome this problem by using Error Correcting Codes, in short ECC.
The property of an ECC with distance parameter dis, is that any pair of strings
having hamming distance dis, decodes to a unique string. Therefore, we modify
the previous approach asking the committer to query PUF PR with the encoding
of the opening, i.e., Encode(σS). In this way, all queries that are “too close”
in hamming distance decode to the same opening, and the previous attack is
defeated. Informally, hiding and biding follow from hiding and binding of CPuf.
Extractability follows from the statistically biding of CPuf, the unpredictability
of PR and the properties of ECC. The protocol is formally described in Fig. 2.
In the full version [18] we discuss the parameters of the PUF and how to prevent
the replacement of a honest PUF by the adversary, and we provide the proof of
the following theorem.

Theorem 2. If CPuf is an Ideal Commitment in the FPUF-model, then ExtPuf
is an Ideal Extractable Commitment in the FPUF model.

5 Ideal Extractable Commitments from Stateless Tokens

In this section we show how to construct ideal extractable commitments from
stateless tokens. We first construct an ideal commitment scheme. Then, we use
it as building block for constructing an ideal extractable commitment.

Ideal Commitment Scheme in the Fwrap Model. Similarly to the construction
with PUFs, we implement Naor’s commitment scheme by replacing the PRG
with a stateless token.

In the construction with PUFs, the PRG was replaced with a PUF that is
inherently unpredictable. Now, we want to achieve statistically hiding using
stateless token. The problem here is that we do not have unpredictability for
free (as it happens with PUFs). Thus, we have to program the stateless token
with a function that is, somehow, unconditionally unpredictable. Clearly, we
cannot construct a token that implements a PRG. Indeed, after observing a few
pairs of input/output, an unbounded receiver can extract the seed, compute all
possible outputs, and break hiding. We use a point function following [23] . A
point function f is a function that outputs always zero, except in a particular
point x, in which it outputs a value y. Formally, f : {0, 1}n → {0, 1}m such that
f(x) = y and f(x′) = 0, for all x′ 6= x.

Thus, we adapt Naor’s commitment scheme as follows. The committer picks
a n-bit string x and a 3n-bit string y and creates a stateless token that on input
x outputs y, while it outputs 0 on any other input. The stateless token is sent to
the receiver at the beginning of the protocol. After obtaining the token, receiver
sends the Naor’s first message, i.e., the random value r, to the committer. The
committer commits to the bit b by sending c = y⊕(r∧b|r|). In the decommitment
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Protocol ExtPuf
ECC = (Encode,Decode) is a (N,L, d1min) error correcting code, where L = ` =
3n. Parties use PUF family: P1=(rg1, d1noise, d

1
min,m

1), with challenge size L.
(FuzGen1,FuzRep1) is a (m1, `1, t1, ε1)-fuzzy extractor of appropriate matching pa-
rameters. Protocol CPuf = (CCPuf ,RCPuf) is run as sub-routine. Committer’s Input:
b ∈ {0, 1}.

Commitment Phase
1. Receiver RExtPuf : create PUF PR and send it to CExtPuf .
2. Commitment of the Secret Bit: ComBit.

CExtPuf ⇔ RExtPuf : run 〈CCPuf(com, b),RCPuf(com)〉 so that CExtPuf commits to
bit b. Let (stS , pS) ← FuzGen(σS) be the value obtained by CExtPuf , after
applying the fuzzy extractor to the answer obtained from its own PUF PS

when running protocol ComBit.
3. Committer CExtPuf : Query PR with Encode(stS) and obtain response σR.

If σR = ⊥ (i.e., PUF PR aborts), set σR ← 0. Compute (stR, pR) ←
FuzGen1(σR).

4. Commitment of PR’s Response: ComResp.
CExtPuf ⇔ RExtPuf : run 〈CCPuf(com, stR||pR),RCPuf(com)〉 so that CExtPuf com-
mits to the string stR||pR.

Decommitment Phase
1. CExtPuf ⇔ RExtPuf : run 〈CCPuf(open, b),RCPuf(open)〉 and
〈CCPuf(open, stR||pR),RCPuf(open)〉.

2. Committer CExtPuf : send PUF PR back to RExtPuf .
3. Receiver RExtPuf : If both decommitments are successfully completed, then

RExtPuf gets the bit b′ along with the opening st′S for ComBit and string
st′R||p′R for ComResp.
Check validity of st′R: query PR with Encode(st′S) and obtain σ′

R. Compute
st′′R ← FuzRep1(σ′

R, p
′
R). If st′′R = st′R, then accept and output b. Else, reject.

Fig. 2. ExtPuf: Ideal Extractable Commitment in the FPUF model.

phase, the committer sends x, y, b. The receiver queries the token with x and
obtains a string y′. If y = y′ the receiver accepts iff c = y′ ⊕ (r ∧ b).

The statistically binding property follows from the same arguments of Naor’s
scheme. The token is sent away before committer can see r. Thus, since x is only n
bits, information theoretically the committer cannot instruct a malicious token
to output y′ adaptively on x. Thus, for any malicious possibly stateful token,
binding is preserved. The statistically hiding property holds due to the fact that
x is secret. A malicious receiver can query the token with any polynomial number
of values x′. But, whp she will miss x, and thus she will obtain always 0.

The above protocol is denoted by CTok and is formally described in Fig. 3.
We stress that, this is the first construction of unconditional commitment scheme
that is secure even against malicious stateful tokens.

From Bit Commitment to String Commitment. To commit to a `-bit string using
one stateless token only is sufficient to embed ` pairs (x1, y1),. . ., (x`, y`) in the
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token TC and to require that for each i, xi ∈ {0, 1}n and yi ∈ {0, 1}3`n. Namely,
TC grows linearly with the size of the string to be committed. Then, execute
protocol CTok for each bit of the string in parallel. The receiver accepts the
string iff all bit commitments are accepting.

Protocol CTok. Committer’s Input: b ∈ {0, 1}.

Commitmen Phase
1. Committer CCTok: pick x

$← {0, 1}n, y $← {0, 1}3n. Create token TC imple-
menting the point function f(x) = y; f(x′) = 0 for all x′ 6= x. Send TC to
RCTok.

2. Receiver RCTok: pick r
$← {0, 1}3n. Send r to CCTok.

3. Committer CCTok: Send c = y ⊕ (r ∧ b3n) to RCTok.
Decommitment Phase

1. Committer CCTok: send (b, x) to RCTok.
2. Receiver RCTok: query TC with x and obtain y. If b = 0, check that c = y.

Else, check that y = c ⊕ r. If the check passes, accept and output b, else
reject.

Fig. 3. CTok: Ideal Commitments in the Fwrap model.

Ideal Extractable Commitment in the Fwrap model. Extractability is achieved
as before. The receiver sends a token TR to the committer. The committer is
required to query TR with the opening of the commitment (namely, the value
y) and then commit to the token’s response. In the decommitment phase, the
committer opens both the commitment of the bit and of the token’s response.
The receiver then checks that the latter value corresponds to the response of TR
on input the opening of the commitment of the bit. Note that here the receiver
can check the validity of the token’s response without physically possessing the
token.

We now need to specify the function computed by token TR. Such function
must be resilient against an unbounded adversary that can query the stateless
token an arbitrary polynomial number of times.

The function, parameterized by two independent MAC keys krec, ktok, takes
as input a commitment’s transcript (r, c), a MAC-tag σrec and an opening y.
The function checks that y is a valid opening of (r, c), and that σrec is a valid
MAC-tag computed on (r, c) with secret key krec (i.e., σrec = Mac(krec, r||c)). If
both checks are successful, the function outputs the MAC-tag computed on the
opening y (i.e., σtok = Mac(ktok, y)). Due to the unforgeability of the MAC, and
the statistically binding property of the commitment scheme CTok, a malicious
committer can successfully obtain the answer to exactly one query. Note that,
a malicious committer can perform the following attack. Once it receives the
string r from the receiver, it picks strings y0 and y1 such that r = y0 ⊕ y1 and
sends the commitment c = y0 to the receiver, obtaining the MAC of c. With the
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commitment so computed and the tag, it can query token TR twice with each valid
opening. In this case, the committer can extract the MAC key, and at the same
time baffling the extractor that observes two valid openings. The observation
here is that, due to the binding of CTok, for a commitment c computed in such
a way, the malicious committer will not be able, in the decommitment phase, to
provide a valid opening. (The reason is that whp she cannot instruct its token
to output neither y0 or y1). Thus, although the extractor fails and outputs ⊥,
the decommitment will not be accepting. Thus extractability is not violated.

As final step, the committer commits to the token’s response σtok, using the
scheme CTok. (If the token of the receiver aborts, the committer sets σtok to the
zero string). In the decommitment phase, the receiver first checks the validity
of both commitments (commitment of the bit, commitment of the answer σtok).
Then, given the opening of the bit, it checks that σtok is a valid MAC computed
under key ktok on such opening.

Binding follows from the binding of CTok and the unforgeability of MAC.
Hiding still follows from the hiding of CTok. Indeed, the answer of TR sent by
the malicious receiver, is not forwarded to the receiver, but is committed using
the ideal commitment CTok. Furthermore, if TR selectivly aborts, the committer
does not halt but it continues committing to the zero-string. The receiver will
get its token’s answer in clear only in the decommitment phase when the bit
has been already revealed. The formal description of the above protocol, that
we denote by ExtTok, is shown in Fig. 4.

Theorem 3. Protocol ExtTok is an ideal extractable commitment in the Fwrap

model.

The proof of Theorem 3 is provided in the full version [18].
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