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Abstract. Blind signatures have proved an essential building block for
applications that protect privacy while ensuring unforgeability, i.e., elec-
tronic cash and electronic voting. One of the oldest, and most efficient
blind signature schemes is the one due to Schnorr that is based on his fa-
mous identification scheme. Although it was proposed over twenty years
ago, its unforgeability remains an open problem, even in the random-
oracle model. In this paper, we show that current techniques for proving
security in the random oracle model do not work for the Schnorr blind
signature by providing a meta-reduction which we call “personal neme-
sis adversary”. Our meta-reduction is the first one that does not need
to reset the adversary and can also rule out reductions to interactive
assumptions. Our results generalize to other important blind signatures,
such as the one due to Brands. Brands’ blind signature is at the heart of
Microsoft’s newly implemented UProve system, which makes this work
relevant to cryptographic practice as well.

Keywords: Blind signatures, meta-reduction technique, unforgeability,
random oracle model.

1 Introduction

In a blind signature scheme, first introduced by Chaum in 1982 [16], a
user can have a document signed without revealing its contents to the
signer, and in such a way that the signer will not be able to recognize it
later, when he sees the signature. Blind signatures have proven to be a
very useful building block in applications requiring both anonymity and
unforgeability, such as e-cash and anonymous credentials [12–15, 27].

Transactions that ensure unforgeability without violating privacy are
of growing interest to cryptographic practice. The European Union E-
Privacy Directive [31] limits the scope of the data that organizations
are allowed to collect; so, to make sure that it is not in violation of this
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directive, an online bank or vendor interacting with a user has an incentive
to learn as little as possible about this user. Therefore, industry leaders
such as Microsoft and IBM [30, 36] have been developing, implementing
and promoting cryptographic software tools that promise the best of both
worlds: unforgeability for banks and vendors, and privacy for users.

As a result, research on blind signatures has flourished, and provably
secure solutions have been proposed based on well-established theoretical
complexity assumptions in the standard model [14, 3, 22, 24] while some of
these have been adapted for practical use by IBM [14]. However, schemes
in the standard model either require exponentiation in the RSA group
or bilinear pairings, which are typically considerably slower than, say,
elliptic curve operations.

Thus, more efficient solutions that are provably secure in the random-
oracle (RO) model [8] remain of practical importance [2, 9, 6]. Some of
the earliest proposed schemes [12, 35, 23] do not have proofs of security
even in the RO model; in fact, the security properties of the Schnorr blind
signature is an important open problem. Moreover, Microsoft’s UProve
proposal [29, 30] is based on one of the unproven blind signatures, namely
the one due to Brands [12]. UProve is currently part of a pilot project by
NSTIC (National Strategy for Trusted Identities in the Cyberspace) that
will be used quite extensively in a situation that will potentially affect
millions of people [1]. Therefore, the security properties of these unproven
but important blind signatures is a natural topic to look at.

In a nutshell, a blind signature scheme is secure if it satisfies two
key properties: one-more unforgeability, which means that an adversary
cannot produce more signatures than have been issued; and blindness,
which means that an adversary cannot link a particular signature to a
particular signing instance [33, 34].

The Schnorr blind signature scheme is the most efficient of all the
blind signature schemes proposed in the literature given that it can be
implemented using elliptic curves without pairings. It is constructed from
the corresponding identification protocol via the Fiat-Shamir heuristic
and some blinding operations. However, the security of this important
scheme is an open problem. If the Schnorr identification scheme is not
secure (i.e., after some number of interactions with the prover, the ad-
versary can impersonate him), then the blind Schnorr signature is not
one-more unforgeable. It is known that the Schnorr identification scheme
cannot be proven secure under the discrete-logarithm assumption using
black-box reductions in the standard model [32], so at the very least, it
seems that Schnorr blind signatures require that we assume the security



of Schnorr identification (also studied by Bellare and Palacio [7]). Perhaps
an even stronger assumption may be reasonable. Can we prove it secure
under this or a stronger assumption?

To make this question more interesting, let us make it more general.
Let us consider not just the Schnorr blind signature, but in general the
blind variants of all Fiat-Shamir based signature schemes constructed
along the lines described above: the signer acts as the prover in an iden-
tification protocol. And let us see if they can be proven secure under any
reasonable assumption (by reasonable, we mean an assumption that is
not obviously false), not just specific ones.

PS Reduction. Pointcheval and Stern showed that we can prove the
security of blind signature schemes in the RO model when the underly-
ing identification scheme is a witness-indistinguishable proof protocol for
proving knowledge of a secret key, such that many secret keys are associ-
ated with the same public key [33, 34]. Their result does not apply to the
original Schnorr blind signature, in which there is a single secret key cor-
responding to the public key. Other important blind signatures to which
it does not apply are the ones due to Brands’ (which are at the heart of
Microsoft’s UProve), and the ones based on the GQ signature [12, 23].

The idea of the Pointcheval-Stern reduction (also called “an oracle
replay reduction”) is to replay the attack polynomially many times with
different random oracles in order to make the attacker successfully forge
signatures. More precisely, we first run the attack with random keys,
tapes and oracle f . Then, we randomly choose an index j and we replay
with same keys and random tapes but with a new, different oracle f ′

such that the first j − 1 answers are the same as before. We expect that,
with non-negligible probability we will obtain two different signatures,
σ, σ′ of the same message m and we will be able to use them to solve a
hard algorithmic problem (usually the one underlying the blind signature
scheme) in polynomial time. This proof technique works for standard (i.e.
not blind) versions of the Schnorr, Brands and GQ signatures. They also
showed that it works for a modification of Schnorr blind signature which
is less efficient than the original Schnorr’s. A very natural question is: can
it work for the original Schnorr blind signature and its generalizations,
such as the Brands or GQ blind signatures?

Our results. Let us take a closer look at oracle replay reductions, as
used by Pointcheval and Stern. Their reduction can be modeled as a Tur-
ing machine that has a special tape that is used specifically for answering
random oracle queries; it always uses the next unused value when answer-
ing, afresh, the next random oracle query. We call this type of reductions:



Naive RO replay reductions and as we will discuss in Section 3.1 it can be
used to model every known reduction for proving the security of digital
signature schemes. Our result is that, in fact, naive RO replay reductions
cannot be used to prove security of generalized Schnorr blind signatures,
no matter how strong an assumption we make. Our result also holds for
interactive assumptions or even if we assume the security of the blind
signature scheme itself! Put another way, any such reduction can be used
in order to break the underlying assumption.

Meta-Reductions. In our proof we make use of the “meta-reduction”
method [10]: a separation technique commonly used to show impossibility
results in cryptography. Let A be an adversary who breaks the unforge-
ability of generalized Schnorr blind signatures with non-negligible prob-
ability. We will use a meta-reduction (which we call “personal nemesis
adversary”) to show that there cannot exist a naive RO replay reduc-
tion, B, which turns A into a successful adversary for any hard assump-
tion that may be considered. We do that by transforming B through the
meta-reduction into an algorithm that breaks the underlying assumption,
without relying on the existence of a successful adversary.

What makes our technique particularly interesting is that for the first
time we introduce a meta-reduction (our personal nemesis adversary)
that does not need to reset the reduction B, as it is usually done when
using the meta-reduction paradigm [19]. For example, our personal neme-
sis adversary could reset the reduction B, get an additional signature and
return this signature back to B as his forgery. However, this resetting
makes things more complicated since the two executions are correlated.
Our technique, instead, is much simpler: the personal nemesis adversary,
pA, will simply interact with the reduction B the way an actual adversary
would (but taking advantage of powers not available to an adversarial al-
gorithm, such as remembering its prior state if and when the reduction
resets it, and having access to the reduction’s random oracle tape), with-
out resetting it at any time. When B halts, if it succeeded in breaking the
assumption (as it should with non-negligible probability, or it wouldn’t
be a valid security reduction), pA has succeeded too — but without as-
suming the existence of an actual adversary that breaks the security of
the underlying signature scheme.

What are the implications of our results on the security of Schnorr
blind signatures and generalizations? We must stress that our results do
not in fact constitute an attack, and so for all we know, these schemes
might very well be secure. However, we have essentially ruled out all
known approaches to proving their security. So in order to give any secu-



rity guarantee on these signature schemes, the cryptographic community
would have to come up with radically new techniques.

Related work. Schnorr and Jakobsson [18] proved security of the Schnorr
blind signature in the combined random oracle and generic group model
which is very restricted. Fischlin and Schröder [22] show that proving se-
curity of a broad class of blind signature schemes (which, in particular,
includes what we refer to as generalized Schnorr blind signatures) via
black-box reductions in the standard model is as hard as solving the un-
derlying hard problem. Their technique uses the meta-reduction paradigm
to show that black-box reductions for this type of blind signatures can be
turned into solvers for hard non-interactive assumptions. However, their
result does not rule out reductions in the RO model, and is technically
very different from ours for that reason.

Rafael Pass studied the assumptions needed for proving security of
various cryptographic schemes [32]. In particular, relevant to our work,
he considers the Schnorr identification scheme and variants, and a cat-
egory of blind signatures called “unique blind signatures.” Pass consid-
ers whether so-called r-bounded-round assumptions are strong enough to
prove, in a black-box fashion in the standard model, the security of certain
schemes when repeated more than r times. His results apply to Schnorr
blind signatures (and their generalizations) in the following way: he shows
that no so-called bounded-round assumption can imply secure composi-
tion of the Schnorr identification scheme using black-box reductions (and
therefore the Schnorr blind signature).

Here is how our work goes beyond what was shown by Pass [32] for
“unique blind signatures.” First of all, we do not limit our consideration
to r-bounded-round assumptions but we show that our result applies for
every possible intractability assumption. Thus, we rule out the existence
of a very special type of reduction, the naive RO replay one, that models
all the known reductions for proving security of digital signatures, irre-
spective of assumption. As an example, consider the One More Discrete
Logarithm assumption (OMDL) [6] which has been used to prove security
of the Schnorr identification scheme against active attacks [7]. Our result
directly implies that Schnorr blind signature cannot be proven secure un-
der the OMDL assumption in the RO model. Finally, our result applies
even after just one signature was issued whereas Pass’ result questions
the security of schemes when repeated more than r times.

The meta-reduction technique has been used to analyze security of
Schnorr signatures. Paillier and Vergnaud [28] showed that the secu-
rity of Schnorr signatures cannot be based on the difficulty of the one



more discrete logarithm problem in the standard model. Fischlin and
Fleischhacker [20] extended their result by showing that the security of
Schnorr signatures cannot be based to the discrete logarithm problem
without programming the random oracle. Their work is also relevant to
ours since the meta-reduction they define also doesn’t need to reset the
reduction1. However, their result holds only for reductions to the discrete
logarithm problem and applies to non-programming reductions while our
naive RO replay reductions fall somewhere in between the programmable
and non-programmable setting (see Section 3.1 for a discussion about
programmability). Finally, their result only holds for a very limited class
of reductions: those that run a single copy of the adversary which makes
our work much broader.

2 Generalized Blind Schnorr Signature

First we explicitly define the class of blind signatures that our result
applies to. For a complete presentation of all the necessary building blocks
please refer to our full version [5].

In the signature scheme described by Schnorr [35] the signer’s secret
key is an exponent x, while his public key is h = gx. A signature on a
message m is obtained, via the Fiat-Shamir heuristic, from the Schnorr
identification protocol, i.e. the three-round proof of knowledge of x. Thus,
a signature on a message m is of the form σ = (a, r) such that gr =
ahH(m,a), whereH is a hash function that is modeled as a random oracle in
the security proof. A blind issuing protocol was proposed for this signature
back in the 1980s [18], and, on a high level, it works by having the user
“blind” the value a he receives from the signer into some unrelated a′, then
the user obtains c′ = H(m, a′) and, again, “blinds” it into some unrelated
c which he sends to the signer. The signer responds with r which the user,
again, “blinds” into r′ such that (a′, r′) are a valid signature on m.

Signer(q, g, h = gx) User(q, g, h,m)
y ← Zq , a = gy a−−−→

c←−−− α, β ← Zq , a′ = agαhβ , c′ = H(m,a′), c = c′ + β

r = y + cx mod q r−−−→ gr
?
= ahc, r′ = r + α, output r′, c′

The signature is: σ(m) = (a′, c′, r′) and the verification checks whether
gr

′
= a′hc

′
.

1 This is a result that Fischlin and Fleischhacker [20] obtained after the first version
of our manuscript appeared on eprint [5]; our result is in fact the first in which a
meta-reduction works without resetting the reduction B.



Ever since this protocol was proposed, its security properties were an
open problem. Okamoto proposed a modification [26]; Pointcheval and
Stern proved security of this modification [33, 34]. Our work studies this
blind signature and its generalizations, defined as follows:

Definition 1 (Generalized Blind Schnorr Signature). A blind sig-
nature scheme (Gen, S, U,Verify) is called Generalized Blind Schnorr Sig-
nature if:

1. (pk, sk) ∈ RL is a unique witness relation for a language L ∈ NP.

2. There exists a Σ-protocol (P, V ) for RL such that for every (pk, sk) ∈
RL the prover’s algorithm, P (pk, sk), is identical to the signer’s blind
signing algorithm S(pk, sk).

3. Let Sign(pk, sk,m) be the signing algorithm implicitly defined by (S,U).
Then, there exists a Σ-protocol P (pk, sk), V (pk) such that, in the ran-
dom oracle (RO) model, a signature σ = (a, c, r), where c = H(m, a)
is distributed identically to a transcript of the Σ-protocol.

4. There exists an efficient algorithm that on input (pk, sk) a “valid tu-
ple” (a, c, r) and a value c′, computes r′ s.t. (a, c′, r′) is a valid tuple.
(By “valid tuple” we mean a signature for which the verification equa-
tion holds.) Note that no additional information about a is required,
such as, e.g. its discrete logarithm.

Let us now see why Schnorr’s blind signature falls under the general-
ized blind Schnorr signature category. (1) The secret/public key pair is
an instance of the DL problem which is a unique witness relation; (2)
the signer’s side is identical to the prover’s side of the Schnorr iden-
tification scheme, which is known to be a Σ-protocol; (3) the signature
σ(m) = (a′, c′, r′) is distributed identically to the transcript of the Schnorr
identification protocol since a′ comes uniformly at random from G; c′ is
truly random in the RO model, and r′ is determined by α (4) finally, for
a tuple (a, c, r) and a value c′ one can compute r′ = r − cx+ c′x so that
(a, c′, r′) is still a valid tuple.

The definition also captures other well-known blind signature schemes,
such as the blind GQ [23] and Brands [12] (for Brands also see Section 4).

3 Security of Generalized Blind Schnorr Signatures

We first define a general class of RO reductions and then prove that gen-
eralized blind Schnorr signature schemes cannot be proven unforgeable,
and thus secure, using these reductions.



3.1 Naive RO replay reductions

We first explicitly describe the type of reductions that we rule out.

Definition 2 (Naive RO replay reduction). Let B be a reduction in
the random-oracle model that can run an adversary A, and may also reset
A to a previous state, causing A to forget B′s answers to its most recent
RO queries. We assume, without loss of generality, that if A has already
queried the RO on some input x, and hasn’t been reset to a state that is
prior to this query, then A does not make a repeat query for x.
We say that B is a naive RO replay reduction if: B has a special random
tape for answering the RO queries as follows: when A queries the RO, B
retrieves the next value v from its RO tape, and replies with c = f(b, v)
where b is the input to the reduction, and f is some efficiently computable
function.

Discussion Let us now take a closer look at known reductions for proving
security of signatures in the RO model and see whether they fall under the
naive RO replay reduction category. We first look at the reduction given
by Pointcheval and Stern [33] for proving security of blind signatures.
Their reduction could be easily modeled as a naive RO replay reduction
with f being the identity function on its second input. PS reductions
are perfect since they always create a signature. The same holds for the
reduction given by Abe and Okamoto [4]. To convince the reader that
our way of modeling reductions in the RO model is a very natural one,
let us also look at the reduction given by Coron [17] proving the security
of full domain hash (FDH) RSA signature. Coron’s reduction works as
follows: the reduction, B, gets as input (N, e, y) where (N, e) is the public
key and y is a random element from Z∗N and tries to find x = yd mod n.
B runs an adversary A, who can break the signature, with input the
public key. As usual, A makes RO and signing queries which B answers.
Whenever A makes an RO query, B picks a random r ∈ Z∗n and either
returns h = re mod N with probability p or returns h = yre mod N with
probability 1 − p. So, it is pretty straightforward that we could model
Coron’s reduction as a naive RO replay reduction by interpreting the
contents of an RO tape as r and the output of a p-biased coin flip (return
either re or yre). Other well-known reductions used in the literature to
prove security of digital signatures in the RO model can be modeled as
naive RO replay reductions as well [9, 6, 8].

Programmability Let us compare naive RO replay reductions with other
previously defined types. Non-programmable random-oracle reductions [25]



do not give the reduction the power to set the answers to the RO queries;
instead these answers are determined by some truly random function.
Naive RO replay reductions can be more powerful than that: they can, in
fact, answer the adversary’s queries in some way they find convenient, by
applying the function f to the next value of their RO tape. However, they
are not as powerful as the general programmable RO reductions: naive
RO replay reductions are not allowed, for example, to compute an answer
to an RO query as a function of the contents of the query itself. Fischlin
et al. [21] also consider an intermediate notion of programmability, called
“random re-programming reductions”, which are incomparable to ours.

3.2 Theorem for perfect naive RO replay reduction

Our first result is on a simpler class of reductions called “perfect”. We
will extend it to non-perfect reductions in Section 3.3.

Definition 3 (Perfect-Naive RO replay reduction). A naive RO
replay reduction B is called perfect naive RO replay reduction if B always
gives valid responses to A, i.e. its behavior is identical to that of the honest
signer.

We show that perfect naive RO replay reductions cannot be used to prove
security of generalized blind Schnorr signature schemes.

Theorem 1. Let (Gen,S ,U ,Verify) be a generalized blind Schnorr sig-
nature scheme. Assume that there exists a polynomial-time perfect naive
RO replay reduction B such that BA breaks an interactive intractability
assumption C for every A that breaks the unforgeability of the blind sig-
nature (S,U). Then, C can be broken in polynomial time.

Proof of theorem for perfect naive RO replay reduction We start
by introducing some terminology. Note that the reduction B is given
black-box access to A and is allowed to run A as many times as it wishes,
and instead of running A afresh every time, it may reset A to some pre-
vious state. At the same time, B is interacting with its own challenger C;
we do not restrict C in any way.

Consider how B runs A. B must give to A some public key pk for the
signature scheme as input. Next, B runs the blind signing protocol with
A; recall that a generalized blind Schnorr signing protocol always begins
with a message a from the signer to the user. When B runs A again, it
can choose to give it the same (pk , a) or different ones. It is helpful for



the description of the adversary we give, as well as for the analysis of the
interaction, to somehow organize various calls that B makes to A.

Every time that B runs A, it either runs it “anew”, providing a new
public key pk and first message a, or it “resets” it to a previous state, in
which some pk and a have already been given to A. In the latter case, we
say that A has been “reincarnated”, and so, an incarnation of A is defined
by (pk , a). Note that B may reincarnate A with the same (pk , a) several
times. In this case, we say that this incarnation is repeated. Thus, if this
is the ith time that A has been reset to a previous state for this specific
(pk , a), then we say that this is the ith repeat of the (pk , a) incarnation.
Without loss of generality, B never runs A anew with (pk , a) that it has
used (i.e., if B has already created an incarnation for (pk , a), it does not
create another one).

Let us consider what happens once A receives (pk , a). The signing
protocol, in which A is acting as the user, expects A to send to B the
challenge c. Additionally, A is free to make any random oracle queries it
chooses. Once B receives c, the signing protocol expects it to send to A
the response r. After that, the security game allows A to either request
another signature, or to output a one-more signature forgery, i.e., a set
of signatures (one more than it was issued); also, again, A can make RO
queries. The adversaries that we consider in the sequel will not request
any additional signatures, but will, at this point, output two signatures
(or will fail).

Note that, if B is a perfect naive RO replay reduction, then it will
always provide to A a valid response r to the challenge c; while if it is not
perfect, then it may, instead, provide an invalid response, or stop running
A at this point altogether. Thus, a particular run can be:

– Uncompleted: no valid response, r, was given by B at the end of the
protocol (cannot happen if B is perfect).

– Completed but unsuccessful: a valid r was given but A was not able
to output a forgery.

– Completed and successful: a valid r was given and A did output a
forgery.

The technique we follow to prove our theorem is the following. We first
define a special adversary which we call the super adversary, sA, who
exists if it is easy to compute the signing key for this signature scheme
from the corresponding verification key. We do not show how to construct
such an adversary (because we do not know how to infer the signing key
for generalized blind Schnorr, and in fact we generally assume that it is
impossible to do so in polynomial time); instead, we construct another



adversary, the personal nemesis adversary, pA, whose behavior, as far as
the reduction B can tell, will be identical to sA.

Note that, generally, an adversary is modeled as a deterministic cir-
cuit, or a deterministic non-uniform Turing machine: this is because,
inside a reduction, its randomness can be fixed. Thus, we need sA to
be deterministic. Yet, we need to make certain randomized decisions.
Fortunately, we can use a pseudorandom function for that. Thus, sA is
parametrized by s, a seed to a pseudorandom function2 Fs : {0, 1}∗ →
{0, 1}k. Additionally, it is parametrized by two messages m1,m2: signa-
tures on these messages will be output in the end.

Consider sAs,m1,m2 that interacts with a signer as follows:

Definition 4 (Perfect super adversary sAs,m1,m2). On input the sys-
tem parameters:

1. Begin signature issue with the signer and receive (pk, a).
2. Find sk.
3. Use sk to compute the signatures: pick a1, a2 and make two RO queries

(m1, a1) and (m2, a2). Produce two forged signatures for m1,m2, de-
note them as σ1 and σ2 (remember that sA is deterministic so if
reincarnated he makes the same RO queries).

4. Resume the signature protocol with the signer: send to the signer the
value c = Fs(trans) where trans is the current transcript between
sAs,m1,m2, the RO and the signer, and receive from the signer the
value r in response (which will always be valid for the perfect naive
RO reduction B).

5. Output the two message-signature pairs, (m1, σ1) and (m2, σ2).

Note that when sA executes the signature issue protocol with the signer
it computes c as a pseudorandom function of its current transcript with
the RO and the signer. Thus, there is only a very small probability (of
about 2−k) for sA to send the same c in another run.

The next lemma follows directly from the definition of a reduction B:

Lemma 1. If a perfect naive RO replay reduction B exists, then BsA(·)
(pk, system params) solves the assumption C.

Lemma 1 works even if the assumption C is an interactive one. That is
why, sA and pA are defined in such a way that they do not reset the
reduction B.

2 We know that if B exists then secure signatures exist which imply one way functions
existence and PRFs existence, so this is not an extra assumption.



Next, we define the personal nemesis adversary, pA. Similarly to sA,
it is parametrized by (s,m1,m2); and so we denote it pAs,m1,m2 . To the
reduction B, pAs,m1,m2 will look exactly the same as sAs,m1,m2 , even
though pAs,m1,m2 cannot compute sk . Instead, pAs,m1,m2 looks inside the
reduction B itself; this is why we call pAs,m1,m2 “B’s personal nemesis”:

Definition 5 (Perfect B’s personal nemesis adversary pAs,m1,m2).
On input the system parameters, pAs,m1,m2 performs a “one-more” forgery
attack, using the following special powers: (1) pAs,m1,m2 has full access to
B’s random oracle tape; (2) in case pAs,m1,m2 is rewound, he remembers
his previous state.

pAs,m1,m2 performs the one-more forgery for ` = 1. Thus, he runs
one signature issuing session with the signer and then outputs two valid
signatures. Specifically, in his ith incarnation, pA does the following:
1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing (pA cannot find sk).
3. – If (pk , a) is the same as in some previous incarnation j then make

the same RO queries as the last time this incarnation was run
(sA remembers the previous RO queries; obviously it will receive
different c1, c2 than before).

– If (pk , a) is a new tuple, then this is a new incarnation; do the
following:
• If pA has already computed the sk for this pk, then use this

power to forge two signatures on (m1, m2); call the resulting
signatures σ1 and σ2,
• else (if sk not already known), pA computes two signatures

using its special access to B by looking in advance what the next
c1, c2 are going to be, then picking random 3 r1, r2 and solving
for a1, a2 using the third property of generalized blind Schnorr
signatures and the simulator from the underlying Σ-protocol.
pA makes two RO queries of the form (m1, a1), (m2, a2) and
gets c1, c2 in response. Call the resulting signatures σ1 and σ2.

4. Resume the signature issue protocol with the signer: send to the signer
the value c = Fs(trans) where trans is the current transcript between
pA, the RO and the signer, and receive from the signer the value r in
response (which will be valid for the perfect naive RO reduction B).

5. – If this is the first time for this incarnation, then output the two
message-signature pairs, (m1, σ1) and (m2, σ2) (completed and suc-
cessful run).

3 Recall that pA uses a PRF that takes as input its current state in order to make
each random choice.



– If this is a repeat of some incarnation j, and the value c = Fs(trans)
6= cj, where cj is the corresponding value from incarnation j, then
using r and rj, property 3 of generalized blind Schnorr signatures
and the extractability of the Σ-protocol, compute sk (if you don’t
already know it for this pk). Next, compute σ1 and σ2 consistent
with the RO queries from incarnation j, using property 4 of gen-
eralized blind Schnorr signatures (completed and successful run).

– If i is a repeat of j, and the value c = Fs(trans) = cj, then fail
(completed and unsuccessful run).

Given the definition above it becomes clear why our naive RO reduc-
tions are not allowed to compute answers to the RO queries as a function
of the query itself. It is important that the personal nemesis adversary has
full access to the reduction’s special RO tape and he should able to see
what the next answer would be before forming his query. In particular, on
the second case of Step 3 in Definition 5, pA first looks into B’s RO tape
to see what is the next c1, c2 and then formulates his RO query which
depends on c1, c2. In this case, our analysis would break if the answer to
the query was computed as a function of the content of the query itself.

Lemma 2. If B is a perfect naive RO replay reduction, then B’s view in
interacting with pAs,m1,m2 is indistinguishable from its view when inter-
acting with sAs,m1,m2.

Proof. In order to prove this, we will analyze the behavior of sA and
pA step by step, as they were defined, and we will show that B receives
indistinguishable views when interacting with sAs or pAs with all but
negligible probability (to simplify notation we will omit writing the mes-
sages m1,m2 to the parameters given to the adversaries). We begin by
defining sARand and pARand who behave exactly as sAs and pAs do but
using a truly random source instead of the pseudorandom function Fs. We
will use the following hybrid argument: sAs ≈ sARand ≈ pARand ≈ pAs.

Let us first argue that sAs ≈ sARand. This follows by a straightfor-
ward reduction that contradicts the pseudorandomness of Fs. Similarly, it
holds that pARand ≈ pAs. We prove that sARand ≈ pARand by examining
step by step the behavior of sARand and pARand.

1. In the first step, both sARand and pARand begin the signature issuing
with the Signer and wait for him to respond with (pk, a). For B there
is no difference whether talking to sARand or pARand.

2. In the second step there is no interaction with B.



3. Here we have two different cases on pARand’s behavior depending on
whether the current incarnation is repeated or not. In both cases the
interaction between pARand and B consists of pARand making two RO
queries where pARand either makes two RO queries on fresh values
that it computed on the current step or makes the same RO queries
as in the repeated incarnation (so, there is no difference for B). Thus,
in Step 3, no matter who B is talking to, B receives two RO queries
distributed identically.

4. Step 4 is identical for both sARand and pARand. Just send c = R(trans),
where R is a random function and receive the value r in response.

5. Since r will always be a valid response (recall that B is perfect),
sARand will always output two message-signature pairs, (m1, σ1) and
(m2, σ2). pARand will also output (m1, σ1) and (m2, σ2), which are
distributed identically to the ones output by sARand unless it is the
case that the incarnation is a repeat of j and c = R(trans) = cj .
In that case pARand fails. The probability that c = R(trans) = cj is
only 2−Θ(k). Thus, with probability 1−2−Θ(k) B’s view is identical no
matter whether he is talking to sARand or pARand.

So, by the hybrid argument we defined at the beginning of the proof, it
holds that sAs ≈ pAs. ut

Remark: we don’t explicitly exploit blindness and in fact our result would
go through even if a signature could be linkable to an issuing instance.
For example, including the first message of the signer into the RO query
would produce a contrived scheme in which the resulting signatures are
linkable to the issuing instance; yet it would not affect our negative result.

3.3 Theorem for Non-perfect naive RO replay reductions

Let us apply our result to a broader class of reductions by removing the
requirement that our reduction be perfect, i.e. always outputs valid re-
sponses. Instead, we will require an upper bound L on the number of times
that the reduction can invoke the adversary which is independent of A’s
success probability. Note that, of course, B’s success probability needs to
depend on A’s success probability. However, the number of times it in-
vokes A need not; in fact known reductions (such as Coron or Pointcheval
and Stern) as a rule only invoke the adversary a constant number of times.

Definition 6 (L-Naive RO replay reduction). A naive RO replay
reduction B is called L-naive RO replay reduction if there is a polynomial
upper bound L on how many time B resets A; this upper bound is a



function of the number of RO queries that A makes, but otherwise is
independent of A, in particular, of A’s success probability.

Our previous analysis wouldn’t work for the L-naive RO replay reduction.
Think of the scenario where pA receives a message a from B for the first
time but is not given a valid r at the end. Then in the repeat of this
incarnation, pA will have to make the same two RO queries he did before
and output forgeries if given a valid r at the end. But, given the definitions
of B and pA we gave before, pA will now get different c1 and c2 for his
RO queries and thus he will not be able to output the same forgeries he
had prepared before.

What changes in our new analysis is that: (a) pA is also given write
access to B’s RO tape, and (b) both pA and sA will be successful in
producing a forgery with probability only 1/(

(
L
2

)
+ L).

Theorem 2. Let (Gen,S ,U ,Verify) be a generalized blind Schnorr sig-
nature scheme. Suppose that there exists a polynomial-time L-naive RO
replay reduction B such that BA breaks an intractability assumption C for
every A that breaks the unforgeability of the blind signature (S,U). Then,
C can be broken in polynomial time.

This theorem rules out a broader class of security reductions. If we look
back to our running example of Schnorr blind signatures, this theorem
shows that under any assumption (DL, security of Schnorr identification,
etc.) we cannot find an L-naive RO replay reduction to prove its security.

Proof of theorem for L-naive RO replay reduction Similar to what
we did before, we first define the super adversary sAs,m1,m2,L who knows
L and works as follows:

Definition 7 (Super adversary sAs,m1,m2,L). On input the system pa-
rameters:

1. Begin signature issue with the signer and receive (pk, a). Decide whether
this is going to be a successful incarnation: choose “successful” with
probability 1/(

(
L
2

)
+L) and “unsuccessful” with probability 1−1/(

(
L
2

)
+

L).

2. Find sk.

3. Use sk to compute the signatures: pick a1, a2 and make two RO queries
(m1, a1) and (m2, a2). Produce two forged signatures for m1,m2, de-
note them as σ1 and σ2.



4. Resume the signature protocol with the signer: send to the signer the
value c = Fs((trans)) where trans is the current transcript between
sA, the RO and the signer, and receive from the signer the value r in
response.

5. – If r is not valid, then this was an uncompleted run, then fail.
– If r valid (completed run) and in Step 1 it was decided that this is

a successful incarnation, output the two message-signature pairs,
(m1, σ1) and (m2, σ2). Otherwise fail.

The next lemma (similar to Lemma 1) follows from the definition of B:

Lemma 3. If an L-naive RO replay reduction B exists, then BsA(·)
(pk, system params) solves the assumption C.

Now we are going to define the personal nemesis adversary, pAs,m1,m2,L.

Definition 8 (B’s personal nemesis adversary pAs,m1,m2,L). On in-
put the system parameters, pAs,m1,m2,L performs a “one-more” forgery
attack, using the following special powers: (1) pAs,m1,m2,L has full read
and write access to B’s random oracle tape; (2) in case pAs,m1,m2,L is
rewound, it does remember his previous state.

pAs,m1,m2,L performs the one-more forgery for ` = 1. Thus, it runs
one signature issuing session with the signer and then outputs two valid
signatures with probability 1/(

(
L
2

)
+L). Specifically, in his ith incarnation,

pAs,m1,m2,L does the following:

1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing.
3. – If (pk, a) is received for the first time, then this is a new incarna-

tion; do the following:
• If pA has already found sk for this pk, then use this power to

forge two signatures on (m1,m2) (still required to make two
RO queries); call these signatures σ1 and σ2,
• else, pA guesses (i1, i2) where i1(≤ i2) denotes the repeat where
c1 will be given in response to pA’s next RO query; and i2 is
pA’s guess for the first completed repeat of this incarnation.
Then, pA randomly picks v1, v2, computes c1 = f(v1), c2 =
f(v2), picks r1, r2, solves for a1, a2 using the third property of
generalized blind Schnorr signatures and the simulator from
the underlying Σ-protocol and computes two signatures σ1, σ2.

– pA makes two RO queries of the form (m1, a1), (m2, a2) (the two
RO queries are always the same for a specific incarnation).



– If this is the repeat incarnation i1, and B wants a fresh answer to
the query (m1, a1) then write v1 on B’s RO tape; else (if this isn’t
repeat i1) write a random v′1.

– If this is the repeat incarnation i2 then write v2 on B’s RO tape;
else (if this isn’t repeat i2) write a random v′2.

4. Resume the signature issue protocol with the signer: send to the signer
the value c = Fs(trans) where Fs is a PRF and trans is the current
transcript between pA, the RO and the signer, and wait to receive the
value r as a response from the signer.

5. – If r is valid (completed run):
• If already know the secret key, sk, then output (m1, σ1) and

(m2, σ2) with probability 1/(
(
L
2

)
+ 2) or else fail.

• If this is the first time for this incarnation, then output the two
message-signature pairs, (m1, σ1) and (m2, σ2).
• If this is the second successful repeat for this incarnation and

the value c = Fs(trans) 6= cj, where cj is the corresponding
value from the jth run of this incarnation, then using r and rj
solve for sk using property 4 of generalized Schnorr signatures.
Next, compute σ1 and σ2 consistent with the RO queries from
this incarnation.
• If this is the second successful repeat for this incarnation but
c = Fs(trans) = cj, then fail (unsuccessful run).
• If the guess (i1, i2) was correct (that is, this is repeat i2 of this

incarnation, it was successful, and B’s answer to (m1, a1) was
the same as in incarnation i1; and in incarnation i1, B wanted
a fresh answer to the (m1, a1) RO query) then output the two
message-signature pairs, (m1, σ1) and (m2, σ2).
• If the guess (i1, i2) was wrong then fail (unsuccessful run).

– If r is not valid or r was not received then fail.

Lemma 4. If B is an L-naive RO replay reduction, then B’s view in
interacting with pAs,m1,m2 is indistinguishable from its view when inter-
acting with sAs,m1,m2.

The proof is similar to the one of Lemma 2 and can be found in the full
version of the paper [5].

4 Brands’ Blind Signature Scheme

Here we show that our results apply to the blind signature scheme given
by Brands [11]. Let us first describe his construction. G is a group of order



q, where q a k-bit prime, and g is a generator of the group. The signer
holds a secret key x ← Zq and the corresponding public key h = gx,
while the user knows signer’s public key h as well as g, q. H is a collision
resistant hash function. The signature issuing protocol works as follows:

Signer (g, h, x) User(g, h)
α←−−−−−− m = gα

w ∈R Zq , z ← mx, a← gw, b← mw z, a, b
−−−−−−−→

s, t ∈R Zq , m′ ← msgt, z′ ← zsht

u, v ∈R Zq , a′ ← augv , b′ ← autbus(m′)v

c←−−−−− c′ ←H(m′, z′, a′, b′), c← c′/u mod q

r ← w + cx mod q r−−−−−−→ hca
?
= gr, zcb

?
= mr, r′ ← ur + v mod q

A signature on m′ is σ(m′) = (z′, a′, b′, c′, r′). Anyone can verify a signa-
ture by first computing c′ = H(m′, z′, a′, b′) and then checking whether

the following equations hold: hc
′
a′

?
= gr

′
, (z′)c

′
b′

?
= (m′)r

′
.

4.1 Security of Brands’ Blind Signatures

Corollary 1. If there exists a perfect or an L-naive RO replay reduction
B that solves any intractability assumption C using an adversary A that
breaks the unforgeability of Brands’ signature, then assumption C can be
solved in polynomial time with non-negligible probability.

In order for this corollary to hold we need to show that Brands’ blind
signature is a generalized blind Schnorr signature. We can show this by
inspecting one by one the needed requirements: (1) Brands public/secret
key pair is (h = gx, x), which is a unique witness relation for L = {h :
gx = h} ∈ NP, (2) the signer’s side of Brands blind signature is the same
as the prover’s side in Schnorr’s identification scheme, which is known
to be a Σ-protocol, (3) Brands blind signature is of the form σ(m′) =
((z′, a′, b′), c′, r′) which has identical distribution to a transcript of a Σ-
protocol, as we will explain below (4) given the secret key x and a valid
transcript of Brands scheme: (â, c′1, r

′
1), where â = (z′, a′, b′), then ∀ c′2

we can compute r′2 as: r′2 = r′1 − c′1x + c′2x so that (â, c′2, r
′
2) is still

a valid transcript. Brands blind signature is indeed a Σ-protocol: (a)
it is a three-round protocol, (b) for any h and any pair of accepting
conversations (â, c′1, r

′
1) and (â, c′2, r

′
2) where c′1 6= c′2 one can efficiently

compute x such that h = gx and (c) there exists a simulator S who on
input h and a random c′ picks r′, m and z, solves for a′, b′, so he can
output an accepting conversation of the form ((z′, a′, b′), c′, r′).

Thus, by applying Theorems 1 and 2, we rule out perfect and L-naive
RO replay reductions for Brands’ blind signatures.



Pointcheval and Stern [33] suggest that for their proof approach to
work, the public key of the scheme should have more than one secret key
associated with it. One could modify Brands’ scheme similarly to how the
original Schnorr blind signature was modified to obtain the variant that
Pointcheval and Stern proved secure. In the full version [5] we propose
such a modification; the public key of the signer will be of the form
H = Gw1

1 Gw2
2 where (H,G1, G2) are public and (w1, w2) are the secret

key. As a blind signature, the resulting signature scheme is inferior, in
efficiency, to the provably secure variant of the Schnorr blind signature.
As far as its use in an electronic cash protocol is concerned, it is still an
open problem whether provable guarantees against double-spending can
be given for our modification of Brands.
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