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Abstract.. The Fiat-Shamir transformation is a famous technique to turn
identification schemes into signature schemes. The derived scheme is provably
secure in the random-oracle model against classical adversaries. Still, the tech-
nique has also been suggested to be used in connection with quantum-immune
identification schemes, in order to get quantum-immune signature schemes.
However, a recent paper by Boneh et al. (Asiacrypt 2011) has raised the issue
that results in the random-oracle model may not be immediately applicable
to quantum adversaries, because such adversaries should be allowed to query
the random oracle in superposition. It has been unclear if the Fiat-Shamir
technique is still secure in this quantum oracle model (QROM).

Here, we discuss that giving proofs for the Fiat-Shamir transformation in the

QROM is presumably hard. We show that there cannot be black-box extrac-

tors, as long as the underlying quantum-immune identification scheme is secure

against active adversaries and the first message of the prover is independent

of its witness. Most schemes are of this type. We then discuss that for some

schemes one may be able to resurrect the Fiat-Shamir result in the QROM by

modifying the underlying protocol first. We discuss in particular a version of

the Lyubashevsky scheme which is provably secure in the QROM.

1 Introduction

The Fiat-Shamir transformation [19] is a well-known method to remove inter-
action in three-move identification schemes between a prover and verifier, by
letting the verifier’s challenge ch be determined via a hash function H applied
to the prover’s first message com. Currently, the only generic, provably secure
instantiation is by modeling the hash function H as a random oracle [5,33]. In
general, finding secure instantiations based on standard hash functions is hard
for some schemes, as shown in [22,7]. However, these negative results usually
rely on peculiar identification schemes, such that for specific schemes, especially
more practical ones, such instantiations may still be possible.

The Quantum Random-Oracle model. Recently, the Fiat-Shamir transfor-
mation has also been applied to schemes which are advertised as being based
on quantum-immune primitives, e.g., [28,3,23,12,13,35,30,34,25,1,11,2,17]. Inter-
estingly, the proofs for such schemes still investigate classical adversaries only.
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It seems unclear if (and how) one can transfer the proofs to the quantum case.
Besides the problem that the classical Fiat-Shamir proof [33] relies on rewinding
the adversary, which is often considered to be critical for quantum adversaries
(albeit not impossible [39,38]), a bigger discomfort seems to lie in the usage of
the random-oracle model in presence of quantum adversaries.

As pointed out by Boneh et al. [8] the minimal requirement for random
oracles in the quantum world should be quantum access. Since the random oracle
is eventually replaced by a standard hash function, a quantum adversary could
evaluate this hash function in superposition, while still ignoring any advanced
attacks exploiting the structure of the actual hash function. To reflect this in
the random-oracle model, [8] argue that the quantum adversary should be also
allowed to query the random oracle in superposition. That is, the adversary
should be able to query the oracle on a state |ϕ〉 =

∑
x αx |x〉 |0〉 and in return

would get
∑
x αx |x〉 |H(x)〉. This model is called the quantum random-oracle

model (QROM).

Boneh et al. [8] discuss some classical constructions for encryption and sig-
natures which remain secure in the QROM. They do not cover Fiat-Shamir sig-
natures, though. Subsequently, Boneh and Zhandry [41,40,9] investigate further
primitives with quantum access, such as pseudorandom functions and MACs.
Still, the question about the security of the Fiat-Shamir transform in the QROM
raised in [8] remained open.

Fiat-Shamir Transform in the QROM. Here, we give evidence that con-
ducting security proofs for Fiat-Shamir transformed schemes and black-box ad-
versaries is hard, thus yielding a negative result about the provable security of
such schemes. More specifically, we use the meta-reduction technique to rule out
the existence of quantum extractors with black-box access to a quantum ad-
versary against the converted (classical) scheme. If such extractors would exist
then the meta-reduction, together with the extractor, yields a quantum algo-
rithm which breaks the active security of the identification scheme. Our result
covers any identification scheme, as long as the prover’s initial commitment in
the scheme is independent of the witness, and if the scheme itself is secure against
active quantum attacks where a malicious verifier may first interact with the gen-
uine prover before trying to impersonate or, as we only demand here, to com-
pute a witness afterwards. Albeit not quantum-immune, the classical schemes
of Schnorr [36], Guillou and Quisquater [24], and Feige, Fiat and Shamir [18]
are conceivably of this type (see also [4]). Quantum-immune candidates are, for
instance, [31,27,26,30,35,2].

Our negative result does not primarily rely on the rewinding problem for
quantum adversaries; our extractor may rewind the adversary (in a black-box
way). Instead, our result is rather based on the adversary’s possibility to hide
actual queries to the quantum random oracle in a “superposition cloud”, such
that the extractor or simulator cannot elicit or implant necessary information
for such queries. In fact, our result reveals a technical subtlety in the QROM
which previous works [8,40,41,9] have not addressed at all, or at most implicitly.
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It refers to the question how a simulator or extractor can answer superposition
queries

∑
x αx |x〉 |0〉.

A possible option is to allow the simulator to reply with an arbitrary quan-
tum state |ψ〉 =

∑
x βx |x〉 |yx〉, e.g., by swapping the state from its local registers

to the ancilla bits for the answer in order to make this step unitary. This seems
to somehow generalize the classical situation where the simulator on input x
returns an arbitrary string y for H(x). Yet, the main difference is that returning
an arbitrary state |ψ〉 could also be used to eliminate some of the input values
x, i.e., by setting βx = 0. This is more than what the simulator is able to do in
the classical setting, where the adversary can uniquely identify the preimage x
to the answer. In the extreme the simulator in the quantum case, upon receiving
a (quantum version of) a classical state |x〉 |0〉, could simply reply with an (arbi-
trary) quantum state |ψ〉. Since quantum states are in general indistinguishable,
in contrast to the classical case the adversary here would potentially continue
its execution for inputs which it has not queried for.

In previous works [8,41,40,9] the simulator specifies a classical (possibly prob-
abilistic) function h which maps the adversary query

∑
x αx |x〉 |0〉 to the reply∑

x αx |x〉 |h(x)〉. Note that the function h is not given explicitly to the adversary,
and that it can thus implement keyed functions like a pseudorandom function
(as in [8]). This basically allows the simulator to freely assign values h(x) to
each string x, without being able to change the input values. It also corresponds
to the idea that, if the random oracle is eventually replaced by an actual hash
function, the quantum adversary can check that the hash function is classical,
even if the adversary does not aim to exploit any structural weaknesses (such
that we still hide h from the adversary).

We thus adopt the approach of letting the simulator determine the quantum
answer via a classical probabilistic function h. In fact, our impossibility hinges on
this property but which we believe to be rather “natural” for the aforementioned
reasons. From a mere technical point of view it at least clearly identifies possible
venues to bypass our hardness result. In our case we allow the simulator to specify
the (efficient) function h adaptively for each query, still covering techniques like
programmability in the classical setting. Albeit this is sometimes considered
to be a doubtful property [20] this strengthens our impossibility result in this
regard.

Positive Results. We conclude with some positive result. It remains open if
one can “rescue” plain Fiat-Shamir for schemes which are not actively secure, or
to prove that alternative but still reasonably efficient approaches work. However,
we can show that the Fiat-Shamir technique in general does provide a secure
signature scheme in the QROM if the protocol allows for oblivious commitments.
Roughly, this means that the honest verifier generates the prover’s first message
com obliviously by sampling a random string and sends com to the prover. In
the random oracle transformed scheme the commitment is thus computed via
the random oracle, together with the challenge. Such schemes are usually not
actively secure against malicious verifiers. Nonetheless, we stress that in order to
derive a secure signature scheme via the Fiat-Shamir transform, the underlying
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identification scheme merely needs to provide passive security and honest-verifier
zero-knowledge.

To make the above transformation work, we need that the prover is able to
compute the response for commitments chosen obliviously to the prover. For
some schemes this is indeed possible if the prover holds some trapdoor infor-
mation. Albeit not quantum-immune, it is instructive to look at the Guillou-
Quisquater RSA-based proof of knowledge [24] where the prover shows knowl-
edge of w ∈ Z∗N with we = y mod N for x = (e,N, y). For an oblivious commit-
ment the prover would need to compute an e-th root for a given commitment
R ∈ Z∗N . If the witness would contain the prime factorization of N , instead
of the e-th root of y, this would indeed be possible. As a concrete allegedly
quantum-immune example we discuss that we can still devise a provably secure
signature version of Lyubashevsky’s identification scheme [29] via our method.
Before, Lyubashevsky only showed security in the classical random-oracle model,
despite using an allegedly quantum-immune primitive.

Related work. Since the introduction of the quantum-accessible random-
oracle model [8], several works propose cryptographic primitives or revisit their
security against quantum algorithms in this stronger model [40,41,9]. In [15],
Damg̊ard et al. look at the security of cryptographic protocols where the under-
lying primitives or even parties can be queried by an adversary in a superposition.
We here investigate the scenario in which the quantum adversary can only inter-
act classically with the classical honest parties, except for the locally evaluable
random oracle.

In a concurrent and independent work, Boneh and Zhandry [10] analyze the
security of signature schemes under quantum chosen-message attacks, i.e., the
adversary in the unforgeability notion of the signature scheme may query the
signing oracle in superposition and, eventually, in the quantum random oracle
model. Our negative result carries over to the quantum chosen-message attack
model as well, since our impossibility holds even allowing only classical queries
to the signing oracle. Moreover, while the authors of [10] show how to obtain
signature schemes secure in the quantum-accessible signing oracle model, start-
ing with schemes secure in the classical sense, we focus on signature schemes
and proofs of knowledge derived from identification schemes via the Fiat-Shamir
paradigm.

2 Preliminaries

We first describe (to the level we require it) quantum computations and then
recall the quantum random-oracle model of Boneh et al. [8]. We also introduce
the notion of Σ-protocols to which the Fiat-Shamir transformation applies. In
the full version of this paper [14], we recall the definition of signature schemes
and its security.
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2.1 Quantum Computations in the QROM

We first briefly recall facts about quantum computations and set some notation;
for more details, we refer to [32]. Our description follows [8] closely.

Quantum Systems. A quantum system A is associated to a complex Hilbert
space HA of finite dimension and with an inner product 〈·|·〉. The state of the
system is given by a (class of) normalized vector |ϕ〉 ∈ HA with Euclidean norm
‖ |ϕ〉 ‖ =

√
〈ϕ|ϕ〉 = 1. The joint or composite quantum state of two quantum

systems A and B over spaces HA and HB , respectively, is given through the
tensor product HA ⊗ HB . The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is
denoted by |ϕA〉 ⊗ |ϕB〉. We sometimes simply write |ϕA〉 |ϕB〉 or |ϕA, ϕB〉. An
n-qubit system is associated in the joint quantum system of n two-dimensional
Hilbert spaces. The standard orthonormal computational basis |x〉 for such a
system is given by |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 for x = x1 . . . xn ∈ {0, 1}n. We
often assume that any (classical) bit string x is encoded into a quantum state
as |x〉, and vice versa we sometimes view such a state simply as a classical
state. Any pure n-qubit state |ϕ〉 can be expressed as a superposition in the
computational basis as |ϕ〉 =

∑
x∈{0,1}n αx |x〉 where αx are complex amplitudes

obeying
∑
x∈{0,1}n |αx|2 = 1.

Quantum Computations. Evolutions of quantum systems are described by
unitary transformations with IA being the identity transformation on register
A. For a composite quantum system over HA ⊗ HB and a transformation UA
acting only on HA, it is understood that UA |ϕA〉 |ϕB〉 is a simplification of
(UA ⊗ IB) |ϕA〉 |ϕB〉. Note that any unitary operation and, thus, any quantum
operation, is invertible.

Information can be extracted from a quantum state |ϕ〉 by performing a
positive-operator valued measurement (POVM) M = {Mi}i with positive semi-
definite measurement operatorsMi that sum to the identity

∑
iMi = I. Outcome

i is obtained with probability pi = 〈ϕ|Mi |ϕ〉. A special case are projective
measurements such as the measurement in the computational basis of the state
|ϕ〉 =

∑
x αx |x〉 which yields outcome x with probability |αx|2. Measurements

can refer to a subset of quantum registers and are in general not invertible.
We model a quantum algorithm AQ with access to oracles O1, O2, . . . by a

sequence of unitary transformations U1, O1, U2, . . . , OT−1, UT over m = poly(n)
qubits. Here, oracle function Oi : {0, 1}a → {0, 1}b maps the final a + b qubits
from basis state |x〉 |y〉 to |x〉 |y ⊕Oi(x)〉 for x ∈ {0, 1}a and y ∈ {0, 1}b. This
mapping is inverse to itself. We can let the oracles share (secret) state by reserv-
ing some qubits for the Oi’s only, on which the Uj ’s cannot operate. Note that
the algorithm AQ may also receive some (quantum) input |ψ〉. The adversary

may also perform measurements. We sometimes write A|O1(·)〉,|O2(·)〉,...
Q (|ψ〉) for

the output.
To introduce asymptotics we assume that AQ is actually a sequence of such

transformation sequences, indexed by parameter n, and that each transformation
sequence is composed out of quantum systems for input, output, oracle calls, and
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work space (of sufficiently many qubits). To measure polynomial running time,
we assume that each Ui is approximated (to sufficient precision) by members of
a set of universal gates (say, Hadamard, phase, CNOT and π/8; for sake of con-
creteness [32]), where at most polynomially many gates are used. Furthermore,
T = T (n) is assumed to be polynomial, too.

Quantum Random Oracles. We can now define the quantum random-oracle
model by picking a random function H for a given domain and range, and letting
(a subset of) the oracles Oi evaluate H on the input in superposition, namely
those Oi’s which correspond to hash oracle queries. In this case the quantum
adversary can evaluate the hash function in parallel for many inputs by querying
the oracle about

∑
x αx |x〉 and obtaining

∑
x αx |H(x)〉, appropriately encoded

as described above. Note that the output distribution A|O1(·)〉,|O2(·)〉,...
Q (|ψ〉) now

refers to the AQ’s measurements and the choice of H (and the random choices
for the other oracles, if existing).

2.2 Classical Interactive Proofs of Knowledge

Here, we review the basic definition of Σ-protocols and show the classical Fiat-
Shamir transformation which converts the interactive Σ-protocols into non-
interactive proof of knowledge (PoK) protocols (in the random-oracle model).
Let L ∈ NP be a language with a (polynomially computable) relation R, i.e.,
x ∈ L if and only if there exists some w ∈ {0, 1}∗ such that R(x,w) = 1 and
|w| = poly(|x|) for any x. As usual, w is called a witness for x ∈ L (and x is
sometimes called a “theorem” or statement). We sometimes use the notation Rλ
to denote the set of pairs (x,w) in R of some complexity related to the security
parameter, e.g., if |x| = λ.

Σ-Protocols. The well-known class of Σ-protocols between a prover P and a
verifier V allows P to convince V that it knows a witness w for a public theorem
x ∈ L, without giving V non-trivially computable information beyond this fact.
Informally, a Σ-protocol consists of three messages (com, ch, rsp) where the first
message com is sent by P and the challenge ch is sampled uniformly from a
challenge space by the verifier. We write (com, ch, rsp)← 〈P(x,w),V(x)〉 for the
randomized output of an interaction between P and V. We denote individual
messages of the (stateful) prover in such an execution by com ← P(x,w) and
rsp ← P(x,w, com, ch), respectively. Analogously, we denote the verifier’s steps
by ch← V(x, com) and d← V(x, com, ch, rsp) for the challenge step and the final
decision.

Definition 1 (Σ-Protocol). A Σ-protocol (P,V) for an NP-relation R satis-
fies the following properties:

Completeness. For any security parameter λ, any (x,w) ∈ Rλ, any
(com, ch, rsp)← 〈P(x,w),V(x)〉 it holds V(x, com, ch, rsp) = 1.
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Public-Coin. For any security parameter λ, any (x,w) ∈ Rλ, and any com←
P(x,w), the challenge ch ← V(x, com) is uniform on {0, 1}`(λ) where ` is
some polynomial function.

Special Soundness. Given (com, ch, rsp) and (com, ch′, rsp′) for x ∈ L (with
ch 6= ch′) where V(x, com, ch, rsp) = V(x, com, ch′, rsp′) = 1, there exists a
PPT algorithm Ext (the extractor) which for any such input outputs a witness
w ← Ext(x, com, ch, rsp, ch′, rsp′) for x satisfying R(x,w) = 1.

Honest-Verifier Zero-Knowledge (HVZK). There exists a PPT algorithm
Sim (the zero-knowledge simulator) which, on input x ∈ L, outputs a tran-
script (com, ch, rsp) that is computationally indistinguishable from a valid
transcript derived in a P-V interaction. That is, for any polynomial-time
quantum algorithm D = (D0,D1) the following distributions are indistin-
guishable:
– Let (x,w, state)← D0(1λ). If R(x,w) = 1, then

(com, ch, rsp)← 〈P(x,w),V(x)〉; else, (com, ch, rsp)← ⊥.
Output D1(com, ch, rsp, state).

– Let (x,w, state)← D0(1λ). If R(x,w) = 1, then
(com, ch, rsp)← Sim(x); else, (com, ch, rsp)← ⊥.
Output D1(com, ch, rsp, state).

Here, state can be a quantum state.

Fiat-Shamir (FS) Transformation. The Fiat-Shamir transformation of a
Σ-protocol (P,V) is the same protocol but where the computation of ch is done
as ch ← H(x, com) instead of ← V(x, com). Here, H is a public hash function
which is usually modeled as a random oracle, in which case we speak of the
Fiat-Shamir transformation of (P,V) in the random-oracle model. Note that
we include x in the hash computation, but all of our results remain valid if x is
omitted from the input. If applying the FS transformation to a (passively-secure)
identification protocol one obtains a signature scheme, if the hash computation
also includes the message m to be signed.

2.3 Quantum Extractors and the FS Transform

Quantum Extractors in the QROM. Next, we describe a black-box quan-
tum extractor. Roughly, this extractor should be able to output a witness w for a
statement x given black-box access to the adversarial prover. There are different
possibilities to define this notion, e.g., see the discussion in [38]. Here, we take
a simple approach which is geared towards the application of the FS transform
to build secure signature schemes. Namely, we assume that, if a quantum adver-
sary AQ on input x and with access to a quantum-accessible random oracle has
a non-negligible probability of outputting a valid proof (com, ch, rsp), then there
is an extractor KQ which on input x and with black-box access to AQ outputs
a valid witness with non-negligible probability, too.

We need to specify how the extractor simulates the quantum-accessible ran-
dom oracle. This time we view the extractor KQ as a sequence of unitary trans-
formations U1, U2, U3, . . . , interleaved with interactions with the adversary AQ,
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now represented as the sequence of (stateful) oracles O1, O2, . . . to which KQ

has access to. Here each Oi corresponds to the local computations of the adver-
sary until the “next interaction with the outside world”. In our case this will
be basically the hash queries |ϕ〉 to the quantum-accessible random oracle. We
stipulate KQ to write the (circuit description of a) classical function h with the
expected input/output length, and which we assume for the moment to be de-
terministic, in some register before making the next call to an oracle. Before this
call is then actually made, the hash function h is first applied to the quantum
state |ϕ〉 =

∑
x αx |x〉 |0〉 of the previous oracle in the sense that the next oracle

is called with
∑
x αx |x〉 |h(x)〉. Note that we can enforce this behavior formally

by restricting KQ’s steps U1, U2, . . . to be of this described form above.

At some point the adversary will return some classical proof (com, ch, rsp) for
x. To allow the extractor to rewind the adversary we assume that the extractor
can invoke another run with the adversary (for the same randomness, or possibly
fresh randomness, appropriately encoded in the behavior of oracles). If the re-
duction asks to keep the same randomness then since the adversary only receives
classical input x, this corresponds to a reset to the initial state. Since we do not
consider adversaries with auxiliary quantum input, but only with classical input,
such resets are admissible.

For our negative result we assume that the adversary does not perform any
measurements before eventually creating the final output, whereas our positive
result also works if the adversary measures in between. This is not a restriction,
since in the meta-reduction technique we are allowed to choose a specific ad-
versary, without having to consider more general cases. Note that the intrinsic
“quantum randomness” of the adversary is fresh for each rewound run but, for
our negative result, since measurements of the adversary are postponed till the
end, the extractor can re-create the same quantum state as before at every in-
teraction point. Also note that the extractor can measure any quantum query
of the adversary to the random oracle but then cannot continue the simulation
of this instance (unless the adversary chose a classical query in the first place).
The latter reflects the fact that the extractor cannot change the quantum input
state for answering the adversary’s queries to the random oracle.

In summary, the black-box extractor can: (a) run several instances of the
adversary from the start for the same or fresh classical randomness, possibly
reaching the same quantum state as in previous executions when the adversary
interacts with external oracles, (b) for each query to the QRO either measure and
abort this execution, or provide a hash function h, and (c) observe the adversary’s
final output. The black-box extractor cannot, for instance, interfere with the
adversary’s program and postpone or perform additional measurements, nor
rewind the adversary between interactions with the outside world, nor tamper
with the internal state of the adversary. As a consequence, the extractor cannot
observe the adversary’s queries, but we still allow the extractor to access queries
if these are classical. In particular, the extractor may choose h adaptively but not
based on quantum queries (only on classical queries). We motivate this model
with the observation that, in meaningful scenarios, the extractor should only be
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able to give a classical description of h, which is then “quantum-implemented” by
the adversaryAQ through a “quantum programmable oracle gate”; the gate itself
will be part of the adversary’s circuit, and hence will be outside the extractor’s
influence. Purification of the adversary is also not allowed, since this would
discard those adversaries which perform measurements, and would hence hinder
the notion of black-box access.

For an interesting security notion computing a witness from x only should
be infeasible, even for a quantum adversary. To this end we assume that there is
an efficient instance generator Inst which on input 1λ outputs a pair (x,w) ∈ R
such that any polynomial-time quantum algorithm on (classical) input x returns
some classical string w′ with (x,w′) ∈ R, is negligible (over the random choices
of Inst and the quantum algorithm). We say Inst is a hard instance generator for
relation R.

Definition 2 (Black-Box Extractor for Σ-Protocol in the QROM). Let
(P,V) be a Σ-protocol for an NP-relation R with hard instance generator Inst.
Then a black-box extractor KQ is a polynomial-time quantum algorithm (as
above) such that for any quantum adversary AQ with quantum access to ora-
cle H, it holds that, if

Prob
[
VH(x, com, ch, rsp) = 1 for (x,w)← Inst(1λ); (com, ch, rsp)← A|H〉Q (x)

]
6≈ 0

is not negligible, then

Prob
[

(x,w′) ∈ R for (x,w)← Inst(1λ);w′ ← KAQ

Q (x)
]
6≈ 0

is also not negligible.

For our negative (and our positive) results we look at special cases of black-box
extractors, denoted input-respecting extractors. This means that the extractor
only runs the adversary on the given input x. All known extractors are of this
kind, and in general it is unclear how to take advantage of executions for differ-
ent x′.

On Probabilistic Hash Functions. We note that we could also allow the
extractor to output a description of a probabilistic hash function h to answer
each random oracle call. This means that, when evaluated for some string x, the
reply is y = h(x; r) for some randomness r (which is outside of the extractor’s
control). In this sense a query |ϕ〉 =

∑
x αx |x〉 |0〉 in superposition returns |ϕ〉 =∑

x αx |x〉 |h(x; rx)〉 for independently chosen rx for each x.
We can reduce the case of probabilistic functions h to deterministic ones, if

we assume quantum-accessible pseudorandom functions [8]. These functions are
indistinguishable from random functions for quantum adversaries, even if queried
in superposition. In our setting, in the deterministic case the extractor incorpo-
rates the description of the pseudorandom function for a randomly chosen key κ
into the description of the deterministic hash function, h′(x) = h(x;PRFκ(x)).
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Since the hash function description is not presented to the adversary, using such
derandomized hash functions cannot decrease the extractor’s success probability
significantly. This argument can be carried out formally by a reduction to the
quantum-accessible pseudorandom function, i.e., by forwarding each query |ϕ〉
of the QROM adversary to the random or pseudorandom function oracle, and
evaluating h as before on x and the oracle’s reply. Using a general technique in
[41] we can even replace the assumption about the pseudorandom function and
use a q-wise independent function instead.

3 Impossibility Result for Quantum-Fiat-Shamir

We use meta-reductions techniques to show that, if the Fiat-Shamir transforma-
tion applied to the identification protocol would support a knowledge extractor,
then we would obtain a contradiction to the active security. That is, we first build
an all-powerful quantum adversary AQ successfully generating accepted proofs.
Coming up with such an adversary is necessary to ensure that a black-box ex-
tractor KQ exists in the first place; Definition 2 only requires KQ to succeed if
there is some successful adversary AQ. The adversary AQ uses its unbounded
power to find a witness w to its input x, and then uses the quantum access
to the random oracle model to “hide” its actual query in a superposition. The
former ensures that that our adversary is trivially able to construct a valid proof
by emulating the prover for w, the latter prevents the extractor to apply the
rewinding techniques of Pointcheval and Stern [33] in the classical setting. Once
we have designed our adversary AQ and ensured the existence of KQ, we wrap
KQ into a reduction MQ which takes the role of AQ and breaks active security.
The (quantum) meta-reduction now plays against the honest prover of the iden-
tification scheme “on the outside”, using the extractor “on the inside”. In this
inner interaction MQ needs to emulate our all-powerful adversary AQ towards
the extractor, but this needs to be done efficiently in order to make sure that
the meta-reduction (with its inner interactions) is efficient.

In the argument below we assume that the extractor is input-respecting (i.e.,
forwards x faithfully to the adversary). In this case we can easily derandomize
the adversary (with respect to classical randomness) by “hardwiring” a key of
a random function into it, which it initially applies to its input x to recover the
same classical randomness for each run. Since the extractor has to work for all
adversaries, it in particular needs to succeed for those where we pick the function
randomly but fix it from thereon.

3.1 Assessment

Before we dive into the technical details of our result let us re-assess the strength
and weaknesses of our impossibility result:

1. The extractor has to choose a classical hash function h for answering QRO
queries. While this may be considered a restriction in general interactive
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quantum proofs, it seems to be inevitable in the QROM; it is rather a conse-
quence of the approach where a quantum adversary mounts attacks in a clas-
sical setting. After all, both the honest parties as well as the adversary expect
a classical hash function. The adversary is able to check this property easily,
even if it treats the hash function otherwise as a black box (and may thus
not be able to spot that the hash function uses (pseudo)randomness). We re-
mark again that this approach also complies with previous efforts [8,41,40,9]
and our positive result here to answer such hash queries.

2. The extractor can rewind the quantum adversary to any point before the
final measurement. Recall that for our impossibility result we assume, to the
advantage of the extractor, that the adversary does not perform any mea-
surement until the very end. Since the extractor can re-run the adversary
from scratch for the same classical randomness, and the “no-cloning restric-
tion” does not apply to our adversary with classical input, the extractor
can therefore easily put the adversary in the same (quantum) state as in a
previous execution, up to the final measurement. However, because we con-
sider black-box extractors, the extractor can only influence the adversary’s
behavior via the answers it provides to AQ’s external communication. In
this sense, the extractor may always rewind the adversary to such commu-
nication points. We also allow the extractor to measure and abort at such
communication points.

3. The extraction strategy by Pointcheval and Stern [33] in the purely classical
case can be cast in our black-box extractor framework. For this the extractor
would run the adversary for the same classical randomness twice, providing
a lazy-sampling based hash function description, with different replies in
the i-th answers in the two runs. The extractor then extracts the witness
from two valid signatures. This shows that a different approach than in the
classical setting is necessary for extractors in the QROM.

3.2 Prerequisites

Witness-Independent Commitments. We first identify a special subclass of
Σ-protocols which our result relies upon:

Definition 3 (Σ-protocols with witness-independent commitment). A
Σ-protocol has witness-independent commitments if the prover’s commitment
com does not depend on the witness w. That is, we assume that there is a PPT
algorithm Com which, on input x and some randomness r, produces the same
distribution as the prover’s first message for input (x,w).

Examples of such Σ-protocols are the well known graph-isomorphism proof [21],
the Schnorr proof of knowledge [37], or the recent protocol for lattices used in an
anonymous credential system [11]. A typical example of non-witness-independent
commitment Σ-protocol is the graph 3-coloring ZKPoK scheme [21] where the
prover commits to a random permutation of the coloring.

We note that perfectly hiding commitments do not suffice for our negative
result. We need to be able to generate (the superposition of) all commitments
without knowledge of the witness.

11



Fig. 1. The canonical adversary

Weak Security Against Active Quantum Adversaries. We next de-
scribe the underlying security of (non-transformed) Σ-protocols against a weak
form of active attacks where the adversary may use quantum power but needs

to eventually compute a witness. That is, we let AP(x,w)
Q (x) be a quantum ad-

versary which can interact classically with several prover instances. The prover
instances can be invoked in sequential order, each time the prover starts by
computing a fresh commitment com← P(x,w), and upon receiving a challenge
ch ∈ {0, 1}` it computes the response rsp. Only if it has returned this response
P can be invoked on a new session again. We say that the adversary succeeds in
an active attack if it eventually returns some w′ such that (x,w′) ∈ R.

For an interesting security notion computing a witness from x only should
be infeasible, even for a quantum adversary. To this end we assume that there is
an efficient instance generator Inst which on input 1λ outputs a pair (x,w) ∈ R
such that any polynomial-time quantum algorithm on (classical) input x returns
some classical string w′ with (x,w′) ∈ R, is negligible (over the random choices
of Inst and the quantum algorithm). We say Inst is a hard instance generator for
relation R.

Definition 4 (Weakly Secure Σ-Protocol Against Active Quantum Ad-
versaries). A Σ-protocol (P,V) for an NP-relation R with hard instance gener-
ator Inst is weakly secure against active quantum adversaries if for any polynomial-

time quantum adversaries AQ the probability that AP(x,w)
Q (x) succeeds in an ac-

tive attack for (x,w)← Inst(1λ) is negligible (as a function of λ).

We call this property weak security because it demands the adversary to compute
a witness w′, instead of passing only an impersonation attempt. If the adversary
finds such a witness, then completeness of the scheme implies that it can suc-
cessfully impersonate. In this sense we put more restrictions on the adversary
and, thus, weaken the security guarantees.

12



Fig. 2. An overview of our meta-reduction

3.3 The Adversary and the Meta-Reduction

Adversary. Our (unbounded) adversary works roughly as follows (see Fig-
ure 1). It receives as input a value x and first uses its unbounded computational
power to compute a random witness w (according to uniform distributions of coin
tosses ω subject to Inst(1n;ω) = (x,w), but where ω is a random function of x).
Then it prepares all possible random strings r ∈ {0, 1}N (where N = poly(n))
for the prover’s algorithm in superposition. It then evaluates (a unitary ver-
sion of) the classical function Com() for computing the prover’s commitment
on this superposition (and on x) to get a superposition of all |r〉 |comx,r〉. It
evaluates the random oracle H on the com-part, i.e., to be precise, the hash
values are stored in ancilla bits such that the result is a superposition of states
|r〉 |comx,r〉 |H(x, comx,r)〉. The adversary computes, in superposition, responses
for all values and finally measures in the computational basis, yielding a sample
(r, comx,r, ch, rspx,w,r) for ch = H(x, comx,r) where r is uniform over all random
strings; it outputs the transcript (com, ch, rsp).

The Meta-Reduction. We illustrate the meta-reduction in Figure 2. Assume
that there exists a (quantum) black-box extractor KQ which on input x, sampled
according to Inst, and which is also given to AQ, is able to extract a witness w to
x by running several resetting executions of AQ, each time answering AQ’s (only)
random oracle query |ϕ〉 by supplying a classical, possibly probabilistic function
h. We then build a (quantum) meta-reductionMQ which breaks the weak secu-
rity of the identification scheme in an active attack when communicating with
the classical prover.

The quantum meta-reduction MQ receives as input the public statement x.
It forwards it to KQ and waits until KQ invokes AQ(x), which is now simulated
by MQ. For each (reset) execution the meta-reduction skips the step where the
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adversary would compute the witness, and instead immediately computes the
same superposition query |r〉 |comx,r〉 as AQ and outputs it to KQ. When KQ

creates (a description of) the possibly probabilistic function h we letMQ initiate
an interaction with the prover to receive a classical sample comx,r, on which it
evaluates h to get a challenge ch. Note that MQ in principle does not need a
description of h for this, but only a possibility to compute h once. The meta-
reduction forwards the challenge to the prover to get a response rsp. It outputs
(com, ch, rsp) to the reduction. If the reduction eventually outputs a potential
witness w′ then MQ uses this value w′ to break the weak security.

3.4 Analysis

For the analysis note that the extractor’s perspective in each execution is iden-
tical in both cases, when interacting with the actual adversary AQ, or when
interacting with the meta-reduction MQ. The reason is that the commitments
are witness-independent such that the adversary (using its computational power
to first compute a witness) and the meta-reduction computing the commitments
without knowledge of a witness, create the same distribution on the query to the
random oracle. Since up to this point the extractor’s view is identical in both
runs, its distribution on h is also the same in both cases. But then the quantum
adversary internally computes, in superposition over all possible random strings
r, the challenge ch ← h(x, comx,r) and the response rspx,w,r for x,w, and ch.
It then measures r in the computational basis, such that the state collapses to
a classical tuple (comx,r, ch, rspx,w,r) over uniformly distributed r. Analogously,
the meta-reduction, upon receiving h (with the same distribution as in AQ’s at-
tack), receives from the prover a commitment comx,r for a uniformly distributed
r. It then computes ch ← h(x, comx,r) and obtains rspx,w,r from the prover,
which is determined by x,w, r and ch. It returns (comx,r, ch, rspx,w,r) for such a
uniform r.

In other words, MQ considers only a single classical execution (with r sam-
pled at the outset), whereas AQ basically first runs everything in superposition
and only samples r at the very end. Since all the other computations in between
are classical, the final results are identically distributed. Furthermore, since the
extractor is input-respecting, the meta-reduction can indeed answer all runs for
the very same x with the help of the external prover (which only works for x).
Analogously, the fact that the adversary always chooses, and uses, the same wit-
ness w in all runs, implies that the meta-reduction can again rely on the external
prover with the single witness w.

Since the all-powerful adversary succeeds with probability 1 in the original
experiment, to output a valid proof given x and access to a quantum random
oracle only, the extractor must also succeed with non-negligible probability in
extracting a witness. Hence,MQ, too, succeeds with non-negligible probability in
an active attack against weak security. Furthermore, since KQ runs in polynomial
time,MQ invokes at most a polynomial number of interactions with the external
prover. Altogether, we thus obtain the following theorem:
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Theorem 1 (Impossibility Result). For any Σ-protocol (P,V) with witness-
independent commitments, and which is weakly secure against active quantum
adversaries, there does not exist an input-preserving black-box quantum knowl-
edge extractor for (P,V).

We note that our impossibility result is cast in terms of proofs of knowledge,
but can be easily adapted for the case of signatures. In fact, the adversary AQ

would be able to compute a valid proof (i.e., a signature) for any given message
m which it receives as additional input to x.

Our Meta-Reduction and Classical Queries to the Random Ora-
cle. One might ask why the meta-reduction does not apply to the Fiat-Shamir
transform when adversaries have only classical access to the random oracle. The
reason is the following: if the adversary made a classical query about a sin-
gle commitment (and so would the meta-reduction), then one could apply the
rewinding technique of Pointcheval and Stern [33] changing the random oracle
answers, and extract the underlying witness via special soundness of the identifi-
cation scheme. The quantum adversary here, however, queries the random oracle
in a superposition. In this scenario, as we explained above, the extractor is not
allowed to “read” the query of the adversary unless it makes the adversary stop.
In other words, the extractor cannot measure the query and then keep running
the adversary until a valid witness is output. This intrinsic property of black-box
quantum extractors, hence, makes “quantum” rewinding impossible. Note that
rewinding in the classical sense —as described by Pointcheval and Stern [33]—
is still possible, as this essentially means to start the adversary with the same
random coins. One may argue that it might be possible to measure the query
state without disturbing AQ’s behavior significantly, but as we already pointed
out, this would lead to a non-black-box approach —vastly more powerful than
the classical read-only access.

On the Necessity of Active Security. If we drop the requirement on active
security we can indeed devise a solution based on quantum-immune primitives.
Namely, we use the (classical) non-interactive zero-knowledge proofs of knowl-
edge of De Santis and Persiano [16] to build the following three-move scheme:
The first message is irrelevant, e.g., we let the prover simply send the constant 0
(potentially padded with redundant randomness), making the commitment also
witness-independent. In the second message the verifier sends a random string
which the prover interprets as a public key pk of a dense encryption scheme and
a common random string crs for the NIZK. The prover encrypts the witness
under pk and gives a NIZK that the encrypted value forms a valid witness for
the public value x. The verifier only checks the NIZK proof.

The protocol is clearly not secure against active (classical) adversaries be-
cause such an adversary can create a public key pk via the key generation algo-
rithm, thus, knowing the secret key and allowing the adversary to recover the
witness from a proof by the prover. It is, however, honest-verifier zero-knowledge,
even against quantum distinguishers if the primitives are quantum-secure, be-
cause then the IND-CPA security and the simulatability of the NIZK hide the
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witness and allow for a simulation. We omit a more formal argument here, as it
will be covered as a special case from our general result in the next section.

4 Positive Results for Quantum-Fiat-Shamir

In Section 3.4 we have sketched a generic construction of a Σ-protocol based
on NIZKPoKs [16] which can be converted to a secure NIZK-PoK against quan-
tum adversaries in the QROM via the Fiat-Shamir (FS) paradigm. While the
construction is rather inefficient and relies on additional primitives and assump-
tions, it shows the path to a rather efficient solution: drop the requirement on
active security and let the (honest) verifier choose the commitment obliviously,
i.e., such that it does not know the pre-image, together with the challenge. If the
prover is able to use a trapdoor to compute the commitment’s pre-image then
it can complete the protocol as before.

4.1 Σ-protocols with Oblivious Commitments

The following definition captures the notion of Σ-protocols with oblivious com-
mitments formally.

Definition 5 (Σ-protocols with Oblivious Commitments). A Σ-protocol
(P,V) has oblivious commitments if there are PPT algorithms Com and SmplRnd
such that for any (x,w) ∈ R the following distributions are statistically close:

– Let com = Com(x; ρ) for ρ ← {0, 1}λ, ch ← V(x, com), and
rsp← P(x,w, com, ch). Output (x,w, ρ, com, ch, rsp).

– Let (x,w, ρ, com, ch, rsp) be a transcript of a protocol run between P(x,w)
and V(x), where ρ← SmplRnd(x, com).

Note that the prover is able to compute a response from the given commit-
ment com without knowing the randomness used to compute the commitment.
This is usually achieved by placing some extra trapdoor into the witness w. For
example, for the Guillou-Quisquater RSA based proof of knowledge [24] where
the prover shows knowledge of w ∈ Z∗N with we = y mod N for x = (e,N, y),
the prover would need to compute an e-th root for a given commitment R ∈ Z∗N .
If the witness would contain the prime factorization of N , instead of the e-th
root of y, this would indeed be possible.

Σ-protocols with oblivious commitments allow to move the generation of the
commitment from the prover to the honest verifier. For most schemes this in-
fringes with active security, because a malicious verifier could generate the com-
mitment “non-obliviously”. However, the scheme remains honest-verifier zero-
knowledge, and this suffices for deriving secure signature schemes. In particular,
using random oracles one can hash into commitments by computing the random
output of the hash function and running Com(x; ρ) on this random string ρ to
sample a commitment obliviously.
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In the sequel we therefore often identify ρ with Com(x; ρ) in the sense that
we assume that the hash function maps to Com(x; ρ) directly. The existence of
SmplRnd guarantees that we could “bend” this value back to the actual pre-
image ρ. In fact, for our positive result it would suffice that the distributions are
computationally indistinguishable for random (x,w) ← Inst(1n) against quan-
tum distinguishers.

4.2 FS Transformation for Σ-protocols with Oblivious
Commitments

We explain the FS transformation for schemes with oblivious commitments for
signatures only; the case of (simulation-sound) NIZK-PoKs is similar, the dif-
ference is that for signatures the message is included in the hash computation
for signature schemes. For sake of concreteness let us give the full description
of the transformed signature scheme. We note that for the transformation we
also include a random string r in the hash computation (chosen by the signer).
Jumping ahead, we note that this source of entropy ensures simulatability of
signatures; for classical Σ-protocols this is usually given by the entropy of the
initial commitment but which has been moved to the verifier here. Recall from
the previous section that we simply assume that we can hash into commitments
directly, instead of going through the mapping via Com and SmplRnd.

Construction 2 Let (P,V) be a Σ-protocol for relation R with oblivious com-
mitments and instance generator Inst. Then construct the following signature
scheme S = (SKGen,Sig,SVf) in the (quantum) random-oracle model:

Key Generation. SKGen(1λ) runs (x,w) ← Inst(1λ) and returns sk = (x,w)
and pk = x.

Signing. For message m ∈ {0, 1}∗ the signing algorithm SigH on input sk, picks

random r
$←− Rnd from some superpolynomial space, computes (com, ch) =

H(pk,m, r), and obtains rsp← P(pk, sk, com, ch). The output is the signature
σ = (r, com, ch, rsp).

Verification. On input pk,m, and σ = (r, com, ch, rsp) the verification algo-
rithm VfH outputs 1 iff V(pk, com, ch, rsp) = 1 and (com, ch) = H(pk,m, r);
else, it returns 0.

Note that one can shorten the signature size by simply outputting σ = (r, rsp).
The remaining components (com, ch) are obtained by hashing the tuple (pk,m, r).
Next, we give the main result of this section saying that the Fiat-Shamir trans-
form on Σ-protocols with oblivious commitments yield a quantum-secure signa-
ture scheme.

Theorem 3. If Inst is a hard instance generator for the relation R and the Σ-
protocol (P,V) has oblivious commitments, then the signature scheme in Con-
struction 2 is existentially unforgeable under chosen message attacks against
quantum adversaries in the quantum-accessible random-oracle model.
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The idea is roughly as follows. Assume for the moment that we are only interested
in key-only attacks and would like to extract the secret key from an adversaryAQ

against the signature scheme. For given x we first run the honest-verifier zero-
knowledge simulator of the Σ-protocol to create a transcript (com?, ch?, rsp?).
We choose another random challenge ch′ ← {0, 1}`. Then, we run the adversary,
injecting (com?, ch′) into the hash replies. This appropriate insertion will be
based on techniques developed by Zhandry [41] to make sure that superposition
queries to the random oracle are harmless. With sufficiently large probability the
adversary will then output a proof (com?, ch′, rsp′) from which we can, together
with (com?, ch?, rsp?) extract a witness due to the special-soundness property.
Note that, if this extraction fails because the transcript (com?, ch?, rsp?) is only
simulated, we could distinguish simulated signatures from genuine ones. We can
extend this argument to chosen-message attacks by simulating signatures as in
the classical case. This is the step where we take advantage of the extra random
string r in order to make sure that the previous adversary’s quantum hash queries
have a negligible amplitude in this value (x,m, r). Using techniques from [6] we
can show that changing the oracle in this case does not change the adversary’s
success probability significantly.

The full proof with preliminary results appears in the full version [14].

Moreover, we also discuss a concrete instantiation based on Lyubashevsky’s
lattice-based scheme [29] in the full version [14] to show that one can use our
technique in principle, and how it could be used for other schemes.
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