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Abstract. We introduce the notion of covert security with public ver-
ifiability, building on the covert security model introduced by Aumann
and Lindell (TCC 2007). Protocols that satisfy covert security guarantee
that the honest parties involved in the protocol will notice any cheating
attempt with some constant probability ϵ. The idea behind the model
is that the fear of being caught cheating will be enough of a deterrent
to prevent any cheating attempt. However, in the basic covert security
model, the honest parties are not able to persuade any third party (say,
a judge) that a cheating occurred.

We propose (and formally define) an extension of the model where, when
an honest party detects cheating, it also receives a certificate that can
be published and used to persuade other parties, without revealing any
information about the honest party’s input. In addition, malicious parties
cannot create fake certificates in the attempt of framing innocents.

Finally, we construct a secure two-party computation protocol for any
functionality f that satisfies our definition, and our protocol is almost as
efficient as the one of Aumann and Lindell. We believe that the fear of a
public humiliation or even legal consequences vastly exceeds the deterrent
given by standard covert security. Therefore, even a small value of the
deterrent factor ϵ will suffice in discouraging any cheating attempt.

1 Introduction

One of the main goals of the theory of cryptographic protocols is to find se-
curity definitions that provide the participants with meaningful guarantees and
that can, at the same time, be achieved by reasonably efficient protocols. Both
standard security notions lack one of these two properties: the level of security
offered by semi-honest secure protocols is unsatisfactory (as the only guaran-
tee is that security is achieved if all parties follow the protocol specification)
while malicious secure protocols (that offer security against arbitrarily behaving
adversaries) are orders of magnitude slower than semi-honest ones.
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In covert security, introduced by Aumann and Lindell in 2007 [AL07], the
honest parties have the guarantee that if the adversary tries to cheat in order to
break some of the security properties of the protocol (correctness, confidentiality,
input independence, etc.) then the honest parties will notice the cheating attempt
with some constant probability ϵ. Here, unlike the malicious model where the
adversary cannot cheat at all, the adversary can effectively cheat while taking
the risk of being caught. This relaxation of the security model allows protocol
designers to construct highly efficient protocols, essentially only a small factor
away from the efficiency of semi-honest protocols.

The main justification for covert security is that, in many practical appli-
cations, the relationship between the participants of the protocol is such that
the fear of being caught cheating is enough of a deterrent to avoid any cheating
attempt. For example, two companies that decide to engage in a secure compu-
tation protocol might value their reputation and the possibility of future trading
with the other company more than the possibility of learning a few bits of in-
formation about the other company’s input, and therefore have no incentive in
trying to cheat in the protocol at all.

However, a closer look at the covert model reveals that the repercussion of a
cheating attempt is somewhat limited: Indeed, if Alice tries to cheat, the protocol
guarantees that she will be caught by Bob with some predetermined probability,
and so Bob will know that Alice is dishonest. Nevertheless, Bob will not be able
to bring Alice in front of a judge or to persuade a third party Charlie that Alice
cheated, and therefore Alice’s reputation will only be hurt in Bob’s eyes and no
one else. This is due to the fact that Charlie has no way of telling apart the
situation where Alice cheated from the situation where Bob is trying to frame
Alice to hurt her reputation: Bob can always generate fake transcripts that will
be indistinguishable from a real interaction between a cheating Alice and Bob.

This becomes a problem, as the fact that only Bob knows that Alice has tried
to cheat may not be enough of a deterrent for Alice. In particular, consider the
scenario where there is some social asymmetry between the parties, for instance
if a very powerful company engages in a protocol with a smaller entity (i.e., a
citizen). If the citizen does not have any clear evidence of the cheating she will
not be able to get any compensation for the cheating attempt, as she will not
be able to sue the company or persuade any other party of the misbehavior –
who would believe her without any proof? This means that if we run a covert
protocol between these parties, the fact that a party can detect the cheating
may not be enough to prevent the more powerful one from attempting to cheat.

The scenario described above can be dramatically changed if, once a party
is caught cheating, the other party receives some undeniable evidence of this
fact, and this evidence can be independently verified by any third party. We
therefore introduce the notion of covert security with public verifiability where if
a party is caught cheating, then the honest parties receive a certificate – a small
piece of evidence – that can be published and used to prove to all those who
are interested that indeed there was a dishonest behavior during the interaction.
Clearly, this provides a stronger deterrent than the one given by covert security.



Intuitively, we want cheating parties to be accountable for their actions i.e., if
a party cheats then everyone can be persuaded of this fact. At the same time, we
need also the system to be defamation-free in the sense that no honest parties
can be framed i.e., no party can produce a fake cheating certificate.

Towards better efficiency: choosing the right ϵ. In order to fully under-
stand the benefit of covert-security with public verifiability, consider the utilities
of a rational Alice, running a cryptographic protocol with Bob for some task. Let
(Uh, Uc, Uf , U

pub
f ) be real numbers modeling Alice utilities: Alice’s utility is Uh

when she runs the protocol honestly, and so both parties learn the output and
nothing else. If Alice attempts to cheat, she will receive utility Uc if the cheating
attempt succeeds. If the cheating attempt fails (i.e., Alice gets caught), the util-

ity received by Alice will be Uf in the standard covert security setting and Upub
f

in the setting with public verifiability. We assume that Uc > Uh > Uf > Upub
f ,

namely, Alice prefers to succeed cheating over the outcome of an honest ex-
ecution, prefers the latter over being caught cheating, and prefers losing her
reputation in the eye of one parties over losing it publicly.

Remember that, since the protocol is ϵ-deterrent, whenever Alice attempts
to cheat she will be caught with probability ϵ and succeed with probability 1−ϵ.
Therefore, assuming that Bob is honest, Alice’s expected payoff is Uh when she
plays the honest strategy and ϵ ·U ′

f + (1− ϵ) ·Uc when she plays cheating, with

U ′
f ∈ {Uf , U

pub
f } depending on whether the protocol satisfies public verifiability

or not. Therefore if we set

ϵ >
Uc − Uh

Uc − U ′
f

then Alice will maximize her expected utility by playing honest. This implies
that the value of ϵ needed to discourage Alice from cheating is much higher in
the standard covert security setting than in our framework.

As the value of the deterrent factor ϵ determines the replication factor and
thus the efficiency of covert secure protocols, we believe that in practice using
covert security with public verifiability will lead to an increase in efficiency, as
the benefits obtained by the reduced replication factor will exceed the limited
price to pay for achieving the public verifiability property on top of the covert
secure protocol.

Main Ideas. It is clear that no solution to our problem exists in the plain model
and that we need to be able to publicly identify parties. We therefore set our
study in the public-key infrastructure (PKI) model, where the keys of all parties
are registered in some public database. Note that in practice this is not really
an additional assumption, as most cryptographic protocols already assume the
existence of authenticated point-to-point channels, that can be essentially only
implemented by having some kind of PKI and letting the parties sign all the
messages they exchange to each other.

At this point it might seem that the problem we are trying to solve is trivial,
and that the solution is simply to let all parties sign all the exchanged messages



in a covert secure protocol. Here is why this näıve solution does not reach our
goal: As a first problem, we need to make sure that the adversary cannot abort as
a consequence of being caught cheating; think of a zero-knowledge (ZK) protocol
with one bit challenge, where the prover only knows how to answer to a challenge
c = 0. If the verifier asks for c = 1, the malicious prover has no reason to
reply with an invalid proof and will abort instead. Surely, the honest party will
suspect the prover of cheating but will have no certificate to show to a judge.
The problem of an adversary aborting as an escape from being caught cheating
was already raised in [AL07, Section 3.5], and the solution is to run all the cut-
and-choose via an oblivious transfer (OT): here the prover (acting as a sender)
inputs openings to all possible challenges and the verifier (acting as the receiver)
inputs his random challenge. Due to the security of the OT, the prover now
cannot choose whether to continue or abort the protocol as a function of the
verifier’s challenge. The prover needs to decide in advance whether to take the
risk of being caught, or abort before the execution of the OT protocol.

Secondly, we need to ensure that the published certificate does not leak infor-
mation about the honest party’s input: when the honest party detects cheating,
it computes a certificate as a function of its view i.e., the (signed) transcript
of the protocol, his input and his random tape. Therefore, this certificate may
(even indirectly) leak information about the input of the honest party. This is
clearly unsatisfactory and leads us to the following unfortunate situation: a party
knows that the other party has cheated, however, in order to prove this fact to
the public he is required to reveal to the adversary his private information.

For the sake of concreteness, consider a protocol where Alice chooses a key
pair (pk, sk) for a homomorphic encryption schemeE, and sends Bob (pk,Epk(x))
where x is Alice’s input. Later in the protocol, Alice and Bob use the homomor-
phic properties of E for a cut-and-choose; i.e., Bob sends the first message of a
ZK proof, Alice sends an encrypted challenge Epk(c) and Bob obliviously com-
putes the last message of the ZK proof for the challenge c, and signs all the
transcripts of the protocol. Alice finally decrypts and checks the validity of the
proof. Note that Bob cannot abort as a function of c (due to the semantic secu-
rity of the encryption scheme). If Bob cheats and Alice detects it, she receives
a proof, a signature on the (encrypted) incriminating messages. Alice can now
publish the transcript and her secret key sk in order to enable the judge to verify
that Bob cheated. However, once the certificate is made public, Bob will learn
the secret, decrypt the first ciphertext and learn x.

Moreover, a malicious Alice might have a strategy to compute a different
secret key sk′ that makes the signed ciphertext decrypt to some “illegal” message
that can be used to frame an innocent Bob. These examples show that things
can easily go wrong, and motivates the need for a formal study of covert security
with public verifiability.

Signed oblivious transfer. As a building block for our construction we intro-
duce a new cryptographic primitive, that we shall call signed oblivious-transfer.
In this primitive, the sender inputs two message (m0,m1) and a signature key
sk, and the receiver inputs a bit b. At the end of the protocol, the receiver will



learn the message mb together with a signature on it, while the sender learns
nothing. That is, the receiver learns: (mb,Sigsk(b,mb)).

To see the importance of this tool in constructing protocols that satisfy covert
security with public verifiability it is useful to see how it can be used to fix the
problems with the zero-knowledge protocols described before. A very high level
description of the signed-OT based zero-knowledge protocol is: (1) First the
prover prepares the first message of the zero-knowledge protocol and sends it to
the verifier together with a valid signature on it; (2) Now the prover prepares
the answers to both challenges c = 0 and c = 1 and inputs them, together with
his secret key, to the signed OT; (3) The verifier inputs a random choice bit c
to the signed OT and receives the last message of the zero-knowledge protocol
together with a valid signature on it. The verifier checks this message and, if the
proof passes the verification, it outputs accept. On the other hand, if the proof
is invalid, the verifier can take the transcript of the protocol and send them to
any third party as an undeniable proof that the prover attempted to cheat.

Note that this works only because b is included in the signature. Had b
not be signed, the prover could input the simulated opening to both branches
of the OT. This makes the (signed) transcript look always legit (in particu-
lar, it does not depend on the challenge bit b), and the verifier cannot per-
suade a third party that the prover did not properly answer to his challenge.
Also, note that it is not enough to run a standard OT, where the prover inputs
(m0,Sig(0,m0)), (m1,Sig(1,m1)), as in this case the prover could cheat by send-
ing a valid signature on the valid opening, and no signature on the wrong opening
– it is crucial for the security of the protocol that the verifier is persuaded that
both signatures are valid, even if only one is received.

Our model. Our security definition guarantees that when an honest party pub-
lishes the certificate, the adversary cannot gain any additional information from
this certificate even when it is combined with the adversary’s view, in a strong
simulation sense. This, together with the fact that in the strong explicit cheat
formulation of covert security a cheating party does not learn any information
about the honest party’s input and output, guarantees that the certificate does
not leak any unintentional information to anyone seeing the certificate (i.e., the
certificate can be simulated without the input/output of the honest party).

A covert secure protocol with public verifiability is composed of an “honest”
protocol and two extra algorithms to deal with cheating situations: the first
is used to produce a certificate when a cheating is detected, and the other to
decide whether a certificate is authentic or not. The requirements for the two
latter algorithms are the following: any time that an honest party outputs that
the other party is corrupted, the evaluation of the verification algorithm on
the produced certificate should output the identity of the corrupted party. In
addition, no one should be able to produce incriminating certificates against
honest parties.

Organization and Results. In Section 2, we define and justify the model of
covert security with public verifiability. In Section 3 we show how to construct
a signed-OT protocol: our starting point is the very efficient OT protocol due



to Peikert, Vaikuntanathan and Waters [PVW08]. The resulting protocol is only
slightly less efficient than the protocol of PVW.

Signed-OT will also be the main ingredient in our protocol for two-party
secure computation using Yao’s garbled circuit, described in Section 4. Here
we show that for any two party functionality f , there exists an efficient covert
secure protocol with ϵ-deterrent and public verifiability. Our protocol is roughly
1/ϵ slower than a semi-honest secure protocol, and has essentially the same
complexity as an ϵ-deterrent secure protocol without public verifiability.

Technically, our starting point is the protocol presented in [AL07, Section 6.3]
(the variant where aborting is not considered cheating) the only differences with
the original protocol are that every call to an OT is replaced by a call to a signed-
OT, and that the circuit constructor will also send a few signatures in the right
places. We believe that this is a very positive fact as the resulting protocol is only
slightly less efficient than the original covert secure protocol, showing how covert
security with public verifiability offers a much greater deterrent to cheating than
standard covert security (as a cheater can face huge loss in reputation or even
legal consequences), while only slightly decreasing the efficiency of the protocol.

Related Work. The idea of allowing malicious parties to cheat as long as this
is detected with significant probability can be found in several works, e.g. [FY92,
IKNP03,MNPS04], and it was first formally introduced under the name of covert
security by Aumann and Lindell [AL07]. Since then, several protocols satisfying
this definition have been constructed, for instance [HL08,GMS08,DGN10]. It is
possible to add the public verifiability property to any of these protocols. Doing
so in the most efficient way is left as a future work.

2 Definitions

Preliminaries. A function µ(·) is negligible, if for every positive polynomial p(·)
and all sufficiently large n’s it holds that µ(n) < 1/p(n). A probability ensemble
X = {X(a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by
a and n ∈ N. Usually, the value a represents the parties’ inputs and n the security
parameter. Two distributions ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and Y =
{Y (a, n)}a∈{0,1}∗,n∈N are said to be computationally indistinguishable, denoted

X
c≡ Y , if for every non-uniform polynomial-time algorithm D there exists a

negligible function µ(·) such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr [D (X(a, n)) = 1]− Pr [D (Y (a, n)) = 1]| ≤ µ(n)

We assume the reader to be familiar with the standard definition for secure
multiparty computation [Can00,Gol04].

Covert Security: Aumann and Lindell [AL07] present three possible defini-
tions for this notion of security, where the three definitions constitute a strict
hierarchy. We adopt the strongest definition that is presented, which is called
“strong explicit cheat formulation” (Section 3.4 in [AL07]).



A protocol that is secure with respect to this definition is also secure with
respect to the two other suggested definitions. Informally, in this stronger for-
mulation, the adversary may choose to input a special input cheat to the ideal
functionality. The ideal functionality will then flip a coin and with probability
(1− ϵ) will give to the adversary full control: the adversary will learn the honest
party’s input and instruct the functionality to deliver any output of its choice.
However, with probability ϵ, the ideal functionality will inform the honest party
of the cheating attempt by sending him a special symbol corrupted, and crucially,
the adversary will not learn any information about the honest party’s input.

2.1 Covert Security with Public Verifiability

For the sake of simplicity, we will present the definition and the motivation for
the two-party case. The definition can be easily extended to the multi-party case.

Motivation: As discussed in the introduction, we work in the FPKI-hybrid
model where each party Pi registers a verification key vki for a signature scheme.
This key will be used to uniquely identify a party. Note that we do not require
parties to prove knowledge of their secret keys (i.e., the simulator will not know
these secret keys), so this is the weakest FPKI formulation possible [BCNP04].

We extend the covert security model of Aumann and Lindell [AL07] and
enhance it with the public verifiability property: As in covert security, if the
adversary chooses to cheat it will be caught with probability ϵ, and the honest
party outputs corrupted. However, in this latter case, the protocol in addition
provides this party an algorithm Blame to distil a certificate from its view in the
protocol. A third party who wants to verify the cheating (“the judge”) should
take the certificate and decide whether the certificate is authentic (i.e., some
cheater has been caught) or it is a fake (i.e., someone is trying to frame an
innocent). The verification is performed using an additional algorithm, which is
called Judgement. We require the verification procedure to be non-interactive,
which will enable the honest party to send the certificate to a judge or to publish
it on a public “wall of shame”.

In addition, as our interest is mainly to protect the interest of the honest
party, we want to make sure that the certificate of cheating does not reveal any
unnecessary information to the verifier. Therefore, we cannot simply publish the
view (transcript and random tape) of the honest party, as those might reveal
some information about the input or output of the honest party. In addition, we
need to remember that the adversary sees the certificate once it is published and
therefore we should take care that no one will be able to learn any meaningful
information from this certificate, even when combining it with the adversary’s
view. To capture this fact, we use the convention that when a party detects a
cheating, it creates the certificate and sends it to the adversary.

The fact that the certificate is part of the view of the adversary means that
the simulator needs to include this certificate as a part of the view when it re-
ceives corrupted from the ideal functionality. Remember that in this case the



simulator does not learn anything from the trusted party rather than the adver-
sary got caught, and therefore this implies that our definition ensures that the
certificate cannot reveal the private information of the honest party.

Regarding the Judgement algorithm, we require two security properties: when-
ever an honest party outputs corrupted, running the algorithm on the certificate
will output the identity of the corrupted party. Moreover, no adversary (even
interacting with polynomially many honest parties) can produce a certificate for
which the verification algorithm outputs the identity of an honest party.

2.2 The Formal Definition

Let f be a two party functionality. We consider the triple (π,Blame, Judgement).
The algorithm Blame gets as input the view of the honest party (in case of cheat
detection) and outputs a certificate Cert . The verification algorithm, Judgement,
takes as input a certificate Cert and outputs the identity id (for instance, the
verification key) of the party to blame or none in the case of an invalid certificate.

The protocol: Let π be a two party protocol. If an honest party detects a
cheating in π then the honest party is instructed to compute Cert = Blame(view)
and send it to the adversary.

Let realπ,A(z),i∗(x1, x2; 1
n) denote the output of the honest party and the

adversary on a real execution of the protocol π where P1, P2 are invoked with
inputs x1, x2, the adversary is invoked with an auxiliary input z and corrupts
party Pi∗ for some i∗ ∈ {1, 2}.

The ideal world. The ideal world is exactly as [AL07, Definition 3.4]. Let
idealπ,A(z),i∗(x1, x2) denote the output of the honest party, together with the
output of the simulator, on an ideal execution with the functionality f , where
P1, P2 are invoked with inputs x1, x2, respectively, the simulator S is invoked
with an auxiliary input z and the corrupted party is Pi∗ , for some i∗ ∈ {1, 2}.

Notations. Let execπ,A(z)(x1, x2; r1, r2; 1
n) denote the messages and the out-

puts of the parties in an execution of the protocol π with adversary A on auxil-
iary input z, where the inputs of P1, P2 are x1, x2, respectively, and the random
tapes are (r1, r2). Let execπ,A(z)(x1, x2; 1

n) denote the probability distribution
of execπ,A(z)(x1, x2; r1, r2) where (r1, r2) are chosen uniformly at random. Let
output(execπ,A(z)(x1, x2)) denote the output of the honest party in the exe-
cution described above. We are now ready to define the security properties.

Definition 1 (covert security with ϵ-deterrent and public verifiability)
Let f , π, Blame and Judgement be as above. We say that (π,Blame, Judgement)
securely computes f in the presence of a covert adversary with ϵ-deterrent and public
verifiability if the following conditions hold:

1. (Simulatability with ϵ-deterrent:) The protocol π (where the honest
party broadcasts Cert = Blame(view) if it detects cheating) is secure against
a covert adversary according to the strong explicit cheat formulation with
ϵ-deterrent (see [AL07, Definition 3.4]).



2. (Accountability:) For every ppt adversary A corrupting party Pi∗ for i∗ ∈
{1, 2}, there exists a negligible function µ(·) such that for all sufficiently large
x1, x2, z ∈ ({0, 1}∗)3 the following holds:
If output(execπ,A(z),i∗(x1, x2; 1

n)) = corruptedi∗ then:

Pr [Judgement (Cert) = idi∗ ] > 1− µ(n)

where Cert is the output certificate of the honest party in the execution.
3. (Defamation-Free:) For every ppt adversary A controlling i∗ ∈ {1, 2} and

interacting with the honest party, there exists a negligible function µ(·) such
that for all sufficiently large x1, x2, z ∈ ({0, 1}∗)3:

Pr [Cert∗ ← A; Judgement(Cert∗) = id3−i∗ ] < µ(n)

Every Malicious Secure Protocol is also Covert Secure with Public
Verifiability. As a sanity check, we note that any protocol that is secure against
malicious adversaries satisfies all of the above requirements, with deterrence
factor ϵ = 1−negl(n): aborting is the only possible malicious behavior. Therefore
the function Blame will never be invoked and the function Judgement outputs
none on every input. In other words, given that no cheating strategy can succeed
except with negligible probability, we have that by definition no one ever “cheats”
and no one can be “framed”.

3 Signed Oblivious Transfer

As discussed in the introduction, signed oblivious transfer (signed OT) is one of
the main ingredient in our construction. For the sake of presentation, one can
think of signed OT as a protocol implementing the following functionality:

(⊥; (mb,Sigsk(b,mb)))← F ((m0,m1, sk), (b, vk))

However it turns out that while this formulation certainly suffices for our goal, it
is not necessary for our secure two-party computation protocol in Section 4. In
particular, we don’t need the signature to be computed by the ideal functionality.
We therefore use a relaxed version of the signed OT functionality, that allows
a malicious sender to choose any two strings (σ∗

0 , σ
∗
1) and input them to the

functionality. If (σ∗
0 , σ

∗
1) are valid signatures on the messages (0,m0) and (1,m1)

respectively, the functionality delivers (mb, σ
∗
b ) to the receiver or abort otherwise.

In other words, we allow a corrupted sender to influence the randomness involved
in the generation of the signature, as long as it provides correct signatures for
both messages. See Functionality 1 for the formal description.

3.1 A PVW Compatible Signature Scheme

As a first step, we will construct a (somewhat contrived) signature scheme, de-
signed to combine efficiently with the OT protocol. Essentially, we are combining



FUNCTIONALITY 1 (The Signed OT Functionality – FSignedOT
Π )

The functionality is parameterized by a signature Scheme Π = (Gen, Sig,Ver).

Inputs: The receiver inputs (vk, b) – a verification key together with a bit
b ∈ {0, 1}. The input of the sender is (m0,m1, sk, σ

∗
0 , σ

∗
1). An honest

sender is restricted to input (σ∗
0 , σ

∗
1) = (⊥,⊥).

Output: If (σ∗
0 , σ

∗
1) = (⊥,⊥) the functionality computes σ = Sigsk(b,mb)

and verifies that Vervk((b,mb), σ) = 1. It then outputs (mb, σ) to the
receiver or abort in case where the verification fails.
If (σ∗

0 , σ
∗
1) ̸= (⊥,⊥) the functionality outputs (mb, σ

∗
b ) to the receiver if

Vervk((0,m0), σ
∗
0) = 1 and Vervk((0,m0), σ

∗
0) = 1 or abort otherwise.

a signature scheme Π ′ = (Gen′,Sig′,Ver′) with a computationally binding com-
mitment Com = (Setup,Com,Open) (we do not need the commitment to be
hiding). The verification key vk of the combined scheme is the same as the ver-
ification key of the original scheme vk′. On input a message m, the combined
signature algorithm Sig chooses a random commitment key ck = Setup(1n) and
a string r, compute the commitment (c, d) = Comck(m; r) and outputs:

(ck, d, c,Sig′sk(ck, c))← Sigsk(m) . (1)

On input (m, (ck, d, c, σ)), the verification algorithm Ver outputs 1 if and only
if Openck(c, d) = m and Vervk((ck, c), σ) = 1. Unforgeability of the combined
scheme follows from the unforgeability of the original scheme together with the
binding property of the commitment scheme. (Note that here is the signer creates
both the commitment key and the commitment itself – differently from the
standard game for computationally binding commitments, where the receiver
needs to generate the key.) See the full version for details.

We present the commitment scheme that we use in the above template.
Let (G, q) be a prime order group where the DDH assumption is believed to
hold. Define the randomized function RAND(g0, h0, g1, h1) = (u, v), where u =
(g0)

s · (h0)
t and v = (g1)

s · (h1)
t and s, t ∈R Zq. Observe that if (g0, h0, g1, h1)

is a DDH tuple for some x (i.e, there exists an x such that g1 = gx0 and h1 = hx
0)

then u is distributed at random in G and v = ux. In case where (g0, h0, g1, h1)
is not a DDH tuple (i.e, logg0 g1 ̸= logh0

h1) then the pair (u, v) is distributed
uniformly at random in G2. See [PVW08] for more details. The commitment
scheme is as follows:

– The setup algorithm Setup: On input security parameter 1n, the setup
chooses a DDH tuple (g0, h0, g1, h1) in G and defines ck = (g0, h0, g1, h1).

– The commitment algorithm Comck: On input message (b,m) ∈ {0, 1} ×
G, the Com algorithm chooses a random r ∈R Zq and computes (g, h) =
(gb, hb)

r and (ub, vb) = RAND(gb, g, hb, h), wb = m · vb, (u1−b, w1−b) ∈R
G2. Then, it defines c = (g, h, u0, w0, u1, w1) and the decommitment value
d = (r; (b,m)).



– The opening algorithm Openck(c, d): On input key ck = (g0, h0, g1, h1),
commitment c = (g, h, u0, w0, u1, w1) and decommitment d = (r; (b,m)), the
opening algorithm checks that (g, h) = (gb, hb)

r and wb = m · ur
b . If so it

outputs (b,m), otherwise ⊥.

Claim 1 Assuming computing discrete logarithms is hard in G, the scheme
(Setup,Com,Open) is computationally binding.

Proof Sketch: To see that the scheme is binding, observe that there is a unique
mapping between r and (b,m) in the following way: given a commitment c =
(g, h, u0, w0, u1, w1) and the decommitment r, we search for b for which (g, h) =
(gb, hb)

r. Given (r, b), the messagem is defined as: wb ·(ub)
−r. Therefore, the only

way that an adversary can break the binding property of a given commitment
c is by finding r′ for which (g, h) = (gr

′

1−b, h
r′

1−b). But, to find such an r′ the
adversary needs to break the discrete logarithm assumption.

Our PVW compatible signature scheme Π = (Gen,Sig,Ver) is the a combi-
nation of the signature scheme Π ′ and the commitment scheme Com as defined
in Eq. (1). We conclude:

Corollary 1 If Π ′ = (Gen′,Sig′,Ver′) is an existentially unforgeable under
an adaptive chosen-message attack signature scheme and the discrete logarithm
problem is hard in (G, g0, q), then Π = (Gen,Sig,Ver) is also existentially un-
forgeable under an adaptive chosen-message attack.

3.2 PVW-based Signed OT

We present the protocol for signed OT in Protocol 1, combining the PVW OT
protocol with the signature scheme described above. Like the original OT pro-
tocol [PVW08], our signed OT protocol can be extended in the straightforward
way to an 1-out-of-ℓ signed OT (see the full version). Note that the overall pro-
tocol is just the DDH-based instantiation of the PVW OT framework with the
following differences (clearly marked in the protocol description): (1) The sender
chooses the “CRS” (g0, h0, g1, h1) and proves that it is a DDH tuple. (Remember
that in this case the receiver’s message hides his choice bit statistically). (2) The
sender signs all the messages it sends to the receiver.

Note that the Com algorithm is distributed, in the sense that both parties
contribute to the input and randomness: in particular the receiver chooses b
while the sender specifies (m0,m1) without knowing which message is going to
be chosen.

Lemma 1 Let Π = (Gen,Sig,Ver) be the PVW-compatible signature scheme

defined above. Then, Protocol 1 securely implements the FSignedOT
Π -functionality

in the presence of a malicious adversary.



PROTOCOL 1 (Signed One-out-of-Two OT Protocol)

Setup: This step can be done once and reused for multiple runs of the OT:
The sender S chooses (g0, h0) ∈R G2 and a random α ∈R Zq and compute
g1 = gα0 and h1 = hα

0 . The sender sends (g0, h0, g1, h1) to the receiver
R and gives a zero-knowledge proof-of-knowledge that (g0, h0, g1, h1) is a
DDH tuple.

Choose: R chooses random r ∈R Zq, computes g = (gb)
r, h = (hb)

r and
sends (g, h) to S;

Transfer: The sender operates in the following way:
1. S computes (u0, v0) = RAND(g0, g, h0, h) and (u1, v1) =

RAND(g1, g, h1, h);
2. S sends R the values (u0, w0) where w0 = v0 ·m0, and (u1, w1) where

w1 = v1 ·m1;
3. (diff) S sends to the receiver

σ′ = Sig′sk′((g0, h0, g1, h1), (g, h, u0, w0, u1, w1));

Retrieve: (diff) Let vk = vk′. R checks that σ′ is a valid signature on the
transcript of the protocol. If so, R outputs: mb = wb · (ub)

−r and (diff)

σ = ((g0, h0, g1, h1), (r; (b,mb)), (g, h, u0, w0, u1, w1), σ
′) .

Otherwise, it outputs abort.

Proof Sketch: As discussed in Corollary 1, σ is a proper signature on the
message (b,mb), and therefore the correct functionality is implemented when
both parties are honest.

The proof of security of the underlying OT protocol is by now standard and
can be found in [PVW08,HL10]. When the receiver is corrupted, the simulator
plays as an honest sender except that it chooses instead a non-DDH tuple in
step “Setup” (i.e., some (g0, g

x
0 , g1, g

y
1 )) and then, given the pair (g, h) and using

the trapdoor (x, y), it can extract the receiver input’s bit b by finding whether h

equals gx or gy. It then sends b to the functionality FSignedOT
Π . Clearly, adding the

signature σ′ does not break any security property of the original OT protocol (it
is easy to see that any attack to this protocol can be reduced to an attack to the
original protocol, where the reduction will simply produce this extra signature).

For the case of a corrupted sender, the simulator plays as an honest receiver
(with b = 1) except that it extracts α from the zero-knowledge proof in step
“Setup”. Using this trapdoor, it can compute both messages m0,m1 (as in the
proof of the original protocol). Then, it computes the two signatures σ∗

0 , σ
∗
1 as

follows:

σ∗
0 = ((g0, h0, g1, h1), (α · r, (0,m0)), (g, h, u0, w0, u1, w1), σ

′)

σ∗
1 = ((g0, h0, g1, h1), (r, (1,m1)), (g, h, u0, w0, u1, w1), σ

′)

In order to see that these are valid signatures on (0,m0), (1,m1) respectively,
recall that (g, h) = (g1, h1)

r = (g0, h0)
α·r. This implies that α · r is a valid



opening of c for (0,m0) whereas r is the opening of c for (1,m1). Finally, it is
easy to see that the distribution of the constructed signatures are the same as
in the real execution.

4 Two-Party Computation with Publicly Verifiable
Covert Security

The protocol is an extension of the two party protocol of [AL07], which is based
on Yao’s garbled circuit protocol for secure two-party computation. We will start
with an informal discussion of the ways that a malicious adversary can cheat
in Yao’s protocol3 and we will present the (existing) countermeasures to make
sure that such attacks will be detected with significant probability, thus leading
to covert security. Finally we will describe how to add the public verifiability
property on top of this. The ways that a malicious adversary can cheat in Yao’s
protocol are as follows:

1. Constructing bad circuits: To prevent P1 from constructing a circuit that
computes a function different than f , P1 constructs ℓ independent garbled
circuits and P2 checks ℓ−1 of them. Therefore if P1 cheats in the construction
of the circuits, P2 will notice this with probability > 1− 1/ℓ. To make sure
P1 cannot abort if it is challenged on an incorrect circuit, we run the cut-
and-choose through a 1-out-of-ℓ signed OT, so that P2 will always receive
some (signed) opening of the circuits that can be used to prove a cheating
attempt to a third party.

2. Selective failure attack on P2’s input values: When P2 retrieves its
keys (using the OT protocol), P1 may take a guess g at one of the inputs
bits of P2. Then, it may use some string r instead of the valid key k1−g, as
input to the OT protocol. Now, in case where that P1 guesses correctly and
indeed the input bit equals g, P2 receives kg and does not notice that there
was anything wrong. However, in case the guess is incorrect, P1 receives r
instead of k1−g which is an invalid key and thus it aborts. In both cases, the
way P2 reacts completely reveals this input bit. This problem can be fixed
by computing a different circuit, where P2’s input is an m-out-of-m linear
secret sharing of each one of the input bits of P2. Now every m−1 input bits
of P2 to the protocol are uniformly random and therefore P2 will get caught
with probability 1−2−m+1 if it attempts to guess (the encoding of) an input
bit. By using a signed OT we will ensure that P2 receives a certificate on the
wrong keys if P1 cheats.

Let Com denote a perfectly-binding commitment scheme, where Com(x; r)
denotes a commitment to x using randomness r. (GenENC,Enc,Dec) is a seman-
tically secure symmetric encryption scheme. (Gen,Sig,Ver) is an existentially un-
forgeable signature scheme under an adaptive chosen-message attack. Note that

3 We assume the reader to be familiar with Yao’s garbled circuit protocol. See [LP09]
for more details and full proof of security.



it is crucial that every message is signed together with some extra-information
about the role of this message (i.e., with unique identifiers for the parties exe-
cuting the protocols, the instance of the protocol, which type of message in the
protocol, which gate/wire label is the message associated too etc.) but we will
neglect these extra information in the description of our protocol for the sake of
simplicity.

PROTOCOL 2 [Two-Party Secure Computation]

Inputs: Party P1 has input x1 and Party P2 has input x2, where |x1| = |x2|. In
addition, both parties have parameters ℓ and m, and a security parameter n. For
simplicity, we will assume that the length of the inputs are n. (diff) Party P1

knows a secret key sk for a signature scheme and P2 received the corresponding
verification key vk from the FPKI.

Auxiliary input: Both parties have the description of a circuit C for inputs
of length n that computes the function f . The input wires associated with x1 are
w1, . . . , wn and the input wires associated with x2 are wn+1, . . . , w2n.

The Protocol4:

1. Parties P1 and P2 define a new circuit C ′ that receives m+ 1 inputs x1, x
1
2,

. . . , xm
2 each of length n, and computes the function f(x1,⊕m

i=1x
i
2). Note

that C ′ has n+mn input wires. Denote the input wires associated with x1 by
w1, . . . , wn, and the input wires associated with xi

2 by wn+(i−1)m, . . . , wn+im

for i = 1, . . . , n.
2. P2 chooses m− 1 strings x1

2, . . . , x
m−1
2 uniformly and independently at ran-

dom form {0, 1}n, and defines xm
2 =

(
⊕m−1

i=1 xi
2

)
⊕x2, where x2 is P2’s original

input. Observe that ⊕m
i=1x

i
2 = x2.

3. For each i = 1, . . . ,mn and β = 0, 1, party P1 chooses ℓ encryption keys by
running GenENC(1

n) for ℓ times. Denote the jth key associated with a given
i and β by kjwn+i,β

.

4. P1 and P2 invoke the mn times the (diff) FSignedOT
Π functionality with the

following inputs: In the ith execution, party P1 inputs the pair:([
k1wn+i,0, . . . , k

ℓ
wn+i,0

]
,
[
k1wn+i,1, . . . , k

ℓ
wn+i,1

])
and party P2 inputs the bit xi

2 (P2 receives the keys
[
k1
wn+i,xi

2
, . . . , kℓ

wn+i,xi
2

]
and a signature on this as output). If P2 output in the OT is aborti, then it
outputs aborti and halts.

5. Party P1 constructs ℓ garbled circuits GC1, . . . , GCℓ using independent ran-
domness for the circuit C ′ described above. The keys for the input wires
wn+1, . . . , wn+mn in the garbled circuits are taken from above (i.e., the keys

4 The description of the protocol is almost verbatim from [AL07] to help the reader
identify the few (clearly marked) differences between our protocol and the original
protocol.



associated with wn+i are kjwn+i,0
and kjwn+i,1

). The keys for the inputs wires
w1, . . . , wn are chosen randomly, and are denoted in the same way. P1 sends
the ℓ garbled circuits to P2 (diff) together with a signature on those.

6. P1 commits to the keys associated with its inputs. That is, for every i =
1, . . . , n, β = 0, 1 and j = 1, . . . , ℓ, party P1 computes (diff):

cjwi,β
= Com

(
kjwi,β

; rji,β

)
, σj

wi,β
= Sigsk(c

j
wi,β

)

The commitments and the signatures are sent as ℓ vectors of pairs (one vector
for each circuit); in the jth vector the ith pair is {(cjwi,0

, σj
wi,0

), (cjwi,1
, σj

wi,0
)}

in a random order (the order is randomly chosen independently for each
pair). (diff) Party P2 verifies that all the signatures are correct. If not, it
halts and outputs abort1.

7. P2 chooses a random index γ ∈R {1, . . . , ℓ}.
8. (diff) P1 and P2 engage in a

(
ℓ
1

)
-signed OT, where P2 inputs γ and, for i =

1, . . . , ℓ, P1 inputs as the ith message of the signed OT all of the keys for the
inputs wires in all garbled circuits except for GCi, together with the associated
mappings and the decommitment values. P1 sends also decommitments to the
input keys associated with its input for the circuit GCi.
P2 receives the openings for ℓ− 1 circuits (all but GCγ) together with a sig-
nature on them. P2 receives also the decommitments and the keys associated
with P1’s input for circuit GCγ together with signatures on them. If any of
the signatures are incorrect, it halts and outputs abort1.

9. P2 checks that:
– That the keys it received for all GCj, j ̸= γ, indeed decrypt the circuits

and the decrypted circuits are all C ′. (diff) If not, add key = wrongCircuit
to its view.

– That the decommitment values correctly open all the commitments cjwi,β

that were received, and these decommitments reveal the keys kjwi,β
that

were sent for P1’s wires. (diff) If not, add key = wrongDecommitment
to its view.

– That the keys received in the signed OT in Step 4 match the appro-
priate keys that it received in the opening. (diff) If not, add key =
selectiveOTattack to its view.

If all check pass, proceed to the next step, else (diff), P2 computes Cert =
Blame(view2) (see the description of Blame for its output on different key
values), it publishes Cert and output corrupted1.

10. P2 checks that the values received are valid decommitments to the commit-
ments received above. If not, it outputs abort1. If yes, it uses the keys to
compute C ′(x1, z2) = C ′(x1, x

1
2, . . . , x

m
2 ) = C(x1, x2), and outputs the result.

Theorem 1 Let ℓ and m be parameters in the protocol that are both upper-
bound by poly(n), and set ϵ = (1 − 1/ℓ)(1 − 2−m+1), and let f be a probabilis-
tic polynomial-time function and let π denote Protocol 2. Then, assuming the



ALGORITHM 1 (The Blame Algorithm – Blame)

Input: The view of a honest party view, containing an error tag key.

Output: A certificate Cert = (id, key,message, σ).

The Algorithm:

– Case 1: key = wrongCircuit: Let j be the smallest index s.t. the garbled
circuit GCj is not a garbling of C′. Let message be the commitment to

GCj concatenated with the opening obtained via the
(ℓ
1

)
-signed OT in

Step 8, and σ the signature on these messages.
– Case 2: key = wrongDecommitment: Let message be (c, x, r) be a com-

mitment where c ̸= Com(x; r) and σ the signatures on c and (x, r).
– Case 3: key = selectiveOTattack: let message be a garbled circuit GCi and

two keys to one of its input gates. Let σ be the signature on the circuit
and the signatures on the keys obtained in Step 8.

On any other case, output ⊥.

ALGORITHM 2 (The Public Verification Algorithm – Judgement)

Input: A certificate Cert = (id, key,message, σ).

Output: The identity id or none.

The Algorithm: If σ is not a valid signature on the message message ac-
cording to verification key vkid halt and output none. Else:

– Case 1: key = wrongCircuit: Parse message as a garbled circuit GC and
the randomness r used to generate it. If GC is not an encryption of the
circuit computing C′ using randomness r output id or none otherwise.

– Case 2: key = wrongDecommitment: Parse message as (c, x, r). If c ̸=
Com(x; r) output id or none otherwise.

– Case 3: key = selectiveOTattack: Parse message as a circuit GC and two
keys ki, kj for an input gate g of the circuit GC. If ki, kj do not decrypt
the gate g output id or none otherwise.

DDH assumption, security of the commitment scheme, signature scheme and
symmetric encryption scheme as described above, (π,Blame, Judgement) securely
computes f in the presence of covert adversaries with ϵ-deterrent and public
verifiability (i.e, satisfies Definition 1).

Note that even for very small replication factors this construction gives rea-
sonable level of deterrence factor e.g., ℓ = 3 and m = 3 lead to ϵ = 50%. We can
now proceed to the proof.
Proof Sketch: We show that our protocol satisfies each one of the properties
as in Definition 1. We will use the similarity between our protocol and the one
of [AL07] to argue for covert security with ϵ-deterrent.



Corrupted P2. Our protocol achieves security in the presence of a malicious
P2. The security follows from the FSignedOT

Π -functionality (that as we have seen,
can be implemented efficiently with malicious security) and the same reasoning
as in [AL07], with the exception that here we use a fully secure malicious OT
instead of a a covert. We are therefore left with the case where P1 is corrupted.

Simulatability with ϵ-deterrent. Our protocol is in fact the same protocol
as in [AL07], with the following differences: (1) In Steps 5 and 6, P1 sends
its messages together with a signature on those. (2) In Steps 4 and 8, signed
OT is used instead of standard OT. (3) In Step 9, if P2 outputs corruptedi,
then it sends Cert = Blame(view2) to the adversary. Let π0 be the protocol
of [AL07, Section 6.3] and π1, π2, π3 the protocols after the changes explained in
bullets 1, 2, 3 respectively.

Protocols π1 and π2 differ from π0 only because P1 signs the messages it
sends to P2. In the full version, we show that if π is a covert secure protocol
with ϵ-deterrent and π′ is the same protocol as π with the only change that
parties sign on all the message they send, then π′ is also a covert secure protocol
with ϵ-deterrent. We therefore conclude that π2 is also a covert secure protocol
with ϵ-deterrent.

The only difference between π3 and π2 is that if P2 outputs corrupted1, then
the adversary learns the certificate Cert . In the full version, we show that this
extra information can be simulated as well and so the overall protocol is covert
protocol with ϵ-deterrent.

Accountability. Accountability follows from the description of the protocol
π and the Blame, Judgement algorithms: an adversarial P1 who constructs one
faulty circuit must decide before the oblivious transfer in Step 9 if it wishes to
abort (in which case there is no successful cheating) or if it wishes to proceed
(in which case P2 will receive an explicitly invalid opening and a signature on
it). Note that due to the security of the oblivious transfer, P1 cannot know what
value γ party P2 inputs, and so cannot avoid being detected.

Once the honest party outputs the certificate, it contains all the necessary
information that caused the party to decide on the corruption. The verification
algorithm Judgement performs exactly the same check as the honest party, and
so accountability holds.

Defamation-Free. We need to show that for every ppt adversary A control-
ling i∗ ∈ {1, 2} and interacting with the honest party, there exists a negligible
function µ(·) such that for all sufficiently large x1, x2, z ∈ ({0, 1}∗)3:

Pr [Cert∗ ← A; Judgement(Cert∗) = id3−i∗ ] < µ(n)

The above holds from the security of the signature scheme. Since Judgement
never outputs the identity of P2 and may just output the identity of P1, the
only interesting case is when the adversary controls P2 and succeeds in creating
a forged certificate Cert∗ for which Judgement(Cert∗) = id1. Since P1 is honest,
it follows the protocol specifications and creates all the circuits correctly, consis-
tent and open the commitments correctly. Remember also that every signature



the honest P1 produces contains meta-information about the message (such as
identity of the participating parties, protocol unique identifier, message identifier
etc.) to ensure that a corrupted P ∗

2 cannot mix and match signatures obtained
during different protocols to create a forged certificate. Therefore, if the adver-
sary produces a certificate that passes the verification, it must have forged one
of the messages. A more formal argument appears in the full version
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