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Abstract. The “five-card trick” invented by Boer allows Alice and Bob
to securely compute the AND function of their secret inputs using five
cards—three black cards and two red cards—with identical backs. This
paper shows that such a secure computation can be done with only four
cards. Specifically, we give a protocol to achieve a secure computation
of AND using only four cards—two black and two red. Our protocol is
optimal in the sense that the number of required cards is minimum.

1 Introduction

Assume that two honest-but-curious players Alice and Bob, who hold secret bits
a ∈ {0, 1} and b ∈ {0, 1}, respectively, wish to securely compute the AND func-
tion, that is, they want to learn the value of a∧b without revealing more of their
own secret bits than necessary. The “five-card trick” invented in 1989 by Boer [2]
achieves such a secure computation of AND using five cards ♣ ♣ ♣ ♥ ♥ . Now,
after over two decades since the invention of the five-card trick, this paper im-
proves upon the result: we show that the same secure computation can be done
using only four cards ♣ ♣ ♥ ♥ .

This paper begins with an overview of the five-card trick.

1.1 The five-card trick

The “five-card trick” by Boer [2] is an elegant secure AND computation protocol
that uses three ♣ s and two ♥ s. Before going into the details of the protocol,
we first mention the properties of cards appearing in this paper.

All cards of the same type (♣ or ♥ ) are assumed to be indistinguishable
from one another. We use ? to denote a card lying face down. We also assume
that the back ? of each card is identical. To deal with Boolean values, we use
the following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Given a bit x ∈ {0, 1}, a pair of face-down cards ? ? whose value is equal to
x (according to the encoding rule (1) above) is called a commitment to x, and
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is expressed as
? ?︸ ︷︷ ︸

x

.

We now explain how to play the five cards in Boer’s secure AND protocol.
First, given two cards ♣ ♥ out of the five cards, Alice privately makes a com-
mitment to her secret bit a (without Bob’s knowing the order of the two cards);
similarly, Bob makes a commitment to the negation b̄ of his secret bit b. Then,
with the remaining one card ♣ , two commitments are put forth as follows:

? ?︸ ︷︷ ︸
a

♣ ? ?︸ ︷︷ ︸
b̄

.

It should be noted that the three cards in the middle would be ♣ ♣ ♣ only
when a = b = 1 (if the second and fourth cards from the left were turned over).

Next, Alice and Bob turn the centered card ♣ face down, and apply a random
cut, which is denoted by 〈·〉:

? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b̄

→
〈

? ? ? ? ?

〉
→ ? ? ? ? ? .

A random cut (also called a random cyclic shuffling) means that, as in the case
of usual card games, a random number of leftmost cards are moved to the right
without changing their order (of course, the random number must be unknown
to Alice and Bob); to implement this, it suffices that Alice and Bob take turns
cutting the deck until they are satisfied. Finally, Alice and Bob reveal all five
cards. Then, the resulting sequence is either

♣ ♣ ♥ ♥ ♣ or ♥ ♣ ♥ ♣ ♣ (2)

apart from cyclic rotations, where either the three ♣ s are “cyclically” consec-
utive or not. One can easily verify that the former case implies a ∧ b = 1, and
the latter case implies a ∧ b = 0.

This is the five-card trick, a simple and elegant secure AND protocol.

1.2 Our result and related work

In this paper, we reduce the number of required cards by one, compared to the
five-card trick, as listed in Table 1. That is, given commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

to Alice’s bit a and Bob’s bit b, our protocol needs no card other than the four
cards constituting the two commitments, i.e., it can securely evaluate the value
of a∧ b without the use of any additional card. Therefore, as long as one adopts
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◦ Secure AND in a non-committed format

# of card types # of cards

Boer [2] (§1.1) 2 5

Ours (§2) 2 4

Table 1. The five-card trick and our protocol with their performance.

the encoding rule (1), our protocol is optimal in the sense that the number of
required cards is minimum because at least four cards are necessary for the two
inputs a and b.

Since the invention of the five-card trick, there have been several card-based
protocols for secure computation, as listed in Table 2. All these protocols produce
their output (say, a∧ b) in a committed format, i.e., their output is described as
a sequence like

? ?︸ ︷︷ ︸
a∧b

that follows the encoding rule (1) (and Alice and Bob have no knowledge about
the value than their own secret bits). In contrast, the five-card trick and our
protocol (given in Section 2) output the value of a∧b in a non-committed format;
the format of the output a∧ b differs from the format of inputs a and b, namely
the encoding rule (1) (recall the resulting sequences (2), which are completely
revealed to the public at the end of the protocol).

◦ Secure AND in a committed format

# of card types # of cards avg. # of trials

Crépeau-Kilian [3] 4 10 6

Niemi-Renvall [7] 2 12 2.5

Stiglic [10] 2 8 2

Mizuki-Sone [4] 2 6 1

◦ Secure XOR in a committed format

# of card types # of cards avg. # of trials

Crépeau-Kilian [3] 4 14 6

Mizuki-Uchiike-Sone [5] 2 10 2

Mizuki-Sone [4] 2 4 1

Table 2. The “committed format” protocols.

Thus, all the card-based protocols are categorized into two types: “non-
committed format” protocols (Table 1) and “committed format” protocols (Ta-
ble 2); this paper addresses the former. Note that in Table 2 every protocol
whose average number of trials is more than 1 is a Las Vegas algorithm.

While card-based protocols might fall within the area of cryptography without
computers [7], recreational cryptography [1] or human-centric cryptography [6], we
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believe that this type of research will help professional cryptographers intuitively
explain to nonspecialists the nature of their constructed cryptographic protocols
(e.g. [9]). That is, card-based protocols would help ordinary people understand
what secure computations are, or, more fundamentally, what cryptography is.
Furthermore, it should be noted that some of the card-based protocols are im-
plemented and used in online games [8].

The remainder of this paper is organized as follows. In Section 2, we give
a description of our four-card secure AND protocol. In Section 3, we show the
correctness of our protocol, that is, we prove that our protocol securely computes
the AND function. This paper concludes in Section 4 with an open question.

2 Description of Our Protocol

In this section, we design a new card-based protocol that securely computes the
AND function using only four cards ♣ ♣ ♥ ♥ .

In Section 2.1, we first introduce the “random bisection cut” [4] used in our
protocol. We then describe our protocol in Section 2.2.

2.1 Random bisection cuts

As seen in Section 1.1, applying a random cut to a sequence of face-down cards
results in a sequence such that a random number of leftmost cards are moved to
the right without changing their order. Whereas, a “random bisection cut” [4]
works differently, as follows.

Given a deck of (an even number of) face-down cards, say

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

,

bisect it and randomly switch the resulting two decks; such a card shuffling
operation is called a random bisection cut. For the example above, a random
bisection cut, denoted by [ · ‖ · ], works as

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→
[
? ?

∥∥∥ ? ?
]

→ ? ? ? ? ,

where the resulting deck of the four cards is either

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

or ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

,

and each case occurs with probability of exactly 1/2.
Although at first glance a random bisection cut seems to be a little bit less

natural operation compared to a (normal) random cut, we hope that people will
feel a random bisection cut to be an easy-to-implement operation some day. If
Alice and Bob are not familiar with playing cards, then they may hold each
of the two bisected decks together using a clip before shuffling the two decks.
Alternatively, they may put each of the two decks into an envelope (without
changing the order of the cards), and shuffle the two envelopes.
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2.2 The protocol

Given a commitment to Alice’s bit a and a commitment to Bob’s bit b, our
four-card AND protocol proceeds as follows.

1. Apply a random bisection cut:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→
[
? ?

∥∥∥ ? ?
]

→ ? ? ? ? .

2. Apply a random cut to the two cards in the middle, namely the second and
third cards:

? ? ? ? → ?

〈
? ?

〉
? → ? ? ? ? .

3. Reveal the second card.

(a) If the face-up second card is ♣ , then open the fourth card. We now have
either

? ♣ ? ♣ or ? ♣ ? ♥ .

The former case implies a ∧ b = 1, and the latter case implies a ∧ b = 0.
(b) If the face-up second card is ♥ , then open the first card. We now have

either

♣ ♥ ? ? or ♥ ♥ ? ? .

The former case implies a ∧ b = 0, and the latter case implies a ∧ b = 1.

As described above, our protocol makes one random bisection cut (in step
1) and one random cut (in step 2). After those cuts, two cards are eventually
revealed, namely either (a) the second and fourth cards, or (b) the first and
second cards, depending on the result of revealing the second card in step 3.
Note that if the two face-up cards are the same type (♣ ♣ or ♥ ♥ ), then we
have a ∧ b = 1; otherwise, we have a ∧ b = 0.

We show why our protocol works in the next section.

3 Correctness of Our Protocol

In this section, we prove that the protocol given in the previous section securely
computes a ∧ b. First, in Section 3.1 we intuitively explain why our protocol
works. Then, we verify the correctness of our protocol in Section 3.2.
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3.1 An intuitive sketch

Given a commitment
? ?︸ ︷︷ ︸

a

,

note that each individual card constituting the commitment inherently has the
value of the bit a, that is, one can also write

?︸︷︷︸
a

?︸︷︷︸
ā

where an encoding rule for a single card is taken: ♣ expresses 0, and ♥ ex-
presses 1. Based on such a single-card encoding, commitments to a and b can be
expressed as:

?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

. (3)

Now, for the expression (3), skip step 1 in our protocol and directly apply
step 2. That is, apply a random cut to the second and third cards:

?︸︷︷︸
a

〈
?︸︷︷︸
ā

?︸︷︷︸
b

〉
?︸︷︷︸
b̄

→ (i) ?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

or (ii) ?︸︷︷︸
a

?︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

.

Next, applying step 3, reveal the second card. Assume that the face-up second
card is ♣ (as in step 3(a)), i.e.,

(i) ?︸︷︷︸
a

♣︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

or (ii) ?︸︷︷︸
a

♣︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

. (4)

Then, it means that either (i) ā = 0 or (ii) b = 0 (because ♣ = 0). If (i) ā = 0,
then a = 1 and hence a ∧ b = b; if (ii) b = 0, then a ∧ b = 0 = b. Therefore,
in either case, we have a ∧ b = b, and hence one can notice that the value of
a ∧ b = b can be obtained by revealing the fourth card

?︸︷︷︸
b̄

in the sequence (4). Actually, in step 3(a), the fourth card is opened. If it is ♣ ,
then b̄ = ♣ = 0 and hence a ∧ b = b = 1; if it is ♥ , then b̄ = ♥ = 1 and hence
a ∧ b = b = 0.

Thus, steps 2 and 3(a) surely compute the value of a ∧ b. One can similarly
verify the claim for the case of step 3(b). Therefore, steps 2 and 3 can provide at
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least the value of a ∧ b. However, they also leak some secret information about
a and b; indeed, for example, when the second card revealed in step 3 was ♣ ,
we have ā = 0 or b = 0 (as seen above), and hence the fact of (a, b) 
= (0, 1)
has been disclosed. Therefore, since executing only steps 2 and 3 is not secure,
our protocol applies a random bisection cut in step 1 to guarantee secrecy, as
intuitively explained below.

Note first that adding step 1 never affects the computation outcome of exe-
cuting steps 2 and 3: after applying a random bisection cut in step 1, we have
either

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

or ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

, (5)

and then applying steps 2 and 3 to the sequence (5) always provides the value
of a ∧ b as shown above (because a ∧ b = b ∧ a).

To see that the secrecy is preserved by introducing a random bisection cut
in step 1, we enumerate all possibilities:

step 1 step 2
?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

↗
?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

→ ?︸︷︷︸
a

?︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

↗
?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
a

?︸︷︷︸
ā

↘ ↗
?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
a

?︸︷︷︸
ā

→ ?︸︷︷︸
b

?︸︷︷︸
a

?︸︷︷︸
b̄

?︸︷︷︸
ā

.

Therefore, opening the second card (in the rightmost sequence) means that one
of ā, b, b̄ and a is randomly revealed. Hence, opening the second card never leaks
any information about each of a and b.

3.2 Proof of correctness

In this subsection, we prove that our protocol works correctly.
Recall that a random bisection cut

[
? ?

∥∥ ? ?
]
in step 1 and a random cut

?
〈
? ?

〉
? in step 2 are applied to the two commitments; one can enumerate,

as in Table 3, all possibilities of the four cards after each of steps 1 and 2. Note
that the cases (a, b) = (0, 1) and (a, b) = (1, 0) both fall in the same status
category after step 1 (and after step 2, of course).

Consider the actual execution of our protocol based on Table 3. After step
3, all possibilities can be enumerated as shown in Table 4. (Remember that the
second card is opened in step 3, and that if it is ♣ , then the fourth card is
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(a, b) initial after step 1 after step 2

(0, 0) ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥ ♥ or ♣ ♥ ♣ ♥
(0, 1) ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ or ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥ or ♣ ♥ ♥ ♣
(1, 0) ♥ ♣ ♣ ♥ same as (0, 1) same as (0, 1)

(1, 1) ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ or ♥ ♥ ♣ ♣

Table 3. All possibilities of the four cards after each of steps 1 and 2.

opened; otherwise, the first one is opened.) Table 4 immediately implies that
our protocol surely computes the value of a ∧ b—if the two revealed cards are
the same type, then a ∧ b = 1; otherwise, a ∧ b = 0.

(a, b) initial after step 3

(0, 0) ♣ ♥ ♣ ♥ ? ♣ ? ♥ or ♣ ♥ ? ?

(0, 1) ♣ ♥ ♥ ♣ ? ♣ ? ♥ or ♣ ♥ ? ?

(1, 0) ♥ ♣ ♣ ♥ ? ♣ ? ♥ or ♣ ♥ ? ?

(1, 1) ♥ ♣ ♥ ♣ ? ♣ ? ♣ or ♥ ♥ ? ?

Table 4. All possibilities of the four cards after step 3.

To verify the secrecy of the protocol, it suffices to show that

Pr[(0, 0) | ? ♣ ? ♥ ] = Pr[(0, 0) | ♣ ♥ ? ? ] = Pr[(0, 0) | a ∧ b = 0],

Pr[(0, 1) | ? ♣ ? ♥ ] = Pr[(0, 1) | ♣ ♥ ? ? ] = Pr[(0, 1) | a ∧ b = 0],

and

Pr[(1, 0) | ? ♣ ? ♥ ] = Pr[(1, 0) | ♣ ♥ ? ? ] = Pr[(1, 0) | a ∧ b = 0].

Let Pr[a = 0] = p and Pr[b = 0] = q. Then, we have Pr[(0, 0) | a ∧ b = 0] =
pq/(p + q − pq). On the other hand,

Pr[(0, 0) | ? ♣ ? ♥ ] =
pq(1/2)

pq(1/2) + p(1 − q)(1/2) + (1 − p)q(1/2)
,

as desired. For all the remaining cases, one can easily check the equality.
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4 Conclusions

In this paper, we presented a four-card secure AND protocol whose output is in
a non-committed format. Since the existing protocol, namely the five-card trick,
requires five cards, we have succeeded in reducing the number of required cards
by one. Our protocol is optimal in the sense that at least four cards are required
for commitments to the inputs a and b.

Note that the OR function can also be securely computed by using four cards,
say, according to de Morgan’s law a ∨ b = ā ∧ b̄.

This paper showed a secure AND computation in a non-committed format
using only four cards. For the committed format case, the best known protocol
[4] requires six cards as seen in Table 2. An intriguing open question is whether
there exists a “committed format” AND protocol that requires fewer than six
cards.
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