
Generic Related-key Attacks for HMAC

Thomas Peyrin1,?, Yu Sasaki2, and Lei Wang1,3

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com wang.lei@ntu.edu.sg
2 NTT Secure Platform Laboratories, NTT Corporation

sasaki.yu@lab.ntt.co.jp
3 The University of Electro-Communications

Abstract. In this article we describe new generic distinguishing and
forgery attacks in the related-key scenario (using only a single related-
key) for the HMAC construction. When HMAC uses a k-bit key, outputs an
n-bit MAC, and is instantiated with an l-bit inner iterative hash function
processing m-bit message blocks where m = k, our distinguishing-R
attack requires about 2n/2 queries which improves over the currently best
known generic attack complexity 2l/2 as soon as l > n. This means that
contrary to the general belief, using wide-pipe hash functions as internal
primitive will not increase the overall security of HMAC in the related-key
model when the key size is equal to the message block size. We also
present generic related-key distinguishing-H, internal state recovery and
forgery attacks. Our method is new and elegant, and uses a simple cycle-
size detection criterion. The issue in the HMAC construction (not present
in the NMAC construction) comes from the non-independence of the two
inner hash layers and we provide a simple patch in order to avoid this
generic attack. Our work finally shows that the choice of the opad and
ipad constants value in HMAC is important.

Key words: HMAC, hash function, distinguisher, forgery, related-key.

1 Introduction

Hash functions are among the most important basic primitives in cryptography.
Informally, a hash function H is a function that takes an arbitrarily long message
M as input and outputs a fixed-length hash value of size n bits. Classical security
requirements are collision resistance and (second)-preimage resistance. Namely,
it should be impossible for an adversary to find a collision (two distinct messages
that lead to the same hash value) in less than 2n/2 hash computations, or a
(second)-preimage (a message hashing to a given challenge) in less than 2n hash
computations.

? Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).

Hash functions are used in many applications such as digital signatures, mes-
sage integrity check and message authentication codes (MAC). A MAC is a func-
tion that takes a k-bit secret key K and an arbitrarily long message M as inputs,
and outputs a fixed-length tag of size n bits. A MAC algorithm should also meet
some security requirements. It should be impossible to recover the secret key ex-
cept by exhaustive search, and it should be computationally impossible to forge
a valid MAC without knowing the secret key, the message being chosen by the
attacker (existential forgery) or not (universal forgery).

MACs are crucial for many security systems and are often implemented with
the HMAC [3] algorithm, in particular for banking protocols or protocols securing
Internet connections (TLS and IPSEC). HMAC was designed by Bellare et al. in
1996 and is now widely standardized. It has the property to use an iterative hash
function as internal component (thus composed of an iterative application of a
compression function) and a proof of security is given in [2]: HMAC is a pseudo-
random function under the assumption that the compression function is itself a
pseudo-random function.

A trivial generic extension attack exists for HMAC: by asking for enough queries
to obtain an internal collision, the attacker can then add extra message blocks to
generate other colliding HMAC outputs, therefore breaking the existential forgery
security criterion. In order to avoid this issue, many other MACs constructions
have been proposed and analyzed [26, 25, 12], reaching a security beyond the n/2
birthday bound by using bigger hash function internal state sizes. For example,
the extension attack applied to an n-bit hash function with a 2n-bit internal
state requires 2n compression function calls.

In parallel to the recent impressive advances on standardized hash function
cryptanalysis, the community studied the possible impact on the security of HMAC
when instantiated with these standards (such as MD5 [19] or SHA-1 [21]). There
have been also some related-key analysis of HMAC instantiated with real hash
functions, but no generic attack is known in this model, i.e. without using any
weakness from the internal hash function used. Note that the HMAC proof [2] only
holds when considering a single-key scenario and says nothing in the related-key
model.

The cryptanalysts also looked at other attacks such as distinguishing-R and
distinguishing-H [15]. The aim of the former is to distinguish between a random
function and the HMAC construction, while the latter aims at distinguishing if
the compression function used inside a HMAC construction is a random function
or a specific compression function instance. It is widely believed that for the
ideal narrow-pipe hash function, the distinguishing-R should require about 2n/2

computations, while distinguishing-H should require about 2n.

Our contributions. In this article we introduce a new type of related-key dis-
tinguisher and forgery attacks for HMAC based on cycle length detection, requiring
a birthday query complexity and only a single related-key. The attack complex-
ities are summarized in Table 1 together with previous work that analyzed the
HMAC instantiating a dedicated hash algorithm.

Our attacks work when the inner hash function is iterative (which is the
case for almost all known hash functions, and is necessary for HMAC anyway) and
when a special condition is met on the key input. This condition depends on the
value of the HMAC constants opad and ipad (which shows for the first time the
importance in the choice of their values) and it is always fulfilled when the key
length k is equal to the message input length m of the compression function.
HMAC is defined to even handle cases where k > m and k = m is likely to happen
for example with lightweight hash functions for which the total internal state
size has to remain rather small. One can cite DM-PRESENT or H-PRESENT [7] hash
functions (PRESENT being already an ISO standard [6]), which have respectively
80 bits and 64 bits of message input for their compression function. Also, a
block cipher-based hash function using a common mode such as DaviesMeyer or
MatyasMeyerOseas [1] instantiated with the standardized AES [10] is also likely
to meet the condition k = m.

We emphasize that this work is the first that exploits related-keys to attack
HMAC when modeling the compression function as an ideal primitive. They are
also the first attacks applying on HMAC and not on NMAC, which helps to under-
stand the security loss when going from the latter to the former. Finally, our
attacks are still applicable even when the internal hash function has a big l-bit
internal state, unlike the known generic distinguishing or forgery attacks such
as the extension attack. Note that many SHA-3 candidates are wide-pipe (like
the finalists [14, 5, 24]) and it is the current trend in hash functions designs.
Therefore, this work shows that a wide-pipe hash function used in HMAC can be
weaker than the one used in simple MAC constructions such as a secret-prefix
MAC and its strengthened version LPMAC [20]. In these schemes, the key (and
the message length) is simply prepended to the input message, and the hash
value is the MAC value. Due to the double size of the internal state, no attack
is known with a smaller complexity than 2n computations, while our attack on
HMAC is more efficient, requiring only 2n/2+1 computations.

After a description of HMAC in Section 2, we introduce the generic distinguishing-
R attack (requiring about 2n/2+1 computations) in Section 3, basis for the the
internal state recovery attack in Section 4, the forgery attack in Section 5 and the
distinguishing-H attack in Section 6. Finally, we discuss our results and propose
a simple method to patch HMAC in Section 7.

2 Description of HMAC

A hash function H is a function that takes an arbitrary length input message
M and outputs a fixed hash value of size n bits. When the hash function is
iterative (for example see the classical Merkle-Damg̊ard construction [17, 11]),
the message M is first padded and then divided into blocks mi of m bits each.
Then, the message blocks are successively used to update an l-bit internal state
cvi (where l ≥ n) with a compression function h: cvi+1 = h(cvi,mi), and cv0 is
initialized to a fixed public value cv0 = IV . Once all the message blocks have
been processed, an output function g is applied to the last internal state value

Table 1. Summary of the attack complexities

Previous attacks on HMAC with dedicated hash algorithm
Attack Key Setting Target Size #Rounds Attack Ref.

Dist.-H Single key MD4 128 Full 2121.5 [15]
Dist.-H Single key MD5 128 33/64 2126.1 [15]
Dist.-H Single key 3-pass HAVAL 128 Full 2228.6 [15]
Dist.-H Single key 4-pass HAVAL 128 102/128 2253.9 [15]
Dist.-H Single key SHA0 128 Full 2121.5 [15]
Dist.-H Single key SHA1 128 43/80 2121.5 [15]
Dist.-H Single key SHA1 128 50/80 2153.5 [18]
Inner key rec. Single Key MD4 128 Full 263 [9]
Inner key rec. Single Key SHA0 128 Full 284 [9]
Inner key rec. Single Key SHA1 128 34/80 232 [18]
Inner key rec. Single Key 3-pass HAVAL 128 Full 2122 [16]
Full key rec. Single Key MD4 128 Full 295 [13]
Full key rec. Single Key MD4 128 Full 277 [22]
Dist.-H Single Key MD5 128 Full 297 [23]
Dist.-H Related Key SHA1 128 58/80 2158.74 [18]

New generic attacks on HMAC

Attack Key Setting Target Old Generic New Generic Reference
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1 This paper

Dist.-H Related Key Narrow-pipe† 2n 2n/2+1 This paper

Dist.-H Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Inner state rec. Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Ex. forgery Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

†: For a wide-pipe hash function with l-bit internal state, our attacks improve over the old generic
complexity as long as l < 2n− 1.

cvi so as to eventually obtain hash = g(cvi). The output function therefore
transforms an l-bit value into an n-bit one.

The MAC algorithm HMAC [3] is based on the NMAC construction that uses
two k-bit keys Kout and Kin. NMAC replaces the public IV of a hash function
H(IV,M) by a secret key K to produce a keyed hash function H(K,M). NMAC
is defined by:

NMAC(Kout,Kin,M) = H(Kout, H(Kin,M)).

Since in practice a hash function is used as a black-box and has a fixed
IV, HMAC simulates the keyed hash function H(K,M) of NMAC by prepending a
secret key block K to M , and computing H(IV,K||M), where || denotes the
concatenation. Also, HMAC uses a single k-bit key K which is padded with ze-
ros such that after padding the key length is equal to a multiple of m bits.
For simplicity of the description and without loss of generality concerning our
attacks, in the rest of this article we assume that the key can fit in one com-
pression function message block k ≤ m, and thus the length of the padded
key is m bits (the notation of the keys therefore denotes the padded keys).
Kin and Kout are defined by: Kin = K ⊕ ipad = K ⊕ 0x3636 · · · 36 and
Kout = K ⊕ opad = K ⊕ 0x5C5C · · · 5C, where ipad and opad have the same
length than a padded key. HMAC is defined by:

HMAC(K,M) = H(IV,K ⊕ opad||H(IV,K ⊕ ipad||M)).

Since the key padding in HMAC enforces that the first compression function
call(s) handles all and only the key material, we can rewrite

HMAC(K,M) = HK⊕opad(HK⊕ipad(M)) = HKout(HKin(M))

where HK(X) represents the iterative hash function H for which the initial value
is changed to h(IV,K).

3 Generic related-key distinguisher for HMAC

3.1 General description

Before describing our attacks, we first emphasize that for the rest of the section
we will only use small n-bit messages M , such that after padding any message
fit into one compression function message input. In other words, |M ||pad| = m
and we will always compute a single compression function call in order to handle
the whole message M . This is represented in Figure 1 and we have

HMAC(K,M) = g(h(h(IV,K ⊕ opad), g(h(h(IV,K ⊕ ipad),M ||pad))||pad))

= fKout(fKin(M))

where fK(X) = g(h(h(IV,K), X||pad)).

Fig. 1. The computation of HMAC with an iterated hash function when the padded
message is small (|M ||pad| = m).

The general idea underlying our attacks came from the observation that,
contrary to the case of NMAC, in HMAC the inner and outer functions are not fully

independent. Indeed, both inner and outer hash functions are the same function
H, and the inner and outer keys are related by the relation Kin ⊕ Kout =
ipad⊕ opad.

This is not an issue in the single key model, since when assuming the internal
inner and outer compression functions as ideal, no information will leak on their
output from this inner/outer key relation. However, in the related-key model
the situation is different. When assuming that the key size k is equal to the
padding size (thus one message block, i.e. k = m), then we can analyze what is
happening when we query HMAC(K,M) and HMAC(K ′,M) with the related key
K ′ = K ⊕ ipad⊕ opad. For the first query the oracle will reply

HMAC(K,M) = fK⊕opad(fK⊕ipad(M)) = fKout(fKin(M))

and for the second query the oracle will reply

HMAC(K ′,M) = fK′⊕opad(fK′⊕ipad(M))

= fK⊕ipad(fK⊕opad(M))

= fKin
(fKout

(M))

One can easily see that the two oracles are doing the same computation,
except that ipad and opad (or Kin and Kout) are inverted. In other words, we
have two oracles, one that applies fKin

and then fKout
(top figure below), and

one that does the opposite fKout and then fKin (bottom figure below).

This non-random property seems not easy to detect since the functions fKin

and fKout are parametrized with the secret key K, thus they are completely un-
known to the attacker. However, it is possible to detect it using a cycle detection
algorithm: the functions fKin

◦fKout
and fKout

◦fKin
have the same cycle struc-

ture. Indeed, it is easy to see that there is a one-to-one correspondence between
each cycle from fKin ◦ fKout and fKout ◦ fKin .

The attacker will start from an n-bit random input message, query the first
oracle (with keyK), and keep querying as new message the MAC he just received.
He continues to do so for about 2n/2 queries until he gets a collision among
the MACs received. This collision in fact represents a cycle in the successive
computations of fKin

◦ fKout
and this first phase defined a first walk that we

denote walk A. In a second step the attacker finds also a cycle for the second
oracle computations (with key K ′ = K ⊕ ipad⊕ opad), i.e. for fKout

◦ fKin
and

that defines walk B. Finally, since the number of MACs obtained from the first
and second oracle is big enough, there is a good chance that there is a collision
between a MAC from walk A and an internal value of a MAC from walk B (the
internal value is the output of the first hash in HMAC). If so, then the cycle length
of the two cycles are necessarily the same since they follow exactly the same
computation path starting from the collision. This is depicted in Figure 2. An
attacker can use this criterion to distinguish between HMAC computations and
a randomly chosen function, since in the latter case there is only a very low
probability that the two cycles have the same length. We call the tail the part
of the walk that does not belong to the cycle and we denote ZA (resp. ZB) the
point where the tail enters the cycle for walk A (resp. walk B).

Fig. 2. The cycle structure built with access to oracles fKout ◦ fKin and fKin ◦ fKout .

3.2 The distinguisher

Let Fn
n be the set of functions from n bits to n bits. We denote FK and FK′

the two oracles on which the adversary A can make queries. The oracles are
instantiated either with FK = HMACK and FK′ = HMACK′ (with K being a
randomly chosen k-bit key and K ′ = K⊕ipad⊕opad) or with two independent
randomly chosen functions RK and RK′ from Fn

n . The goal of the adversary is
to distinguish between the two cases and its advantage is given by

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|

1st phase (walk A). The attacker first chooses a random small message MA

of size n bits and initializes qA0 = MA. Then, he will query FK(qA0) and store
the value obtained in qA1 . He continues by querying FK(qA1) and by storing the

answer in qA2 , etc. for 2n/2 + 2n/2−1 iterations. If he observes a collision among
the queries during the process, the attacker stops. If no collision is found or if
the collision occurred in the 2n/2 first queries, the attacker outputs 0.

2nd phase (walk B). This phase is identical to the first phase, except that
the attacker queries the oracle FK′ instead of FK . We denote qBi the queries
asked during this phase and MB the starting message value.

3rd phase (cycle detection). Since each query is obtained by applying the
function FK (or FK′) on the previous query, a collision among the qAi (or among
the qBi) naturally defines a cycle. If the cycle length of set A is equal to the cycle
length of set B, the attacker outputs 1, otherwise he outputs 0.

3.3 Complexity and success probability

1st and 2nd phases (walk A and B). We first compute the probability that
no collision is found when asking for the first 2n/2 queries in the first (or in the
second) phase. In the case of randomly chosen functions:

Pnc−rand =

2n/2∏
i=1

1− i

2n
'

2n/2∏
i=1

e−
i

2n = e−2
n/2·(2n/2−1)/2n+1

' e−1/2.

In the case of HMAC computations, a collision can occur either because of a
collision on fKin

or because of a collision on fKout
. Therefore, we have

Pnc−hmac =

2n/2∏
i=1

1− i

2n

2

'

2n/2∏
i=1

e−
i

2n

2

=
(
e−2n/2·(2n/2−1)/2n+1

)2
' e−1.

Then, we compute the probability that when querying the 2n/2−1 remaining
elements, a collision will eventually be found in the first (or in the second) phase:

Pc−rand = 1−
2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)
' 1−

2n/2−1∏
i=1

e−
2n/2+i

2n

= 1− e−2
n/2−1/2n/2+2n/2−1·(2n/2−1−1)/2n+1

' 1− e−5/8.

Again, in the case of HMAC computations, a collision can occur either because of
a collision on fKin

or because of a collision on fKout
. Therefore, we have

Pc−hmac = 1−

2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)2

' 1−

2n/2−1∏
i=1

e−
2n/2+i

2n

2

= 1− (e−2
n/2/2n/2+2n/2·(2n/2−1)/2n+1

)2 ' 1− e−3.

To summarize, the probability of the attacker to not output 0 during both the
first and second phases is equal to (Pnc−rand ·Pc−rand)2 ' 0.079 with randomly
chosen functions and to (Pnc−hmac · Pc−hmac)

2 ' 0.122 with HMAC.

3rd phase (cycle detection). We need to compute the probability that the
cycle found in walk A and in walk B have the same length, for both the HMAC

case and the randomly chosen functions case. We denote Pcl−hmac the former
and Pcl−rand the latter.

When the oracles are instantiated with HMAC, we already explained that
HMACK and HMACK′ are related by their cycle structure. If there exists a col-
lision between a member of walk A and an internal value of a member of walk
B, then we are ensured that they will enter a cycle of the same length and the
attacker will output 1. Thus Pcl−hmac is the probability that such a collision
occurs. Since the first phase (resp. second phase) ensured that a collision occurs
after 2n/2 queries, we are ensured that at least 2n/2 distinct elements exist in
walk A (resp. walk B). Therefore, the probability Pcl−hmac is lower bounded by

Pcl−hmac ≥ 1−
2n/2∏
i=1

(1− 2n/2

2n
) = 1−

2n/2∏
i=1

e
− 1

2n/2 = 1− e−1.

Now we need to evaluate the probability Pcl−rand that the cycles in walk
A and walk B have the same length for randomly chosen functions. Since we
ensured that the collision happens in the last 2n/2−1 elements instead of the
first 2n/2 elements for walk A, there must exist some value zA, 1 ≤ zA ≤ 2n/2−1,
such that qA

2n/2+zA
is the first query colliding with some previous query in walk

A. So the cycle length of walk A is uniformly distributed between 1 and 2n/2+zA.
Similarly for walk B, there exists a value zB , 1 ≤ zB ≤ 2n/2−1, such that the
cycle length of walk B is uniformly distributed between 1 and 2n/2+zB . Without
loss of generality, let zA be smaller than or equal to zB . Thus, the probability
that the cycles in walk A and walk B have the same length is given by

Pcl−rand =

2n/2+zA∑
i=1

1

2n/2 + zA
× 1

2n/2 + zB
<

1

2n/2
×

2n/2+zA∑
i=1

1

2n/2 + zA
= 2−n/2

Overall the advantage of the adversary is

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|
≥ |(Pnc−hmac · Pc−hmac)

2 · Pcl−hmac − (Pnc−rand · Pc−rand)2 · Pcl−rand|
' (e−1 · (1− e−1.5))2 · (1− e−1) = 0.077

and it can be increased towards (1−e−1) = 0.63 by allowing the attacker to spend
a bit more computations in the first and second phases (instead of outputting 0,
he just starts the phase over until he succeeds).

The complexity of the distinguisher is about 2n/2 + 2n/2−1 computations for
each of the first and second phase, thus about 2n/2+1 computations in total.

As a proof of concept, we have implemented the attack for HMAC instantiated
with SHA-2 truncated to 32 bits and the results can be found in the full version
of the article.

4 Internal state recovery attack

In this section we extend the distinguisher from Section 3 and we present an
internal-state-recovery attack that will be useful for the latter sections show-
ing forgery and distinguishing-H attacks. These attacks are applicable to both
narrow-pipe and wide-pipe hash functions under some conditions. As an exam-
ple for a narrow-pipe hash function without finalization g(·), i.e. SHA-256 and
SHA-512 [21], these attacks achieve a birthday-bound complexity 2n/2, thus sig-
nificantly reducing the expected complexity of 2n.

4.1 General idea

We observe that if walk A and walk B follow the structure in Figure 2, then for
any query in the cycle of walk A, denoted as qA, the inner hash value HKin

(qA)
is necessarily equal to some query in the cycle of walk B, denoted as qB . The goal
is therefore to find this query among all #qB candidate values (all the members
of walk B that belong to the cycle). In other words, we would like to synchronize
the two cycles from walk A and walk B, which we already know have the same
length.

In general, even if we know that walk A and walk B have the same length
and are actually doing the same computations, it seems hard to synchronize the
two cycles because we do not know where the tail in walk A and in walk B is
entering the cycle. However, in the special case where the collision between walk
A and walk B happens in the tail (and not in the cycle), then we know that the
tails are entering the cycle at the same position (see Figure 3). In that case, the
cycles are directly synchronized and the attacker knows all the successive hash
output values for every computation in the cycle (he knows the output values of
all the HKin and HKout computed inside the cycle).

The first and second phases of the attack will be devoted to building a walk
A and walk B with a rather long tail, such that during the third phase there is
a good chance to get a collision between an element of the tail of walk A and an
element of the tail of walk B. In order to recover an internal state, he will focus
on one randomly chosen value belonging to the cycle, denoted qA, and its next
hash output qB , with qB = H(Kin, q

A). Then he will try to guess the internal
hash value X = h(h(IV,Kin), qA||pad1) that led to qB , i.e. g(X) = qB .

We assume that g(·) is easy to invert (given an output u, it is easy to find
all preimages leading to u) and that it is balanced (given an output value, there
exists 2l−n corresponding input values through g). Inverting g provides 2l−n

candidates Xi such that g(Xi) = qB . For each of these candidates, we will apply
a filter to remove the bad guesses. The filter is based on an offline extension of
the computation of HKin

Fig. 3. Two walks A and B colliding and sharing a cycle. The left example shows
unsynchronized cycles (the collision happens in the cycle, thus ZA 6= ZB), the right
shows synchronized cycles (the collision happens before the cycle, in the tails, thus
ZA = ZB).

4.2 Detailed procedure

1st phase (walk A). The attacker chooses a random small message MA of size
n bits and initializes qA0 = MA. Then he will query HMACK(qA0) and store the
value obtained in qA1 . He continues by querying HMACK(qAi), and by storing the
answer in qAi+1 for i = 0, 1, . . . , 2n/2. If no cycle is generated (no collision among

the queries qAi) or if the walk A generated has a tail smaller than 2n/2−2, then
the attacker chooses another random n-bit message as starting query qA0 and
repeats the search procedure until a walk A with a cycle and a tail of at least
2n/2−2 elements are found.

We evaluate the success probability of finding a proper walk A by trying
one set of 2n/2 iterative queries. First we would like the first 2n/2−1 elements be
distinct and the probability of this event is approximately e−1/8 (the evaluation is
similar to the one from Section 3, thus we omitted it here). Then the probability
that the last 2n/2−1 queries produce a cycle is approximately e−3/8. We evaluate
the probability that the tail of walk A has at least 2n/2 − 2 elements. Note that
we have guaranteed that the query qAi causing the first collision happens during
the i-th iteration, with i > 2n/2 − 1. Therefore, the probability that qAi does
not collide with the first 2n/2 − 2 elements is 1 − (2n/2−2/i) ≥ 1/2. Finally, we
conclude that by trying one set of 2n/2 iterative queries, the success probability
of generating a proper walk A is at least e−1/8 × e−3/8 × 1/2 ' 0.303.

2nd phase (walk B.) The procedure is identical to the first phase except that
the attacker is querying HMACK′ with K ′ = K ⊕ ipad⊕ opad instead of HMACK .
He obtains a walk B that has a cycle and whose tail contains at least 2n/2−2

elements with probability of about 0.303 (identical to 1st phase).

3rd phase (collision). The attacker checks that there is a collision between an
element from walk A and one from walk B, which can be done by verifying that
walk A and walk B have the same cycle length. He also wants this collision to
happen more exactly between a member of the tail of walk A and a member of
the tail of walk B. This event happens with probability 1−e−1 ' 0.63 and if such
a collision occurs, then the cycles from walk A and walk B are synchronized. In
other words, the attacker knows that the tail in walk A entered the cycle at the
same position that the tail in walk B entered its own cycle and as a consequence
he knows all the succesive internal values for the HMACK and HMACK′ computa-
tions belonging to the cycle. We denote qA, qB and qC three consecutive internal
states, that is qB = H(Kin, q

A), qC = H(Kout, q
B) and qC = HMACK(qA).

4th phase (recovery by filtering.) Given qA, qB and qC , known by the
attacker, the goal is now to recover the inner hash function internal state just
before applying the output function g. In other words, the attacker is trying
to recover X = h(h(IV,Kin), qA||pad1), with g(X) = qB . He first inverts the
output function g from qB and gets 2l−n candidate values Xj .

The attacker chooses 2n/2 random distinct messages Mi, 0 ≤ i < 2n/2, such
that each qA||pad1||Mi||pad2 fits into exactly two message blocks. He queries the
messages qA||pad1||Mi to HMACK and look for collisions among the outputs. A
collision happens in inner hash with a probability 1−e−1/2. At the same time, we
want to avoid faulty collision, i.e. collision in the outer hash instead of the inner
hash, and this happens with probability e−1/2. We denote (M,M ′) the pair of
colliding message found and the success probability is (1−e−1/2)×e−1/2 ' 0.23.

For each of the 2l−n candidate values Xj , the attacker computes the values
g(h(Xj ,M ||pad2)) and g(h(Xj ,M

′||pad2)), and checks whether they are equal. If
it is the case, the attacker storesXj as a very likely candidate for the yet unknown
value of X. Since there are in total 2l−n candidate values, and the filter is of n-
bit, 2l−2n candidates will be stored. The attacker repeats the colliding messages
(M,M ′) search and the filtering process until only one candidate, namely the
real value of X, is left.

Overall, the complexity of the attack is less than 2n/2+2 queries, and 2l−n+1

offline computations. The success probability is around 0.303 × 0.303 × 0.63 ×
0.23 = 0.013. By repeating the phases from 2 and 4 several times, the success
probability will be increased.

5 Forgery attacks

This section describes the related-key forgery attacks on HMAC. The adversary is
given access to two oracles HMACK and HMACK′=(K⊕ipad⊕opad). After interacting
with HMACK and HMACK′ , he outputs a message and MAC value (M,σ), such
that the message has not be queried for HMACK . If σ is a valid MAC value for
M through HMAC with key K, the adversary is said to have successfully forged
M for HMACK . More precisely, when the attacker is free to choose M it is an

existential forgery, while if the message is fixed by the challenger beforehand it
is a universal forgery.

A commonly known generic existential forgery attack on HMAC (even in the
single-key setting) is the so-called extension attack. The attacker first searches
for a pair of messages (M,M ′) colliding on the last l-bit internal state of the
inner hash (just before the application of the output function g in the inner hash
function call), then appends each of them with the same additional message block
X. Since the last internal state is the same for both messages (M,M ′), the two
computations of this extra message block X will also behave identically. Finally,
by querying the HMAC value for one of the two messageM ||X, the attacker directly
forge the other one M ′||X by outputting the same MAC value. The complexity
of this existential forgery attack is around 2l/2 queries.

We extend the internal-state-recovery attack from Section 4 to an existential
forgery attack. The method is simple. Following the procedure in Section 4, the
attacker first recovers the internal state X during the HMACK computation of one
of the n-bit messages queried and we denote this message by M . Then, using
about 2l/2 computations, he generates offline a pair of distinct messages M ′ and
M ′′ of the same length satisfying g(h(X,M ′||pad2)) = g(h(X,M ′′||pad2)), where
pad2 stands for the padding appended to the message M ||M ′ (or M ||M ′′) when
applying the hash function H. Finally, the attacker queries M ||pad1||M ′ to the
oracle HMACK and receives a value T ′, where pad1 stands for the padding added
to the message M when applying the hash function H. He can forge the MAC
value T ′′ for the messageM ||pad1||M ′′ through HMACK since T ′′ = T ′. The overall
complexity of this attack is 2n/2+2 queries and 2l−n + 2l/2 computations. Note
that in particular for the case l < 2n, our attack is faster than the commonly
known existential forgery attack requiring 2l/2 computations.

One can trivially extend this existential forgery attack to an ”almost-universal”
forgery attack, where the attacker can only choose the first block and the l/2
first bits of the second block of the message to be forged. In practice, this would
be very close to a universal forgery if one assumes that a few bytes of data in
the header of the messages to be MACed can be controlled by the attacker.

6 Distinguishing-H attacks

This section proposes two distinguishing-H attacks in the related-key setting.
Let Fm+n

n be the set of functions from m + n bits to n bits. The attacker is
given access to two oracles HMACK and HMACK′ with K ′ = K⊕ipad⊕opad. The
compression function of the HMAC oracles is instantiated either with a known
dedicated function h or with a random chosen function r from Fm+n

n , which
we denote (HMAChK , HMAC

h
K′) and (HMACrK , HMAC

r
K′) respectively. The goal of the

adversary is to distinguish between the two cases and its advantage is given by

Adv(A) =
∣∣Pr[A(HMAChK , HMAC

h
K′) = 1]− Pr[A(HMACrK , HMAC

r
K′) = 1]

∣∣ .

6.1 Distinguishing-H attack I: comparing cycles lengths

The distinguisher in Section 3 can be extended to a distinguishing-H attack, as
long as the finalization g(·) is bijective and invertible, for example the identity
function. Without loss of generality, we omit the output function g. The only
difference from the distinguisher in Section 3 will be that in order to produce
walk A and walk B we will make full-block long iterative queries, namely m-bit
queries, instead of n-bit queries. A graphical view of one iteration in a walk is
given in Figure 4. Let pad1 be the padding to an n-bit message and pad2 the
padding to an m-bit message. The attacker first chooses a small random n-bit
value qA0 . He then queries qA0 ||pad1 to HMACK and receives X0. He computes
h(X0, pad2) offline and stores the output as qA1 . He continues to query qAi ||pad1,
receive Xi and apply h(Xi, pad2) offline to produce qAi+1. With the same process,
the attacker produces walk B, except that he queries HMACK′ instead of HMACK .

If HMAC oracles are instantiated with h, then h(HMACK(·), pad2) is fKin
◦fKout

and h(HMAC′K(·), pad2) is fKout ◦ fKin , where fKin and fKout are defined in Fig-
ure 4. So walk A and walk B have a good chance to have the structure explained
in Section 3 and depicted in Figure 2, leading to cycles of equal length. On
the other hand, if HMAC oracles are instantiated with r, walk A and walk B are
independent. Thus by detecting the cycles lengths, the adversary can distin-
guish (HMAChK , HMAC

h
K′) from (HMACrK , HMAC

r
K′). The complexity and the success

probability are identical to the ones for the distinguisher in Section 3.

Fig. 4. Distinguisher-H attack I.

6.2 Distinguishing-H attack II: recovering internal state

The internal state recovery attack in Section 4 can be extended to a distinguishing-
H attack as well. The adversary first regards the HMAC oracles as (HMAChK , HMAC

h
K′),

and applies the internal state recovery procedure from Section 4 to obtain an
internal state value X of some n-bit query qA in a walk. Then he searches of-
fline a pair of distinct messages (M,M ′) satisfying g(h(X,M)) = g(h(X,M ′)),
which costs 2n/2 computations. Finally, he queries HMACK with qA||pad1||M and

qA||pad2||M ′ to check whether the two MAC values collide. If they do the at-
tacker outputs 1, otherwise he outputs 0.

If the compression function is h, the probability that HMACK(qA||pad1||M)
collides with HMACK(qA||pad1||M ′) is equal to the success probability of recover-
ing X in the attack of Section 4. If the compression function is r, the probability
that HMACK(qA||pad1||M) = HMACK(qA||pad1||M ′) is negligible.

Overall, the complexity is 2n/2+2 queries, 2l−n+1 + 2n/2 offline computations
and the success probability is 0.013.

7 Patching HMAC and discussions

We emphasize again that the related-key issue depicted in this article only exists
when the attacker can query fKout

◦ fKin
and fKin

◦ fKout
with related-key rela-

tions, and therefore keep the two computation chains synchronized if a collision
happens. In the case of HMAC this is possible only when k = m or k = m − 1
since the last bit of ipad and opad are equal (otherwise, for a smaller key the
attacker can not build a proper related-key). This shows that the choice of
ipad and opad is not anecdotal. For example, if ipad and opad were very
similar, then our attacks would work for basically any key length. Also, we ob-
serve that our attacks are the first to apply to HMAC and not to NMAC, thus helping
the community to understand what security we loose when going from NMAC to
HMAC.

Even if our attack is only theoretical due to its high birthday complexity, it
is interesting to study how one can patch the scheme and avoid this related-key
issue. Since one of the best feature from HMAC is that it uses a hash function
as a black box, without any need to change the primitive implementation, our
goal is to find a patch that does not affect the hash function definition. Indeed,
an easy and efficient tweak would be for example to force different IVs for the
inner and outer instances of H in HMAC, but that would require modifying H’s
implementation. We note that truncating the output of HMAC would also work
(the attacker would have to successively guess the truncated bits for each received
query in order to continue the computation chain), but we do not consider this
solution as satisfactory because reducing the output length will directly reduce
the expected generic security of the MAC algorithm.

A first try could be to xor some distinct constants to the inner and/or outer
hash message input in an attempt to separate the fKout

and fKin
computations.

However, with such a patch, an attacker can adapt his query strategy and still
perform a modified version of the attack from Section 3 to maintain the compu-
tation chains synchronized.

Our proposed solution is instead to force an extra fixed bit (or byte) before
the input message M . This patch would not harm much the efficiency of the
scheme since only one bit (or one byte) would be added to the message to
hash for the inner hash function call (actually the efficiency will be the same if
the message plus one bit still fit in the same number of message blocks). Also,

this patch can even be applied on top of HMAC, as a preprocessing phase before
calling the primitive, thus allowing to use existing HMAC libraries without having
to modify them.

The related-key distinguishing-R attack from Section 3 is thwarted because
now the inner and outer function are made distinct, even when querying with
keys K and K ′ = K⊕opad⊕ipad. The attacker can no more adapt the queries to
circumvent this countermeasure and keep the computation chains synchronized.
The security proofs of HMAC still hold with this patch since it is trivial to see that
any attack on this new proposal will also apply on HMAC.

Note that adding this extra bit (or byte) to the input of the outer hash
function instead of the inner one, in an attempt to not reduce the efficiency
(in most cases the hash function output size n is much smaller than its message
input size m and fit in one block, thus the efficiency would actually be very likely
to remain exactly the same), would not prevent the attack from Section 3 to be
applicable, since the attacker could simply adapt his query strategy: instead of
getting a value V from the HMAC oracle and then query this value V again etc.,
he could simply prepend a 0 to the received query 0||V before querying it again
and eventually get the K and K ′ computations synchronized again.

We observed that appending or prepending the extra bit to the message have
actually different impact on the security. For the former, the distinguishing-H
attack (approach I) from Section 6 can still apply in the case of a narrow pipe
internal hash function, while for the latter the attacker can no more play with
pad2 to absorb the prepended bit. Thus, our final proposal is to simply
prepend a 0 bit (or byte) to the input message of HMAC. Namely, this new
version HMAC’ would be defined as

HMAC
′(K,M) = HK⊕opad(HK⊕ipad(0||M)) = HKout(HKin(0||M)) = HMAC(K, 0||M)

Taking in account the fact that the related-key attacks described in this article
only work for special key length, we propose to apply our patch to HMAC only
when k = m or k = m− 1.

We leave as an open problem to find a patch that has no impact on the
efficiency (not even a single bit), without modifying the implementation of the
hash function H (thus without using distinct IVs for the outer and inner hash
calls).

As a final remark, we observe that for HMAC one should only consider related-
keys of the same length than the original key. Indeed, for HMAC one can easily
check that when the length of the key K is not a multiple of m, then the key
K ′ = K||0 is equivalent to K in the sense that HMACK(M) = HMACK′(M) for
any message M (this related-key relation is even valid in the formalization of
related-key attacks from Bellare and Kohno [4] since no two different keys have
the same related-key). This is due to the fact that the padding of the key (so that
its length becomes a multiple of m) is weak and do not distinguish between keys
of different length. A possible patch in order to avoid any equivalent key would
to simply pad the key with a 1 and as many zeros as needed (possibly none)
such that K||10 . . . 0 is a multiple of m, instead of the original 0 . . . 0 padding.

Conclusion

In this article we introduced a new type of distinguishing-R, distinguishing-H,
internal state recovery and forgery attacks for HMAC in the related-key setting.
While the applicability of this attack is only theoretical, it uses a novel attack
angle, the cycle length. It is the first attack that applies on HMAC and not on
NMAC and it provides a better understanding of the role of the constants ipad

and opad. We also showed that our attacks can be avoided with a simple patch
that only prepends 1 bit or 1 byte to the head of a message.

References

1. A. Menezes, P. van Oorschot, and S. Vanstone. CRC-Handbook of Applied Cryp-
tography. CRC Press, 1996.

2. Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision-
Resistance. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 602–619. Springer, 2006.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

4. Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key
Attacks: RKA-PRPs, RKA-PRFs, and Applications. In Eli Biham, editor, EU-
ROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 491–506.
Springer, 2003.

5. Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Kec-
cak specifications. Submission to NIST, 2008. http://keccak.noekeon.org/

Keccak-specifications.pdf.
6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

7. Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, and Yannick Seurin. Hash Functions and RFID Tags: Mind the Gap.
In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture
Notes in Computer Science, pages 283–299. Springer, 2008.

8. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science. Springer,
1990.

9. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on
HMAC and NMAC Using Hash Collisions. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 37–53.
Springer, 2006.

10. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

11. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [8], pages
416–427.

12. Yevgeniy Dodis and John P. Steinberger. Domain Extension for MACs Beyond the
Birthday Barrier. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of
Lecture Notes in Computer Science, pages 323–342. Springer, 2011.

13. Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full Key-Recovery
Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In Alfred Menezes, editor,
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 13–30.
Springer, 2007.

14. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl- a SHA-3
candidate. Submitted to NIST, 2008. http://www.groestl.info.

15. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of
HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended
Abstract). In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of
Lecture Notes in Computer Science. Springer, 2006.

16. Eunjin Lee, Donghoon Chang, Jongsung Kim, Jaechul Sung, and Seokhie Hong.
Second Preimage Attack on 3-Pass HAVAL and Partial Key-Recovery Attacks on
HMAC/NMAC-3-Pass HAVAL. In Kaisa Nyberg, editor, FSE, volume 5086 of
Lecture Notes in Computer Science, pages 189–206. Springer, 2008.

17. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [8], pages
428–446.

18. Christian Rechberger and Vincent Rijmen. New Results on NMAC/HMAC when
Instantiated with Popular Hash Functions. J. UCS, 14:347–376, 2008.

19. Ronald L. Rivest. The MD5 message-digest algorithm. Request for Comments
(RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

20. Gene Tsudik. Message Authentication with One-Way Hash Functions. In ACM
SIGCOMM Computer Communication Review, volume 22(5), pages 29–38, 1992.

21. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy. Secure Hash Standard (SHS) (Federal Information Processing Standards Pub-
lication 180-3), 2008. http://csrc.nist.gov/publications/fips/fips180-3/

fips180-3_final.pdf.
22. Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New Key-Recovery Attacks on

HMAC/NMAC-MD4 and NMAC-MD5. In Nigel P. Smart, editor, EUROCRYPT,
volume 4965 of Lecture Notes in Computer Science, pages 237–253. Springer, 2008.

23. Xiaoyun Wang, Hongbo Yu, Wei Wang, Haina Zhang, and Tao Zhan. Cryptanalysis
on HMAC/NMAC-MD5 and MD5-MAC. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages 121–133. Springer, 2009.

24. Hongjun Wu. The Hash Function JH. Submitted to NIST, 2008. http://icsd.

i2r.a-star.edu.sg/staff/hongjun/jh/jh.pdf.
25. Kan Yasuda. Multilane HMAC - Security beyond the Birthday Limit. In K. Sri-

nathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859
of Lecture Notes in Computer Science, pages 18–32. Springer, 2007.

26. Kan Yasuda. A Double-Piped Mode of Operation for MACs, PRFs and PROs:
Security beyond the Birthday Barrier. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of Lecture Notes in Computer Science, pages 242–259. Springer, 2009.

