Investigating Fundamental Security
Requirements on Whirlpool:
Improved Preimage and Collision Attacks

Yu Sasaki®, Lei Wang??3, Shuang Wuf* and Wenling Wu*

L NTT Corporation
2 The University of Electro-Communications
3 Nanyang Technological University
4 Institute of Software, Chinese Academy of Sciences
t Corresponding author. wushuang@is.iscas.ac.cn

Abstract. In this paper, improved cryptanalyses for the ISO standard
hash function Whirlpool are presented with respect to the fundamental
security notions. While a subspace distinguisher was presented on full
version (10 rounds) of the compression function, its impact to the se-
curity of the hash function seems limited. In this paper, we discuss the
(second) preimage and collision attacks for the hash function and the
compression function of Whirlpool. Regarding the preimage attack, 6
rounds of the hash function are attacked with 2% computations while
the previous best attack is for 5 rounds with 2%8*® computations. Re-
garding the collision attack, 8 rounds of the compression function are
attacked with 2'2° computations, while the previous best attack is for
7 rounds with 2'%* computations. To verify the correctness, especially
for the rebound attack on the Sbox with an unbalanced Differential Dis-
tribution Table (DDT), the attack is partially implemented, and the
differences from attacking the Sbox with balanced DDT are reported.

Keywords: Whirlpool, preimage, collision, meet-in-the-middle, guess-
and-determine, local collision

1 Introduction

Hash functions are taking important roles in various aspects of modern cryp-
tography. Since the collision resistance of MD5 and SHA-1 has been broken by
Wang et al. [1,2], cryptographers have looked for stronger hash function designs.
While various new designs are discussed in the SHA-3 competition [3], some of
existing hash functions seem to be much stronger than the MD4-family. Eval-
uating such hash functions is useful especially if they have been standardized
internationally.

For hash functions, three security notions are classically considered: Colli-
sion Resistance, Second-Preimage Resistance, and Preimage Resistance. Besides,
cryptographers recently have considered various non-ideal properties. Although
considering such non-ideal properties is important especially for determining a

new standard, focusing on vulnerabilities that can be exploited in practice is
more important especially for evaluating hash functions in practice.

Whirlpool [4] is a 512-bit hash function proposed by Rijmen and Barreto in
2000. The compression function uses a 10-round AES based cipher with 8x8-byte
internal states, and the output is computed with the Miyaguchi-Preneel mode
[5, Algorithm 9.43]. Whirlpool has been adopted by ISO [6] and NESSIE [7].

Regarding the collision attack, the rebound attack proposed by Mendel et al.
[8] is very effective with respect to the differential attack against AES based
structure. Indeed, Mendel et al. presented a 4-round collision attack on the
hash function and a 5-round collision attack on the compression function of
Whirlpool. Many improved techniques of the rebound attack have been devised
such as start-from-the-middle technique [9], linearized match-in-the-middle tech-
nique [9], super-(S)box analysis [10, 11], and multiple-inbound technique [11, 12].
Besides, for the AES based structure with 8 x 8 state including Whirlpool, more
techniques have been proposed such as hyper-Sbox analysis [13], non-full-active
super-Sbox analysis [14], efficient list-merging technique [15], and three inbound
rounds [16]. Several practical results are given for round-reduced algorithms and
intermediate rounds in [9,17,18]. This paper exploits the differences in both of
data processing part and key schedule part. Some similarities can be seen in the
analysis on AES-256 [19] and two analysis on Grgstl [20, 21].

Regarding the preimage attack, meet-in-the-middle (MitM) attack with the
splice-and-cut technique proposed by Aoki and Sasaki [22] has been actively dis-
cussed. Several papers proposed improved techniques [23,24]. For the preimage
attack against the AES based structure, Sasaki showed a second preimage at-
tack on 5 rounds of Whirlpool [25]. Later, Wu et al. improved its complexity
and extended it to the preimage attack [26]. Note that Bogdanov et al. showed
an attack on 10-round AES in hashing modes with the biclique technique [27].
Because this attack exploits the weakness in the AES key-schedule, the attack is
specific to AES and cannot be directly applied to other AES based primitives.

Our contributions. In this paper, we improve cryptanalyses on Whirlpool
with respect to the fundamental security notions. The main results are a 6-
round preimage attack on the hash function and an 8-round collision attack on
the compression function. The results are summarized in Table 1.

Our preimage attack is based on the previous 5-round MitM attacks [25, 26].
The number of attacked rounds is extended by applying the guess-and-determine
approach during the MitM attack. Moreover, we increase the number of free
bits for each chunk by exploiting the freedom degrees of the key, while previous
attacks fix the key as a constant. More precisely, the key schedule function shares
the same round function with the data process procedure, and thus we separate
the key schedule function in the same way with the data process function.

Our collision attack is based on the rebound attack. We use the key difference
to cancel the difference in the data part, while previous work avoided inserting
differences to the key schedule. This leads to a differential path with a high
probability. In this paper, we implement our 4-round collision attack which only

Table 1. Summary of attack results

Type Target |#Rounds|Time [Mem.| Ref. Remarks
5 27T 207 [[26]
5 2448 | 296 |Qurs
. Hash 465 .
Preimage F . 5 27%° 1 O(1) |Ours|Memoryless MitM
unction 481 256
6 2 2 Ours
6 2594 | O(1) |Ours|Memoryless MitM
5 20012 [25]
5 2448 1 264 | [26]
Hash 464 X
Fundamental Second F . 5 2 O(1) |Ours|Memoryless MitM
. .) unction 481 256
Properties Preimage 6 9 2256 |Ours
6 2°94 | O(1) |Ours|Memoryless MitM
Hash 4 207 2 [9]
Function 5 2120 | 964 | [10]
o 7 2182 [28] | semi-free-start
Collision Compress. 7 2120 2128 [28] | semi-free-start
F . 4 2 2 Ours free-start
unction 64 8
7 2 2 Ours free-start
8 21201 28 |Qurs free-start
.. _|Compress. 9 2176 128 [28]
Other Near-collision Function 9 2112 | 2128 | 28]
Properties . . Compress. 10 218 2 [28]
Dist sh
SHHEHISHCY | pynction | 10 2121 | 9128 | [9g)

requires 28 computations. Because all previous collision attacks require at least
264 computations even for a small number of rounds, this is the first example
of the collision for a reduced compression function. We also partially implement
the 7-round collision attack. We show an example of the 40-byte near-collision.

2 Specification and Notations

Whirlpool [4] takes any message with less than 2256 bits as input, and outputs a
512-bit hash value. It adopts the Merkle-Damgard structure. The input message
M is padded into a multiple of 512 bits. In details, the 256-bit binary expression
of the bit length ¢ is padded according to the MD-strengthening, .e. M||1|/0*||4.
The padded message is divided into 512-bit blocks Mol||My|| - - - ||[Mx—_1. Let H,
be a 512-bit chaining variable. First, an initial value IV is assigned to Hy. Then,
H,, + CF(H,, M,) is computed for n = 0,1,..., N — 1, where CF is a com-
pression function. Hy is produced as the hash value of M. CF uses an AES
based block-cipher E}, which takes a 512-bit chaining variable H; as a key and
a 512-bit message block M; as a plaintext. The output of CF is computed by
the Miyaguchi-Preneel mode, i.e. Ey,(M;) ® M; ® H;.

Inside the block cipher Ej, an internal state is represented by an 8 % 8 byte
array. At first, H; is assigned to the key value ky. Then, ten 512-bit subkeys
ki,ks, ..., k1o are generated by the key-schedule function defined as follows:

kpnt1 < ACoMR o SCoSB(k,), forn=0,1,...,9.

- SubBytes(SB): applies the Substitution-Box to each byte.

- ShiftColumns(SC): cyclically shift the j-th column downwards by j bytes.
- MixRows(MR): multiply each row of the state matrix by an MDS matrix.
- AddRoundConstant(AC): XOR a 512-bit constant defined in the specification.

For the data processing part, M; is assigned to the plaintext p. Then, the
whitening operation is performed and the result is stored into a variable sg, i.e.
8o < ko @ p. The output s19 of the block cipher is computed as follows, where
AddRoundKey(AK) takes the XOR with k1.

Sn+1 — AKo MR o SC o SB(s,), forn=0,1,...,9.

Notations. Byte positions in a state S are denoted by integer numbers 0, 1,. . .,
63, where the byte 85 + ¢ corresponds to the byte in the ¢-th row and the j-th
column of the state #S, and is denoted by #5[8;j +4]. We denote the initial state
for the data processing part in round = by #Dz!. Then, states immediately after
SB, SC, MR, and AR in round z are denoted by #Dx°B #Dx5¢ #DzME and
#DxAK respectively. Obviously, #DzA¥ is identical with #D(2+41)’. Similarly,
we use the notations #Ka!, # K58, #Ka5¢, #KaME and #Kz4¢ for the
key schedule part. We often denote several bytes of state #S by #S]a,b, .. .],
e.g. 8 bytes in the right most column are denoted by #S5[56,57,...,63]. We also
use the following notations to denote specific byte positions.

- #S[row(i)]: 8 byte-positions in the i-th row of state #S
- #S[SC(row(i))]: 8 byte-positions which SC is applied to #S[row(?)]
- #S[SC™*(row(i))]: 8 byte-positions which SC™! is applied to #S[row(i)]

3 Related Work

3.1 Meet-in-the-Middle (Second) Preimage Attack on Whirlpool

In FSE 2011, Sasaki proposed the first MitM preimage attack on AES-like primi-
tives [25]. Two main techniques were introduced: initial structure in an AES-like
permutation and partial-matching across an MixColumn operation. As a direct
application, a second preimage attack is found on 5-round Whirlpool hash func-
tion in [25]. In FSE 2012, Wu et al. improved the complexity of 5-round second
preimage attack on Whirlpool [26] by exploiting more freedom degrees in the
data state. They successfully represent the chunk separations by several essen-
tial integer parameters, and launched an automatic exhaustive search. Moreover,
they also proposed a method to deal with the message padding and extended
the attack into a first preimage attack.

3.2 Rebound Attack and Start-from-the-Middle Technique

The rebound attack was introduced by Mendel et al. [8]. If it is applied to
Whirlpool, the 2-round path 8 — 64 — 8 can be satisfied only with 28 compu-
tations. The path for rounds S and S + 1 is described in Fig. 1. First, an 8-byte

iS— 11 #5158 #S5— 15 #5— 1M 4! 4558 4 4SMR #5+1! #5+15 #5+15¢ #5+1MR
[l' [.' FIII FIFI- o - un
I SB sC MR HH AK HHY SB SC HHH MR AK SB sC MR { AK
I = = — = B — e — = = = RaN 1=
I I H HHHH H {
t t H HHE H i

Fig. 1. Rebound and start-from-the-middle techniques

difference at #S 4 1M is randomly chosen, and it is propagated to #S5 + 155,
Then, a single-byte difference at one of the active bytes at #5°F is randomly
chosen, and it is propagated to 8 bytes of #S + 17. For each S-box in round
S+1, randomly given input and output differences have solutions (paired values
conforming the path) with probability about 27!, and the average number of
solutions is 2. Hence, if we choose 2% differences for the single byte at #S°8, we
obtain 2% solutions for the corresponding 8 S-boxes. By iterating it for 8 active
bytes at #S5°2, we obtain 28 solutions for each i of #S92[SC~1(row(i))].

The start-from-the-middle technique is an improved procedure for the re-
bound attack, which was proposed by Mendel et al. [9]. Tt satisfies a 3-round
differential path with the same complexity as the rebound attack. After obtain-
ing 28 solutions for each i of #S5°2[SC~1(row(i))] with the rebound attack, each
solution is computed until #S5 —1M2[SC~1(row(i))]. For each i, 127 kinds of dif-
ferences are obtained at #S5 —1M%. Then, a single-byte difference at #5 —1°5 is
chosen. The attacker propagates it to #S — 1M%, and checks whether the 8-byte
difference can be produced from the solutions of the rebound attack. Because
there are 127 kinds of the differences for each i, the 8-byte differences can be
produced with probability about 278. Therefore, by choosing 28 differences at
#S — 198, we expect to find the desired difference. In summary, the 3-round
differential path 1 — 8 — 64 — 8 can be satisfied with a complexity of 25.

Note that the behavior of the S-box is explained based on the S-box of AES.
Because the S-box of Whirlpool has a different property, the evaluation for AES
cannot be applied to Whirlpool directly. We later discuss this issue in Sect. 5.4.

3.3 Distinguisher for the Full Whirlpool Compression Function

Lamberger et al. proposed a distinguisher for the full Whirlpool compression
function [11,28]. The distinguished property is called subspace distinguisher.
The dimension of the input and output differences are defined before the analy-
sis starts. The attacker aims to find paired values whose dimension of differences
at input and output are lower than the defined ones. The core technique is run-
ning the rebound attack (8 — 64 — 8) at two parts independently without
determining the key value. Then, two results are connected and a long differ-
ential path (8 — 64 — 8 — 8 — 64 — 8) is satisfied by searching for an
appropriate key value. Although the distinguisher beautifully breaks the full-
round compression function, the impact is very limited. Nevertheless, collisions
on compression function are generated with this technique for 7 rounds with
(Time, Memory)= (2184 28) or (2120, 2128),

3.4 Local Collision on AES-like Primitives

For a distinguisher for AES-256, Biryukov et al. introduced differences to both
the key and the data, and used the difference of round keys to cancel the differ-
ence of the internal states of the data process by the AddRoundKey operation,
i.e. the local collision occurs [19]. The local collisions may help the attacker to
build a high probability differential path on AES-like primitives.

4 Preimage Attack on 6-Round Whirlpool

4.1 Overview

Our first and main result is introducing the guess-and-determine approach to
MitM preimage attack on Whirlpool hash function, and successfully increase
one more attacked round. More specifically, during the independent chunk com-
putation, even one unknown input byte of MizRow makes all the 8 output bytes
unknown, which is heavily unbalanced. So a chunk can guess a small number
of unknown bytes in order to significantly increase the number of known bytes
in the following rounds. Thus guess-and-determine approach is very effective for
preimage attack on Whirlpool.

Our second result is exploiting the freedom degree in the key to increase the
number of free bits in each chunk, and thus successfully reduce the complexity.
Since the key schedule of Whirlpool is the same with the data process, we can
separate the key schedule and the data process into two chunks in the same way,
which doubles the number of free bits in both chunks.

Our third result is that we propose not only a first preimage attack on hash
function with the lowest complexity, but also another memoryless preimage at-
tack. Compared to the brute force attack, the second attack requires the same
memory and a lower complexity. This is achieved by finding a last block attack
first and then linking the chaining values with a fixed-key attack on the compres-
sion function. Since both the last block attack and the fixed-key attack can be
implemented in a memoryless way [30], we obtain a memoryless first preimage
attack.

4.2 Preimage Attack on 6-round Compression Function

The chunk separation used in the 6-round attack is illustrated in Fig. 2. Five
different colors are used to indicate the categories of the bytes. The gray bytes are
constants which come from the hash/output value or the initial structure. The
red/blue bytes belong to the backward/forward chunk, which can be determined
by the red/blue byte in the initial structure. The white bytes are affected by
both red and blue bytes and we can only determine their values after a partial
match is found. The purple bytes are the guessed bytes.

Since that each row of the state #D1Mf has unknown bytes (in white color),
if we went further back through M R™!, all bytes would become unknown. The
values of 24 white bytes in row 0 to row 5 are guessed. Thus we can maintain 6

Guessing size: 24 bytes

Initial Structure
Freedom in blue: 32 bytes
1 Freedom in red: 8 bytes
=t

i

I

I

Matching Point
Matching Size: 32 bytes

[l Backward Chunk [l Forward Chunk [Guessing Bytes [H constants [Junknown Bytes

Fig. 2. Chunk separation for the preimage attack on 6-round compression function

red bytes in each of top 6 rows of the state #D1°¢. In the key state, we do not
guess the values, since the white key state #K1°¢ does not affect the matching
state through the feedforward operation.

All the possible values of the guessed bytes are used as extra freedom degrees
to build the lookup table for the MitM. But after a partial match is found, we
need to further check the correctness of the guessed values. More details about
the guessing technique can be found in the following section.

The attack algorithm. In order to evaluate the attack complexity, we need
to know the parameters: freedom degrees in red and blue bytes (D,., Dy), size of
the partial matching m and the number of guessed bits D,. The explanation on
calculating freedom degrees/size of matching point and how the partial matching
works can be found in previous papers [25,26]. Here we omit these details due
to the limited space.

To summarize, the parameters for MitM attack in Fig. 2 are as follows.
Freedom degrees in red bytes: D, = 8 bytes = 64 bits (4 bytes in the key and
4 bytes in the data). Freedom degrees in blue bytes: D, = 32 bytes = 256 bits
(16 bytes in the key and 16 bytes in the data). Size of the guessed value (purple
bytes):Dy = 24 bytes = 192 bits. Size of the partial match: m = 32 bytes = 256
bits (only in the data). Size of the full match: n = 512 bits.

The attack algorithm is as follows:

Step 1. Randomly choose the values of the constants in the initial structure.

Step 2. For all the 2P values {r;} of the red bytes in the initial structure and
2Ps guessed values {gj}, go backward to the matching point and store all
2DP+Ds partial matching values F(r;, g;) in a look-up table L.

Step 3. For all the 2P% values {b;.} of the blue bytes in the initial structure, go
forward to obtain the partial matching value G(by) and check if it is in L.
Step 4. Once a partial match (r;, gj,bx) such that F(r;,g;) = G(by) is found,
use (r;,b;) to compute and check if the guessed value g; is correct. If the

guess is correct, check if it is a preimage.

Step 5. Repeat the above steps 1-4 to find a preimage.
The complexity is explained as follows:

Step 2. It takes 2PtPs computations and memory to build the look-up table.

Step 3. It takes 2P computations to find all the 2P»+Pr+DPs=m partial matches.

Step 4. 2P0+ Pr+Dg=m computations are needed to verify the correctness for all
the partial matches. There would be 2P»*Pr—™ yalid partial matches that
pass the correctness test, since the probability that g; is correct is 27Dy,

Step 5. The probability that steps 1-4 succeed is 2Pv+Pr—m.9=(n=m) — 9Dp+Dr—n
The above steps are repeated for 27~ P»~Pr times to find a preimge.

Therefore, the complexity of the above algorithm is

2n—Db—DT.(2DT+Dg +2Db+2Db+DT+Dg—"m) — 2n.(2—DT+2DQ—Db+2Dg—m) (1)

With the given parameters, the complexity is about 2°12 . (2764 4 2192-256
2192-256) ~ 2448 compression function calls. Only step 2 requires 264+192 = 2256
memory.

It is observed that the pattern for the chunk separation can be represented
as several numbers: b= the number of blue rows in #D2M% r= the number
of red rows in #D2!, w=the number of white rows in #D5%¢, g=the number
of guessed rows in #D1M% Then the parameters for the MitM attack can be
calculated as: Dy, = 16(b — r) bytes, D, = 2w(8 — b) bytes, Dy = ¢(8 — r)
bytes and m = 8(g + (8 — w) — 8) = 8(g — w) bytes. In the following sections,
we will continue using the parameters of b,r,w and g to identify the pattern
for chunk separations. We searched for all the possible patterns of the chunk
separation by exhaustively enumerating the parameters b, r, w and g. Fig. 2 shows
the optimal complexity case (b, r,w,g = 6,4,2,6). Note that the 6-round attack
is also applicable without using freedom degrees of the key.

Memoryless MitM attacks. In [30], Morita et al. proposed the memoryless
MitM technique, which can be applied in our attack by designing the following
three functions:

1) a mapping from the partial matching value to the blue value,

2) a mapping from the partial matching value to the red (and purple) value,

3) a pseudo-random boolean switching function taking the partial matching
value as the input.

However, we found that the memoryless MitM has some limitations. The memo-
ryless MitM is very efficient to find one match, its complexity is limited by half of
the matching size m and increases linearly with the number of matches. Namely,

at most 2max{0:min{Dy—Dg,Dr;m/2=Dg}} computations can be saved using memo-
ryless MitM. Using look-up tables, we can save at most 27@@10:min{Dy—Dqg,Dr,m =Dy }}
computations. This difference results in different optimal chunk separations,
which is considered in the following sections.

4.3 The First Preimage Attacks

A first preimage attack is the combination of a second preimage attack and
an attack on the last compression function which produces message block with
correct padding. In order to find optimal first preimage attacks, we need to
consider a lot of different attacks.

Two types of last block attacks. The first preimage attack must fulfill the
message length padding. In a fixed-key attack on the compression function, 10
padding bits can be chosen if the initial structure is placed at the beginning of
the encryption. This technique was used in [26]. The probability that a random
message block satisfies a constraint of the padding string is 27°. Details are
explained in Appendix B.

In the chosen-key preimage attacks, the initial structure cannot be placed at
the beginning of the compression function. So the chosen padding technique is
not applicable. However, we can repeat the attack 2° times to obtain a valid last
message block.

Since Whirlpool uses 256-bit length padding and we just satisfied a small part
of it, the rest part of the length cannot be known before the attack. Therefore,
we need the expandable messages [31] to fulfill it.

Two types of second preimages. In previous attacks, the key (chaining value)
is known before the attack. The preimage attack on the compression function is
to find a message block that connect two chaining values. The fixed-key attack is
equivalent to a second preimage attack if the input and output chaining values
are chosen consecutively from the known ones.

If the key is chosen, the value of the key (chaining value) can only be deter-
mined after the attack. Then we need to connect it to one of the known chaining
value. This is done using a MitM step on the chaining values.

Different combinations for the first preimage attack. First, we analyzed
all the 5/6-round fixed-/chosen-key attacks on compression functions and turn
them into second preimage and last-block attacks. Second, we considered the
fixed-key attacks with chosen padding and found more attacks on the last mes-
sage block. At last, we combine the second preimage attacks and the last-block
attacks to found the first preimage attacks with the lowest computations and
the lowest memory respectively.

The detailed results of all preimage attacks are summarized in Table 2. Note
that we can adjust the time-memory tradeoff by choosing different combinations
of second preimages and the last-block attacks or changing the tradeoff of MitM
on the chaining value for chosen key attacks.

Table 2. Detailed Results on all preimage attacks on CF and hash function

Compression| Second

5-Round Attacks [b r w| Dy D, m . . Last Block| Preimage
Function Preimage

chosen-ke - |54 2128 96 128] 2716 296 2185 996 1 9125 996+
Y [ml[4 3 1]128 64 128 2705, 0(1) | 2757, 252 | 2907, 252 | 2448 9964

fixed-key 43 2[64 64 64| 2% 20F [%8 0% [2357 904

’ 115 4 2] 64 48 128 2%°% O(1) [2%°%, 0(1)i|2*>,0(1)
fixed-key 43 2[55 63 64 - N 2757 355 |2465 O(1)t

2

chosen padding|ml|5 4 54 48 128 - - 27T " 0(1)1

Compression| Second

Function Preimage
- |64 256 64 192 256| 2338 2256 [d8T 525615357 5256
ml|7 6 128 32 96 256] 2750, 0(1) | 297,210 [2™Y O(1)f|2*8, 2256+

6-Round Attacks |b r w g
26
2 6
1651 2]64 16 48 64| 2790, 201 2395 907 [005 504
15
13
13

Dy D, Dg m Last Block| Preimage

chosen-key

fixed-k
xed-key g 128 8 120 256] 2°"%, 0(1) |2°°%, 0| 22, 0(1)
fixed-key -6 4 118 16 96 128 - - 2796 STTZ|2504 ' O(1)1
chosen padding|ml|7 6 54 8 48 128 - - 2°9°°0(1)

. The attacks with the lowest computations.

¥ ; The attacks with the lowest memory.
ml |

: The memoryless MitM attacks.

’ ” R%% o o
nd rd h
’ R. ’ R% * n@ﬁ(3 o

Fig. 3. Left: previous approach Right: our approach

Key

Data %

5 Collision Attacks on the Compression Function

5.1 Overview

In order to generate collisions with previous rebound approaches, the state at the
beginning and the end must have the same differential form so that they can can-
cel each other with the feed-forward operation. This is a strong constraint. We
overcome this constraint by generating local collisions several times,s.e., cancel-
ing differences of the data by using differences of the key. The idea is illustrated
in Fig. 3. Because the diffusions for the data and key are identical, we can keep
the same differential form. This makes possible to use the differential path with
different differential forms between the beginning and the end.

The idea of using the key difference is advantageous not only for canceling
the output difference but also constructing a high probability differential path
by using the local collision. For example, we use the following differential path
for an 8-round collision attack. Here, “WH” represents the whitening operation.

Key: 64 WH 64 "8 g 200 ¢ 300 g 4006 508 g OUR) TRR o TRy

WH 1stR 2ndR SrdR 4thR rthR GLhR 7thR SthR
Data: 64 — 0 — 8 =3 1258 — 0238 -3 1 — 8 == 0, (2)

10

Em

Fig. 4. Differential path for 7R attack. Grey bytes are active bytes. The inbound phase
for the data processing part is stressed by red squares.

where, the most expensive part (full active state) is avoided for the data process-
ing part to reduce the attack complexity and to keep enough freedom degrees.

We use a rebound-attack approach to search for the values. First, the values
for the key are searched. Then, the values for the data are searched for the fixed
key pairs. The complexity is a sum of two searching phases, not a product.

5.2 7-Round Collision Attack

We explain our 7-round collision attack, with 264 computations and memory to
store 28 state. The differential path is as follows. See its illustration in Fig. 4.
st nd rd th th th th
Key: 64 Y5645 8 28 1 2 H g T Hps 2 F g ©H g Thgy,

WH 18R 27dR . 3R _ 4"R | 5*"R _ 6""R | "R
Data: 64 — 0 — 8 —' 1 —' 8 — 0 — 8 — 8 — 0.

The key and the plaintext should have the same difference so that the plaintext
difference can be canceled by the whitening operation. Then, we make a local
collision after the 4th round, and another local collision after the 7th round.

Searching procedure for key schedule part. The goal is finding a single
pair of key values satisfying the differential path for the key. The essential part
of this procedure is finding two values satisfying the middle three rounds, 1 —
8 — 64 — 8. This can be done with the Start-from-the-Middle attack [9]. The
complexity is only 28 computations and the amount of memory is 2% state. If
the middle three rounds are satisfied, the entire path are also satisfied by simply

11

- N
1st inbound phase for row(ﬁ) Merge inbounds 2nd inbound phase for row(0)

Fig. 5. Details of the inbound phase.

extending the path by 2 rounds in backward and 2 rounds in forward. Because
this transformation is deterministic, the complexity for 7 rounds is unchanged.

Searching procedure for data processing part. This phase is performed
after the key values are fixed. The goal is finding a pair of plaintexts which
follow the differential path and generate a collision in the output. The procedure
is divided into the inbound phase and the outbound phase.

Inbound phase. The inbound phase is from state #D2! to state #D45B,
which are stressed by red squares in Fig. 4. For the inbound phase, we search
for the values with a similar approach to Mendel et al. [11]. The details of the
inbound phase are described in Fig. 5. Note that the key values are already fixed.
Hence, the differences for #2D! and # D458 are uniquely fixed. First, we apply
an equivalent transformation to the third round, i.e. AK is performed between
SC and MR. Then, the inbound phase is further divided into three parts; first
inbound phase, second inbound phase, and merge two inbounds.

First inbound phase for row 0: We aim to find 28 paired values that sat-
isfy the differential path between # D2 [SC~1(row(0))] and #D3%B[row(0)]
which are described by red in Fig. 5. We only compute a single row. The other
rows remain unfixed. The difference for 8 bytes at #D2/[SC~(row(0))] is
fixed to the same as #K2/[SC~!(row(0))] so that the difference of
#D2'[SC~'(row(0))] can be canceled by AK ™" in the first round. Then, for
all 28 differences in #D2ME[0], we compute the corresponding 8-byte differ-
ence at # D298 [SC~1(row(0))]. The average probability that the fixed differ-
ence at # D2 [SC~! (row(0))] and a computed one in # D255 [SC~ (row(0))]
have solutions for all 8 bytes is 278. Because 2® differences are examined in
#D2MR[0] one pair is expected to have solutions and the number of ob-
tained solutions is 2% on average. Finally, for all 28 solutions, we compute
the corresponding 8 bytes at #D3°B[row(0)] and store them in a list L;.

12

Second inbound phase for row 0: This part is similar to the first inbound
phase. We aim to find 2% paired values that satisfy the differential path
between #D3%B[SC~1(row(0))] and #D45B[row(0)] which are described
by yellow in Fig. 5. Again we only compute a single row. The difference for
8 bytes at #D45B[row(0)] is fixed to the same as #K4°8[row(0)] so that
it can be canceled after the AK operation in the fourth round. For all 22
differences in #D3°C[0], we compute the corresponding 8-byte difference at
D4 [row(0)], and check if solutions exist between the fixed # D458 [row(0)]
and computed # D4 [row(0)]. After 28 trials, we expect to obtain 2% solutions
on average. Finally, for 28 solutions, we compute the corresponding 8 bytes
at #D3°B[SC~1(row(0))] and store them in a list L.

Merge two inbounds: One byte (in position 0) is overlapped in 8 bytes stored
in Ly and Lo, hence we need to find the match. Both of value and difference
need to match, and thus the probability of the match is 2716, Because 2'6
combinations of the results in L; and Lo are available, we expect to find
a match. We use the other 49 unfixed bytes at #D3%F as freedom degrees
for the outbound phase. Because it can produce 24°*® = 2392 values for the
outbound phase, finding one match is enough for this phase.

The complexity for the inbound phase is 28 computations for both of the first
and second inbound phases. A memory to store 28 state is required to generate
L, and Ly. In summary, with 28 computations and a memory to store 28 state,
up to 2392 solutions of the inbound phase can be produced.

Outbound phase. Due to the inbound phase, the differential path is ensured
to be satisfied up to the fourth round. The outbound phase is a brute force
approach to satisfy the differential path after the fourth round by using solutions
of the inbound phase. The only probabilistic event for the outbound phase is the
cancelation of the difference at the final output. This occurs when the differences
for #D79B[row(0)] is the same as # K 79B[row(0)]. Therefore, by examining 264
solutions of the inbound phase, we can obtain a collision at the final output.

In summary, a collision is generated with 264 in time and 2% in memory.

5.3 Extension to 8-Round Collision Attack and Other Variants

The 7-round attack in Sect. 5.2 can be extended to 8 rounds. The differential
path up to the 4th round is exactly the same as the one for the 7-round attack.
Therefore, the inbound part is unchanged. In the outbound phase, 8 — 8 — 64
is replaced with 8 — 1 — 8 — 64. The entire path is given in Eq.(2).

Because the attack procedure is very similar, we only mention the difference
from the 7-round attack. To search for the key values, we use the Start-from-

the-Middle approach. In this time, the differential propagation 8 (ﬂ;’ 1 needs
to be satisfied probabilistically. Therefore, the complexity for the key schedule
part is 256 in time and 2% in memory. Note that the complexity can be improved
to 21 with the linearized match-in-the-middle technique [9]. Because this part

13

is not the bottle-neck, we omit its detailed explanation. Also note that only 1
result is enough because the data processing part can produce many solutions.

For the data processing part, the inbound phase is exactly the same as the
one for the 7-round attack, which requires 28 in time and 2% in memory, and can
produce up to 2392 solutions. In the outbound phase, the probabilistic events

are the differential propagation 8 fﬂ;{ 1 and the differential cancelation at
the output state. Therefore, a collision for 8 rounds can be generated with a
complexity of 296764 = 2120 computations and 28 state of memory.

It seems worth mentioning that our differential path is an iterative form;

Key: 64 % § “H4 1 243 g 248 gy
Data: 0 -2 8 ZH4 1 8 g 288

Therefore, constructing a differential path for 4n rounds or 4(n — 1) 4+ 3 rounds
is possible. However, we cannot find the attack for three iterations (12-rounds
or 11-rounds) due to a too high complexity and too small freedom degrees.

Practical near-collision attack on 7 rounds. In some case, near-collisions
can be a real threat because hash values are used after the truncation. Our 7-
round attack in Sect. 5.2 can generate a 40-byte near-collision with a complexity
of 240 computations and 2% state of memory. For this attack, we only cancel the
difference in 5-bytes between #K75B[row(0)] and #D7%B[row(0)]. Note that
the brute force attack for 40-byte near-collision takes 2'%° computations, and
thus our attack is much faster. We also implemented the attack on a PC, and
confirmed that the attack could work correctly. An example of the generated
data is provided in Table 3 in Appendix C.

Practical collisions on 4 rounds. All previous attacks require at least 264
computations to generate a collision even for a small number of rounds. There-
fore, we investigate the practical collision attack on a small number of rounds.

Our differential path generates a local collision after the fourth round, and
up to fourth round can be covered by the inbound phase. Therefore, we can
generate collisions of the 4-round Whirlpool compression function only with 23
computations and 28 state of memory. No extra practical example is given here
since the 7-round near-collision in Table 3 is also a 4-round collision.

5.4 Theory vs Practice: Implementation of Rebound Attacks

The DDT of the S-box is the core of the rebound attack, which provides an
efficient method for satisfying the differential paths. The S-box of Whirlpool is
not as balanced as the one in AES. For a non-zero difference pair, if there is
a conforming value, we call it a match. The matching probability of Whirlpool
S-box is lower than the one in AES.

The property of the Whirlpool S-box results in big differences between theory
and practice. Theoretically, one valid key pair is enough to find a match of the

14

MitM phase in the data processing part. But, practically, we tried 109 different
valid key pairs to find a solution for the data part. In every matching step, we
have to try more times to find a match. So the complexity to find one solution
is increased. However, the expected number of solutions for a random difference
pair does not depend on DDT. Hence, the total complexity is not increased if we
need many solutions of the inbound phase. As a result, the complexity of our 7-
round and 8-round attacks is not affected, since the complexity mainly depends
on a lot of iterations in the outbound phase. The theoretical complexity of our
inbound phase for both key and data (to find a 4-round collision) is 2%. Because
we only need one solution from the inbound phase, experiments show that the
practical complexity for the inbound phase is increased by 24 to 27 times.

6 Concluding Remarks

In this paper, we improved the attacks on Whirlpool with respect to the funda-
mental security notions. For the preimage attack, the number of attacked rounds
was extended by the guess-and-determine technique. Moreover, the complexity
was improved by exploiting the freedom in the key value. For the collision attack,
the difference was introduced in the key value, and a high probability differential
path was constructed by canceling the difference in the data with the difference
in the key. These results show several risks of using similar diffusions for the key
and data. These also indicate that Whirlpool is still secure in practice.

References

1. Wang, X., Yu, H.: How to break MD5 and other hash functions. In Cramer, R.,
ed.: EUROCRYPT 2005. LNCS, Vol. 3494, pp. 19-35. Springer, Heidelberg (2005)

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In Shoup, V.,
ed.: CRYPTO 2005. LNCS, Vol. 3621, pp. 17-36. Springer, Heidelberg (2005)

3. U.S. Department of Commerce, National Institute of Standards and Technology:
Federal Register /Vol. 72, No. 212/Friday, November 2, 2007 /Notices. (2007)

4. Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL hashing function. Submitted
to NISSIE (2000)

5. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press (1997)

6. International Organization for Standardization: ISO/IEC 10118-3:2004, Informa-
tion technology — Security techniques — Hash-functions — Part 3: Dedicated hash-
functions. (2004)

7. New European Schemes for Signatures, Integrity, and Encryption(NESSIE):
NESSIE PROJECT ANNOUNCES FINAL SELECTION OF CRYPTO ALGO-
RITHMS. (2003)

8. Mendel, F., Rechberger, C., Schléffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grgstl. In Dunkelman, O., ed.: FSE 2009.
LNCS, Vol. 5665, pp. 260—276. Springer, Heidelberg (2009)

9. Mendel, F., Peyrin, T., Rechberger, C., Schléffer, M.: Improved cryptanalysis
of the reduced Grgstl compression function, ECHO permutation and AES block
cipher. In Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R., eds.: Selected Areas in
Cryptography 2009. LNCS, Vol. 5867, pp. 16-35. Springer, Heidelberg (2009)

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. In Hong, S., Iwata, T., eds.: FSE 2010. LNCS, Vol. 6147, pp. 365—
383. Springer, Heidelberg (2010)

Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schlaffer, M.: Rebound
distinguishers: Results on the full Whirlpool compression function. In Matsui, M.,
ed.: ASTACRYPT 2009. LNCS, Vol. 5912, pp. 126-143. Springer, Heidelberg (2009)
Matusiewicz, K., Naya-Plasencia, M., Nikoli¢, 1., Sasaki, Y., Schlaffer, M.: Rebound
attack on the full LANE compression function. In Matsui, M., ed.: ASTACRYPT
2009. LNCS, Vol. 5912, pp. 106-125. Springer, Heidelberg (2009)

Wu, S., Feng, D., Wu, W., Su, B.: Hyper-Sbox view of AES-like permutations: A
generalized distinguisher. In Lai, X., Yung, M., Lin, D., eds.: Inscrypt 2010. LNCS,
Vol. 6584, pp. 155-168. Springer, Heidelberg (2011)

Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active super-sbox
analysis: Applications to ECHO and Grgstl. In Abe, M., ed.: ASTACRYPT 2010.
LNCS, Vol. 6477, pp. 38-55. Springer, Heidelberg (2010)

Naya-Plasencia, M.: How to improve rebound attacks. In Rogaway, P., ed.:
CRYPTO 2011. LNCS, Vol. 6841. pp. 188-205. Springer, Heidelberg (2011)

Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grgstl. In Canteaut, A., ed.: FSE 2012. LNCS, Springer, Heidelberg (2012) To
appear.

Jean, J., Fouque, P.A.: Practical near-collisions and collisions on round-reduced
ECHO-256 compression function. In Jacobson Jr., M.J., Rijmen, V., Safavi-Naini,
R., eds.: FSE 2011. LNCS, Vol. 5867, pp. 107-127. Springer, Heidelberg (2011)
Wu, S., Feng, D., Wu, W.: Practical rebound attack on 12-round Cheetah-256.
In Lee, D., Hong, S., eds.: ICISC 2009. LNCS, Vol. 5984, pp. 300-314. Springer,
Heidelberg (2010)

Biryukov, A., Khovratovich, D., Nikoli¢, I.: Distinguisher and related-key attack
on the full AES-256. In Halevi, S., ed.: CRYPTO 2009. LNCS, Vol. 5677, pp.
231-249. Springer, Heidelberg (2009)

Mendel, F., Rechberger, C., Schliffer, M., Thomsen, S.S.: Rebound attack on the
reduced Grgstl hash function. In Pieprzyk, J., ed.: CT-RSA 2010. LNCS, Vol.
5985, pp. 350-365. Springer, Heidelberg (2010)

Peyrin, T.: Improved differential attacks for ECHO and Grgstl. In Rabin, T., ed.:
CRYPTO 2010. LNCS, Vol. 6223, pp. 370-392. Springer, Heidelberg (2010)

Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In Avanzi, R.M., Keliher, L., Sica, F., eds.: Selected Areas in Cryptography 2008.
LNCS, Vol. 5381, pp. 103-119. Springer, Heidelberg (2009)

Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle preim-
age attacks: First results on full Tiger, and improved results on MD4 and SHA-2.
In Abe, M., ed.: ASTACRYPT 2010. LNCS, Vol. 6477, pp. 56-75. Springer, Hei-
delberg (2010)

Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In Joux, A., ed.: EUROCRYPT 2009. LNCS, Vol. 5479, pp. 134-152. Springer,
Heidelberg (2009)

Sasaki, Y.: Meet-in-the-middle preimage attack on AES hashing modes and an
application to Whirlpool. In Joux, A., ed.: FSE 2011. LNCS, Vol. 6733, pp. 378—
396. Springer, Heidelberg (2011)

Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack on
reduced-round Grgstl hash function and others. In Canteaut, A., ed.: FSE 2012.
LNCS, Springer, Heidelberg (2012) To appear.

16

27. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In Lee, D.H., Wang, X., eds.: ASTACRYPT 2011. LNCS, Vol. 7073, pp.
344-371. Springer, Heidelberg (2011)

28. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schlaffer, M.: The rebound
attack and subspace distinguishers: Application to Whirlpool. Cryptology ePrint
Archive, Report 2010/198 (2010) http://eprint.iacr.org/2010/198.

29. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In Halevi, S., ed.: CRYPTO 2009. LNCS, Vol. 5677, pp. 70-89. of
LNCS, Springer, Heidelberg (2009)

30. Morita, H., Ohta, K., Miyaguchi, S.: A switching closure test to analyze cryp-
tosystems. In Feigenbaum, J., ed.: CRYPTO 1991. LNCS, Vol. 576, pp. 183-193.
Springer, Heidelberg (1992)

31. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2" work. In Cramer, R., ed.: EUROCRYPT 2005. LNCS, Vol. 3494, pp.
474-490. Springer, Heidelberg (2005)

A Chunk Separation for Preimage Attack

Guessing size: 15 bytes

MR SB

Initial Structure
reedom in blue: 16 bytes
Freedom in red: 1 bytes

m A

Matching Point
Matching Size: 32 bytes

. Backward Chunk . Forward Chunk . Guessing Bytes . Constants |:| Unknown Bytes

Fig. 6. Chunk separation (b,r,w,g) = (7,5,1,5) for the memoryless second preimage
attack on 6-round hash function

B On the Message Length Padding

In order to convert the attack on the compression function into an attack on
the hash function, we need to deal with the message padding first. For the
last message block, the lower half are the message length in binary expression.
Here, we use L to denote the message length. If the last bit of the fourth row
#M[row(3)] in the message block #M is 1, we can obtain that L = 255 mod 512.
So the last 9 bits of #M[row(7)] should be 011111111. If the last two bits of
#Mrow(3)] are 10, we know that L = 254 mod 512. So the last 9 bits of
#Mrow(7)] should be 011111110. So, we can calculate the probability that a

17

random message block is a valid block with correct padding by adding up all the
probability for different suffix of the upper half of the message block:

256

22—(9+i) ~29

i=1

C Examples of Data Generated in the Experiments

Table 3. Collision for 4- and Near-Collision for 7-round Compression Function

Chaining Value Message Block Difference in Round 4 Difference in Round 7
7B A9 ED 44 E2 7A FE 2B |71 68 DA 09 4F B6 DO B2
FD 53 A5 EE 97 A6 72 F3 |97 93 7B 9A FF 6C 41 BB
FD 4E EF 3B F1 65 E8 64 | CO BD AF 12 72 FD A4 17
B4 DO 84 01 F9 75 18 57 | 30 82 86 46 FF 83 47 DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 BB 5E 6F CA A3 E5 76 | 99 D8 OE 3C 03 C5 8E 06
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
86 F2 38 76 2B 9B 7F 58 | EE 78 EF 01 74 65 7D AF
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OE 80 06 67 58 65 90 0A |84 03 52 1B C3 F7 F2 BC
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DD A7 64 C7 3A 6F ED AC |95 C9 BD 81 20 26 12 57
00 00 00 00 00 00 00 00 42 6E 9E 0D 4F 4F 21 4F
9A CB 57 95 CE 6B F7 17 | 90 OA 60 D8 63 A7 D9 8E
00 00 00 00 00 00 00 00 7D CF 94 FA B2 7D 7D E9
D9 35 99 D8 94 7D 35 F4 | B3 F5 47 AC FC B7 06 BC
00 00 00 00 00 00 00 00 FA BO E9 4A 7D 59 BO BO
5E 1D 25 7F 45 10 E2 B2 | 63 EE 65 56 C6 88 AE C1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 OF B4 6A A0 10 89 AO |84 5D B6 2D A6 E6 D6 27
A6 16 D6 D4 6B 37 75 D4 | 3D 75 86 87 A2 51 1E A4
B7 F8 03 25 F8 OD 9D 9D | DF 72 D4 52 A7 F3 9F 6A
E8 1D 70 13 40 OE 47 94 | 62 9E 24 6F DB 9C 25 22

52 58 53 E9 DO C2 B5 OE

1A 36 8A AF CA 8B 4A F5

18

