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Abstract. In 2003 Michael Alekhnovich (FOCS 2003) introduced a novel
variant of the learning parity with noise problem and showed that it
implies IND-CPA secure public-key cryptography. In this paper we in-
troduce the first public-key encryption-scheme based on this assumption
which is IND-CCA secure in the standard model. Our main technical
tool to achieve this is a novel all-but-one simulation technique based
on the correlated products approach of Rosen and Segev (TCC 2009).
Our IND-CCA1 secure scheme is asymptotically optimal with respect to
ciphertext-expansion. To achieve IND-CCA2 security we use a technique
of Dolev, Dwork and Naor (STOC 1991) based on one-time-signatures.
For practical purposes, the efficiency of the IND-CCA2 scheme can be
substantially improved by the use of additional assumptions to allow for
more efficient signature schemes. Our results make Alekhnovich’s vari-
ant of the learning parity with noise problem a promising candidate to
achieve post quantum cryptography.
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1 Introduction

This paper presents the first IND-CCA2 secure cryptosystem based on a com-
putational assumption first introduced by Michael Alekhnovich in the year 2003
[Ale03]. This assumption essentially states that for a given random linear code C
with a constant rate, a random code word with an inverse square root fraction of
noise is indistinguishable from a random string. Alekhnovich [Ale03] was able to
construct a semantically secure cryptosystem which was based solely on this as-
sumption. It can be seen as an special case of the decisional learning parity with
noise (LPN) problem. The decisional LPN problem (henceforth LPN problem),
asks to distinguish noisy binary linear equations Ax+e from uniformly random.
The problem is parametrized by the number of samples provided (i.e the number
of rows of A) and the amount of noise (i.e. the distribution of e). While most



cryptographic constructions based on LPN (e.g. [HB01,JW05,KSS10]) use the
standard parameter-choice of a polynomial number of samples and a constant
fraction of noise, Alekhnovich’s LPN problem uses a linear number of samples
and an inverse square root fraction of noise. These two parameter-choices are
apparently incomparable. On one side, providing a larger amount of samples
makes the problem apparently easier. On the other side, a larger amount of
noise seems to make the problem harder. Nevertheless, Alekhnovich’s parame-
ter choice seems to yield the stronger assumption, as constructing a public key
cryptosystem from LPN with a constant fraction of noise remains an important
open problem.

LPN assumptions are of a more combinatorial nature and seem incompa-
rable to the algebraic assumptions needed for the McEliece cryptosystem. For
the security of the McEliece cryptosystem one has to additionally assume that
scrambled Goppa-codes are computationally indistinguishable from random lin-
ear codes [McE78,BS08,NIKM08,DMQN09]. Moreover, though there is a syn-
tactic similarity to the learning with errors (LWE) problem, LPN and LWE also
seem rather incomparable. LWE asks to distinguish a polynomial number noisy
linear equations over Zq (for a polynomial sized q), where the error-distribution
is euclidean, from uniformly random. IND-CCA2 encryption schemes based on
LWE [PW08,Pei09,MP12] use properties that are very specific to LWE (e.g. short
dual-lattice bases) and not available in the binary domain. It has been open for
nine years if an IND-CCA2 secure scheme could be built from Alekhnovich’s
LPN problem. In this paper we present such a IND-CCA2 secure scheme which
is based on the all-but-one approach [DDN00,PW08,RS09]. The new construc-
tion is asymptotically optimal for IND-CCA1 security. It has only a constant
factor ciphertext-expansion and the ciphertexts are of size O(k2/(1−2ε)), where
k is the security parameter and ε a small constant. To achieve IND-CCA2 se-
curity we use a generic transformation based on one-time-signatures [DDN00].
A more efficient construction is possible using additional assumptions yielding
more efficient signature schemes. The trapdoor of our scheme is substantially
different from Alekhnovich’s original construction, but bears some similarities
with the above-mentioned lattice-based constructions. It allows witness recov-
ery and decryption with incomplete keys, which is necessary for applying the
all-but-one approach. Different from [PW08,RS09,Pei09,DMQN09] we do not
achieve the all-but-one property by repeatedly encrypting the same ciphertext
or a correlated product. We employ a bitwise decryption and use error correction
to cope with incomplete decryptions. The novel all-but-one simulation technique
employed in this construction allows for a significant improvement in efficiency
compared with previous constructions. While this new technique might be of
interest in lattice-based cryptography, we see no obvious way to make use of
our technique in McEliece-based constructions. Crucial to our technique is the
ability to recover individual bits of a plaintext from the ciphertext using a par-
tial secret key. This, however, seems out of reach for constructions based on the
McEliece assumption.



Related Work Ciphertext indistinguishability under chosen ciphertext attacks
(IND-CCA2) security [RS91] is one of the strongest known notions of security for
public key encryption schemes (PKE). Many computational assumptions have
been used in the literature for obtaining cryptosystems meeting this security
notion. Given one-way trapdoor permutations, CCA2 security can be obtained
from any semantically secure public key cryptosystem [NY90,Sah99,Lin03]. Ef-
ficient constructions are also known based on number-theoretic assumptions
[CS98,CS03,HK09], lattice-based assumptions [PW08,Pei09,MP12], the McEliece
assumption [DMQN09] or identity based encryption schemes [CHK04].

2 Preliminaries

2.1 Coding-Theory

We need a few coding-theoretic facts and constructions for our schemes and
proofs. We denote the finite field with q elements by Fq. The hamming-weight
|x| of a vector x ∈ Fnq is the number of its non-zero locations. The q-ary entropy
function is defined as Hq(α) = α logq(q − 1) − α logq α − (1 − α) logq(1 − α).
It assumes its maximum at α = 1 − 1/q with Hq(1 − 1/q) = 1. The vol-
ume Volq(αn, n) of the hamming-ball of radius αn in Fnq can be bounded by

qHq(α)·n−o(n) ≤ Volq(αn, n) ≤ qHq(α)·n.

Random Codes and the Gilbert-Varshamov bound The Gilbert-Varshamov bound
guarantees the existence of q-ary codes with almost maximal relative minimum-
distance 1− 1/q. Moreover, with high probability, randomly chosen codes enjoy
this property. Let n, d, k ∈ N and λ > 0. If it holds that k ≤ n− logq Volq(d, n)−
λn, then the code C(G) generated by a uniformly chosen matrix G ∈ Fn×kq

has minimum-distance at least d, except with probability q−λn. Therefore, if
δ < 1 − 1/q it holds that n − logq Volq(δn, n) ≥ (1 − Hq(δ))n =: ζn. Thus, if

k ≤ ζn/2, a uniformly random chosen matrix G ∈ Fn×kq generates a code C(G)

with minimum-distance at least δn, except with probability q−ζn/2.

Asymptotically good codes with efficient error-correction The decryption algo-
rithm of our scheme will introduce errors in the plaintext when decrypting. We
will therefore use asymptotically good error-correcting codes C with efficient
error-correction algorithm DecodeC to encode plaintexts. Prominent examples
of such codes are binary expander-codes [SS96,Zém01]: There exists an explicit
family of binary linear codes {Cn} of constant rate R arbitrarily close to 1 that
can efficiently correct an α-fraction of errors, for a constant α > 0.

2.2 Bernoulli distributions and bounds

In this section we will briefly gather some facts about low-noise Bernoulli distri-
butions. While Alekhnovich’s [Ale03] original proposal used a noise distribution



that samples vectors of low-weight t uniformly at random, we will use Bernoulli-
distributions where each bit of a vector is 1 with probability t/n and other-
wise 0. The advantage of Bernoulli-distributions over the former distribution is
that all components are independent of one another. We will take advantage of
this fact when bounding the hamming-weight of matrix-vector products when
the matrix is chosen from a Bernoulli distribution. The decryption-algorithm of
Alekhnovich’s and our encryption-scheme computes inner-products of Bernoulli-
distributed vectors. To ensure that the inner-product of two Bernoulli-distributed
vectors is 0 with high probability, we need to choose the bit-flip probability ρ
below a 1/

√
n amount. If ρ is too big (e.g. constant), then the distribution

of the inner-product would be statistically close to uniform and our decryption-
approach would fail. Finally, we show that matrices X chosen from a component-
wise low-noise Bernoulli distribution enjoy (with high probability) the property,
that a product Xs has low-hamming-weight, for any vector s with sufficiently
small hamming-weight. We will call such matrices good, and we will use this
property for proving correctness of our schemes and in the proof of IND-CCA1
security.

Bernoulli distributions For a noise-parameter ρ, we write χρ for the Bernoulli-
distribution that outputs 1 with probability ρ and 0 with probability 1− ρ. The
distribution of the hamming-weight of a vector of n iid distributed Bernoulli-
distributed random variables is the binomial distribution Bρ,n. Throughout the
paper, we frequently need to bound Binomial distributions. For this we require
two different Chernoff bounds. Let x be distributed by χnρ .

1. It holds for any R ≥ 6ρn that Pr[|x| > R] < 2−R.

2. It holds for any 0 < δ < 1 that Pr[||x| − ρn| ≥ δρn] < 2e−δ
2ρn/3 .

Distributions of inner products For the decryption-algorithms of our schemes we
require that the inner-product of a Bernoulli-distributed vector x and a vector s
of small hamming weight is 0 with probability bounded away from 1/2. We will
thus show that the probability of the inner-product being 1 is sub-constant for
a proper choice of ρ. Let s ∈ Fn2 be a fixed vector and x be distributed by χnρ .
By a simple XOR-Lemma, it holds that

Pr[xT s = 1] =
1

2
· (1− (1− 2ρ)|s|),

i.e. the random variable xT s is distributed according to χρ′ with ρ′ = 1
2 · (1 −

(1− 2ρ)|s|). If it holds that ρ = ρ(n) = O(n−1/2−ε) for some constant ε > 0 and
|s| < γρn for some constant γ > 0, we get the following estimate for ρ′. By the
mean-value-theorem it holds for any p in the interval (0, e−1) that e−ep ≤ 1− p,
therefore we get

ρ′ =
1

2
·(1−(1−2ρ)|s|) ≤ 1

2
·(1−e−2eρ|s|) ≤ 1

2
·(1−e−2eγρ

2n) =
1

2
·(1−e−O(n−2ε)).

The last term is sub-constant in n, i.e. ρ′(n) = o(1). This means that for suffi-
ciently large n ρ′ is arbitrarily small.



Multiplication with random matrices We will now give bounds for how much the
hamming weight of a vector s increases when multiplied with a matrix X ∈ Fl×n2

chosen from χl×nρ . Let x be distributed by χnρ and the hamming-weight of s be

bounded by |s| < γρn. Then by the above ρ′ = Pr[xT s = 1] can be made an
arbitrarily small constant if ρ = O(n−1/2−ε). If X ∈ Fl×n2 is distributed by χl×nρ ,
then |Xs| is distributed by the Binomial-distribution Bρ′,l. The Chernoff-bound
thus yields that for any R ≥ 6ρ′l it holds that Pr[|Xs| > R] < 2−R. The volume
Vol2(γρn, n) of the hamming-ball of radius γρn in Fn2 is bounded by 2H2(γρ)n.
Thus, there are at most 2H2(γρ)n vectors s satisfying |s| < γρn. A union-bound
yields for any R ≥ 6ρ′l

Pr[∃s ∈ Fn2 : |s| < γρn and |Xs| > R] < 2H2(γρ)n · 2−R.

If l = Ω(n) and β > 0 it holds that

Pr[∃s ∈ Fn2 : |s| < γρn and |Xs| > βl] < 2−Ω(n),

as H2(γρ)n is sub-linear in n (i.e. o(n)) since ρ = O(n−1/2−ε).

Definition 1. Fix a constant β and ε = ε(n). We shall call a matrix X ∈ Fl×n2

(β, ε)-good, if for all s ∈ Fn2 with |s| < εn it holds that |Xs| ≤ βl.
The above now implies that for ρ = O(n−1/2−ε), any fixed β, γ > 0 and suffi-
ciently large n, a matrix X sampled from χl×nρ is (β, γρ)-good with overwhelming
probability in n.

2.3 Public Key Encryption

This Section is only meant to provide reference for the standard notions of
security for encryption schemes and can be safely skipped. Let k be a security
parameter.

Definition 2. A public key encryption scheme PKE is a tuple (KeyGen,Enc,Dec),
such that

– KeyGen(1k) is a PPT-algorithm that takes a security-parameter k and out-
puts a pair of public and private keys (pk, sk).

– Encpk(m) is a PPT-algorithm that takes a public key pk, a message m and
outputs a ciphertext c.

– Decsk(c) is an efficient deterministic algorithm taking as input a secret key
sk and a ciphertext c and outputs a plaintext m.

A standard-requirement for public key encryption is correctness.

Definition 3. We say that PKE = (KeyGen,Enc,Dec) is correct, if it holds for
all plaintexts m that

Pr[Decsk(Encpk(m)) 6= m : (pk, sk) = KeyGen(1k)] < negl(k).

The three security notions for public key encryption we are concerned with
in this paper are IND-CPA, IND-CCA1 and IND-CCA2 security. Let A be an
adversary.



Experiment: IND-CPA

– Generate a pair of keys (pk, sk) = KeyGen(1k). Run A on input pk.
– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).

Give input c∗ to A and continue its computation.
– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Experiment: IND-CCA1

– Generate a pair of keys (pk, sk) = KeyGen(1k). GiveA access to a decryption-
oracle Decsk(·) and run A on input pk.

– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).
Give input c∗ to A and continue its computation without access to the
decryption-oracle.

– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Experiment: IND-CCA2

– Generate a pair of keys (pk, sk) = KeyGen(1k). GiveA access to a decryption-
oracle Decsk(·) and run A on input pk.

– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).
Give input c∗ toA and continue its computation with access to the decryption-
oracle.

– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Definition 4. For X ∈ {CPA,CCA1, CCA2}, we say that the scheme PKE =
(KeyGen,Enc,Dec) is IND-X secure, if it holds for every PPT-adversary A that
AdvIND-X(A) = |Pr[IND-X(A) = 1]− 1/2| ≤ negl(k).

2.4 One-Time Signatures

We also briefly recall the definition of one-time signatures [Lam79]. Let k be a
security parameter.

Definition 5. A one-time signature scheme SIG is a tuple (Gen,Sign,Verify),
such that

– Gen(1k) is a PPT-algorithm that takes a security-parameter k and outputs a
pair of verification and signature keys (vk, sgk).

– Signsgk(m) is a PPT-algorithm that takes a signature key sgk, a message m
and outputs a signature σ.

– Verifyvk(m,σ) is a PPT-algorithm taking as input a verification key vk, a
message m and a signature c and outputs a bit b ∈ {0, 1}.
We require one-time signature schemes to be correct.

Definition 6. We say that SIG = (Gen,Sign,Verify) is correct, if it holds for all
messages m that

Pr[Verifyvk(m,Signsgk(m)) = 1 : (vk, sgk) = Gen(1k)] > 1− negl(k).

Moreover, we require existential unforgeability under one-time chosen mes-
sage attacks (EUF-CMA security), specified by the following experiment. Let A
be an adversary.



Experiment: EUF-CMA

– Generate a pair of keys (vk, sgk) = Gen(1k). Give A a access to a signing-
oracle Signsgk(·) that signs one message m∗ of A’s choice and then outputs
⊥ for any further signing-queries. Run A on input vk

– Once A outputs a pair (m,σ) with m 6= m∗, compute b = Verifyvk(m,σ) and
output b. Otherwise output 0.

Definition 7. We say that SIG = (Gen,Sign,Verify) is EUF-CMA secure, if it
holds for every PPT-adversary A that Pr[EUF-CMA(A) = 1] ≤ negl(k).

EUF-CMA secure one-time signature schemes can be constructed from any
one-way function [Lam79].

3 The Hardness-Assumption

The basic problem we will base the security of our scheme upon is a variant of
the decisional learning parity with noise (LPN) problem. Roughly speaking, the
LPN problem asks to distinguish a number of noisy samples of a linear function
(specified by a secret vector x) from uniform random. The variant considered here
differs from the standard LPN problem in two aspects. First, the distinguisher
is provided only linear number of samples, rather than an arbitrary polynomial
number. Second, the noise-level in this variant is significantly lower than in the
standard LPN problem. While the standard LPN problem comes with an error-
distribution that flips each output-bit with a small, but constant probability, for
this variant the probability is sub-constant. More precisely, we will work with a
bit-flip probability of the order O(n−1/2−ε) for some small constant ε. Here, n
is the size of the secret x in bits.

Problem 1. Let n ∈ N be a problem parameter, m = O(n) and ε > 0 and
ρ = ρ(n) = O(n−1/2−ε). Let A ∈ Fm×n2 be chosen uniformly at random, x ∈ Fn2
be chosen uniformly at random and e according to χmρ . The problem is, given A
and y, to decide whether y is distributed according to Ax+e or chosen uniformly
at random.

Currently, the best classical algorithms to attack Problem 1 require time

of the order 2Ω(n1/2−ε) [Ste88,CC98,MMT11,BLP11,BJMM12]. Moreover, there
are no quantum algorithms known performing significantly better than the best
classical algorithms. In our constructions we will choose n by n = O(k2/(1−2ε)),
where k is the security parameter. This normalizes the hardness of Problem 1 to
2Θ(k). Thus, we choose ρ by ρ(k) = O(k−(1+2ε)/(1−2ε)). In the full version of this
paper, we provide a reduction establishing the hardness of problem 1 based on the
hardness-assumption used in [Ale03], which uses a different error-distribution.
It will be necessary to use a normal-form (as in [ACPS09]) of Problem 1 in our
cryptographic constructions, which is stated in Problem 2. In this normal-form,
the secret x is drawn from the noise-distribution χnρ .



Problem 2. Let n ∈ N be a problem parameter, m = O(n), ε > 0 and ρ =
O(n−1/2−ε). Let A ∈ Fm×n2 be chosen uniformly at random, x be distributed
according to χnρ and e be distributed according to χmρ . The problem is, given A
and y, to decide whether y is distributed according to Ax+e or chosen uniformly
at random.

The hardness of Problem 2 can be established by a simple reduction from
Problem 1, given in the full version of this paper. By a simple hybrid-argument,
it follows that that a matrix-version of problem 2 is also hard.

Problem 3. Let n ∈ N be a problem parameter, m, k = Θ(n), ε > 0 and
ρ = O(n−1/2−ε). Let A ∈ Fn×k2 be chosen uniformly at random, T ∈ Fm×n2

be distributed according to χm×nρ and X be distributed according to χm×kρ . The
problem is, given A and B, to decide whether B is distributed according to
TA+X or chosen uniformly at random in Fm×k2 .

In the security-proof for our schemes, we will use Problem 3 to establish
pseudorandomness of the public keys, while we use Problem 2 to establish pseu-
dorandomness of the ciphertexts.

4 Outline of the Techniques

In this Section, we will outline the techniques used to construct an IND-CCA1
secure scheme based on the hardness of Problem 2 and Problem 3. We will
provide the full presentation in the subsequent sections. Let henceforth ρ =
O(n−1/2−ε) for a small constant ε > 0.

We will start with a rough outline of a scheme that encrypts single bits
and has a substantial decryption-error. On a technical level, this first building
block resembles the schemes of Regev [Reg05] and the Dual-Regev Scheme of
Gentry et al. [GPV08] (which both live in the LWE realm). Public keys for our
scheme are pairs (A, bT ), where A ∈ Fl1×n2 is chosen uniformly at random and
bT = tTA + xT with t ∈ Fl12 is distributed by χl1ρ and x ∈ Fn2 by χnρ . The

secret key is tT . To encrypt a message m ∈ F2, sample s according to χnρ , e1
according to χlρ and e2 according to χρ. Compute c = (As + e1, b

T s + e2 + m)

and output c. To decrypt a ciphertext c = (c1, c2), compute y = c2 − tT c1 and
output y. The output y is a noisy version of the plaintext m, since it holds that
y = c2−tT c1 = bT s+e2+m−tT (As+e1) = m+tTAs+xT s+e2−tTAs−tT e1 =
m + xT s + e2 − tT e1. By the properties of the distribution χρ, the error-term
v = xT s + e2 − tT e1 is 0 with probability bounded away from 1/2, i.e. it holds
y = m with substantial probability.

This decryption-error can be dealt with by encoding m (which is now a bit-
vector of length n) using an error-correcting code as follows. Let G ∈ Fl2×n2 be
the generator-matrix of a binary linear error-correcting code C. The modified
scheme works as follows. Public keys are of the form (A,B) with A as above
and B = TA + X, where T is chosen from χl2×l1ρ and X from χl2×nρ . The
secret key is T . Messages m ∈ Fn2 are encrypted as c = (As + e1, Bs + e2 +



Gm), with s, e1, e2 sampled from the corresponding χρ distributions. Decryption
computes y = c2 − Tc1 = Gm + Xs + e2 − Te1. Since the matrices T and X
were chosen from a χρ distribution, they are good (as defined in Section 2.2)
with overwhelming probability. Thus the error-term v = Xs+e2−Te1 has a low
hamming-weight and we can use the decoding-procedure of C to recover m. The
IND-CPA security of this scheme follows easily by the hardness of Problem 2
and Problem 3. However, we will require a witness-recovering IND-CPA scheme
for the construction of our IND-CCA scheme. A scheme is witness recovering if
the decryption recovers the randomness used to encrypt. For the above scheme
however, the vector s is ”lost” during decryption. We circumvent this problem
by using some sort of key-encapsulation. Instead of encrypting a plaintext-vector
m using the above scheme, we encrypt the witness s (which has the same size
as m). We will then use another instance of Problem 2 to encrypt the plaintext
m (using s as symmetric key). Encrypting the witness s instead of m will not
harm security. By Problem 3, the matrix B is pseudorandom. Therefore, the
matrix B + G is also pseudorandom. Thus, the second part of the ciphertext
c2 = Bs+e2 +Gs = (B+G)s+e2 is also pseudorandom by Problem 2. Observe
that we do not need the entire secret key T to recover s from a ciphertext c.
Let y = c2 − Tc1 = Gs + Xs + e2 − Te1. To recover the i-th component yi
of y, we merely need the i-th row tTi of the matrix T . If we posses a sufficient
amount of the rows of T , yet not all of them, we can still recover s by computing
yi for all the i for which tTi is known and setting yi = ⊥ (erasure) otherwise.
We can now recover s by performing a combined error- and erasure-correction
on y using the decoding algorithm of C. If it is guaranteed that the number of
erasures is very low, we can simply set all erasures to random values (thereby
introducing a few additional random errors) and use the standard decoding-
algorithm DecodeC of C. Micciancio and Peikert [MP12] recently used a very
similar witness-recovering mechanism in their construction of an improved LWE-
based IND-CCA2 scheme. While our construction uses off-the-shelf binary error-
correcting codes to encode the witness s, they needed to construct a special
family of lattices for this purpose. These lattices have a short dual basis and
an efficient decoding algorithm, thus they can be seen as a euclidean analogue
to efficiently decodable error-correcting codes with large minimum distance. We
can now give an outline of our IND-CCA1 construction. It is an adoption of the
all-but-one simulation-paradigm [PW08,RS09] to the special structure of our
CPA scheme. The key-generation samples not just one, but q (for a constant q)
matrices B1, . . . , Bq and T1, . . . , Tq. Encryption first samples a tag τ , then derives
an instance-public-key Bτ from B1, . . . , Bq. It further proceeds as the INC-CPA
variant using the matrix Bτ instead of B. The ciphertext is (τ, c). Decryption
takes the tag τ , derives an instance secret-key Tτ and uses Tτ to decrypt c. After
recovering the random coins it checks whether they suffice a certain hamming-
weight criterium. If not, it aborts, otherwise it outputs the plaintext m. The
instance-key derivation will assemble the matrix Bτ by picking certain rows from
the matrices B1, . . . , Bq depending on the tag τ . In the security proof, there will
be a single tag τ∗ for which the simulator is completely oblivious of the instance-



secret key Tτ∗ (this is the tag where the IND-CPA challenge will be embedded).
For all other tags, the simulator needs to be able to simulate a decryption-oracle.
This means that no other instance-secret-key Tτ should share too many rows with
Tτ∗ . If this is the case, the simulator will be able to use an incomplete secret key
to answer decryption-queries by the above observation. To guarantee that the
instance-secret-keys Tτ have small overlap with one another, we will use a q-ary
error-correcting encoding for the tags τ . This simulation-strategy requires that
the hamming-weight of the ciphertext-noise satisfies a certain bound, otherwise
the simulator is unable to correct the additional erasure caused by the incomplete
secret key. This is the reason why the decryption needs to check the hamming-
weight of the witnesses. The IND-CCA2 construction is obtained by replacing the
randomly chosen tags τ with the verification keys of a one-time signature scheme
and appending an according signature to the ciphertext. This transformation has
been used in several contexts to obtain CCA2 secure encryption from different
primitives [DDN00,CHK04,PW08,RS09,DMQN09]. The encryption primitives
admitting such a transformation can be generalized under the notion of tag-
based encryption schemes [Kil06].

5 The IND-CPA Scheme

In this Section we will provide the full construction of an IND-CPA secure en-
cryption scheme. We will use this scheme in the construction of our CCA1 secure
scheme.

Let k be a security parameter, n ∈ O(k2/(1−2ε)), l1, l2, l3 ∈ O(k2/(1−2ε)) and
ρ = O(k−(1+2ε)/(1−2ε)). Let G ∈ Fl2×n2 be the generator-matrix of a binary linear
error-correcting code C and DecodeC an efficient decoding procedure for C that
corrects up to αl2 errors (for a constant α). Further let D ⊆ Fl32 be a binary error-
correcting code with efficient encoding EncodeD and error-correction DecodeD
that corrects up to λl3 errors.

Construction 1 The scheme PKE1 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Sample matrices A ∈ Fl1×n2 and C ∈ Fl3×n2 uniformly at ran-
dom, sample the matrix T from χl2×l1ρ and the matrix X from χl2×nρ . Set
B = G+ T ·A+X. Set pk = (A,B,C) and sk = T . Output (pk, sk).

– Encpk(m): Takes a public key pk = (A,B,C) and a plaintext m ∈ Fn2 as
input, samples s from χnρ , e1 from χl1ρ , e2 from χl2ρ and e3 from χl3ρ . It sets
c1 = A · s + e1, c2 = B · s + e2 and c3 = C · s + e3 + EncodeD(m). Output
c = (c1, c2, c3).

– Decsk(c): Takes a secret key sk = T and a ciphertext c = (c1, c2, c3) as input.
Computes y = c2 − T · c1 and s = DecodeC(y). Outputs ⊥ if decoding fails.
Otherwise computes m = DecodeD(c3 − C · s) and outputs m.

We will now show that this scheme is correct, i.e. the probability that a
decryption-error occurs is negligible in k.

Lemma 1. The scheme PKE1 is correct.



Proof. Decryption only fails if one of the two decoding operations fails. We will
thus bound the probability of failure for both decoding operations. It holds that

y = c2 − T · c1 = B · s+ e2 − T (A · s+ e1) = G · s+X · s+ e2 − T · e1.

Thus, it is sufficient to bound the hamming-weight of the error-term v = X ·
s+ e2 − T · e1. Fix constants β, γ > 0 such that 2β + γρ < α and γρ < λ. By a
Chernoff-bound, it holds that |s| < γρn, e1 < γρl1, e2 < γρl2 and e3 < γρl3 with
overwhelming probability in k. The decoding procedure DecodeC can correct up
to αl2 errors. With overwhelming probability in k, both matrices X and T are
(β, γρ)-good (see Section 2.2). Thus it holds that |Xs| < βl2 and |Te1| < βl2
(for sufficiently large k). All together, it holds that

|v| ≤ |Xs|+ |e2|+ |Te1| ≤ 2βl2 + γρl2 < αl2.

Therefore, the decoding-procedure DecodeC will successfully recover s. Moreover,
DecodeD will successfully recover m as |e3| < γρ · l3 < λl3.

We now turn to proof IND-CPA security of the scheme PKE1.

Theorem 1. Assume that Problem 2 is hard. Then the scheme PKE1 is IND-
CPA secure.

Proof. Let A be PPT-bounded IND-CPA adversary against PKE1. Consider the
following sequence of games.

– Game 1: This is the IND-CPA experiment.
– Game 2: This is the same as game 1, except that during key-generation, the

matrix B is chosen uniformly at random by the experiment.
– Game 3: The same as game 2, except that during encryption of the challenge-

ciphertext, c∗ = (c∗1, c
∗
2, c
∗
3) is chosen uniformly at random.

Clearly, A’s advantage of winning game 3 is zero, as the challenge-ciphertext
c∗ is statistically independent of the challenge bit b chosen by the experiment.
It remains to show that the views of A are computationally indistinguishable
in game 1, 2 and 3. For contradiction, assume that A distinguishes game 1 and
game 2 with non-negligible advantage ν1(n). We will construct a distinguisher
B1 that distinguishes the distributions (A, T ·A+X) and (A,U) with advantage
ν1(k), contradicting the hardness of Problem 3. The input of B1 is an instance
(A†, B†). B1 simulates the interaction with A in the same way as game 1 does,
except for the key generation step. Instead of generating A and B as in game 1, it
sets A = A† and B = G+B†. After the simulation terminates, B1 outputs what-
ever A outputs. Clearly, if (A†, B†) is chosen according to (A, T ·A+X), then A’s
view in B1’s simulation is identically distributed as in game 1. On the other hand,
if (A†, B†) is distributed according to (A,U), then A’s view in B1’s simulation
is identical to game 2. Thus it holds that |Pr[B1(A, TA+X)]−Pr[B1(A,U)]| =
|Pr[viewA(Game1)] − Pr[viewA(Game2)]| ≥ ν1(k), which contradicts the hard-
ness of Problem 3. Now assume that A distinguishes between game 2 and game



3 with non-negligible advantage ν2(k). We will construct a distinguisher B2 that
distinguishes the distributions (M,Ms + e) and (M,u) with advantage ν2(k),
contradicting the hardness of Problem 2. Let the input of B2 be (M, r), where

M ∈ F(l1+l2+l3)×n
2 and r ∈ Fl1+l2+l32 . B2 first partitions M in three matri-

ces M1 ∈ Fl1×n2 , M2 ∈ Fl2×n2 and M3 ∈ Fl3×n2 . Likewise, it partitions r into
r1 ∈ Fl12 , r2 ∈ Fl22 and r3 ∈ Fl32 . B2 simulates the interaction with A exactly
like game 2, except for two details. In the key-generation step, it sets A = M1,
B = M2 and C = M3. Moreover, the challenge-ciphertext c∗ = (c∗1, c

∗
2, c
∗
3) by

c∗1 = r1, c∗2 = r2 and c∗3 = r3 + EncodeD(mb). After the simulation termi-
nates, B1 outputs whatever A outputs. Clearly, if (M, r) is chosen according to
(M,Ms + e), then A’s view is identically distributed to game 2. On the other
hand, if (M, r) is distributed according to (M,u), then A’s view is identically dis-
tributed to game 3. Therefore, it holds that |Pr[B2(M,Ms+e)]−Pr[B2(M,u)]| =
|Pr[viewA(Game2)]−Pr[viewA(Game3)]| ≥ ν2(k), which contradicts the hardness
of problem 2. This concludes the proof.

6 The IND-CCA1 Scheme

In this Section, we will construct an IND-CCA1 scheme based on the scheme
PKE1 constructed in the last section. We will extend the encryption and de-
cryption algorithms with an instance-key derivation step, that assigns a tag to
each ciphertext and derives an instance public or secret key for each tag. These
instance-keys will be used as keys for PKE1. Moreover, we need to ensure that
decryption only outputs a plaintext if an incomplete key would have already
been sufficient to decrypt. Decryption therefore checks if the hamming-weight
of the randomness used to encrypt is small enough. When the scheme is used
honestly, this is the case with overwhelming probability. As in the last section,
let k be a security parameter, n ∈ O(k2/(1−2ε)), l1, l2, l3 ∈ O(k2/(1−2ε)) and
ρ = O(k−(1+2ε)/(1−2ε)). Let G ∈ Fl2×n2 be the generator-matrix of a binary lin-
ear error-correcting code C and DecodeC an efficient decoding procedure that
corrects up to αl2 errors (for a constant α). Let D ⊆ Fl32 be a binary error-
correcting code with efficient encoding EncodeD and error-correction DecodeD
as before. Let E ⊆ Σl2 be a q-ary code over the alphabet Σ (with q = |Σ|) with
relative minimum-distance δ and dimension n. Such a code can be generated ran-
domly (see Section 2.1). We will now explain how the parameters δ and q must
be chosen. Recall that DecodeC corrects up to αl2 errors. As explained earlier, α
must be big enough to correct the decryption-error, which has hamming-weight
less than (2β + γρ)l2 (for any constant β > 0). As the additional error induced
by erasures will have hamming weight ≤ (1 − δ)l2, it is sufficient to choose δ
(which must be smaller than 1− 1/q) such that 2β + γρ+ 1− δ < α. As we can
choose β and γ arbitrarily small, we can always find q and δ such that the above
is met. Therefore, fix β, γ, q and δ such that for sufficiently large n it holds that
2β+γρ+ 1− δ < α. We can choose the constant β arbitrarily small and it holds
that γρ ∈ o(1). There exist constructions of efficiently decodable linear codes
C such that α is slightly larger than 1/400 [Zém01]. Thus we can choose q as



small as q > 1/(α − 2β − γρ) > 400. We remark that this might be drastically
improved if a more sophisticated joint error-and-erasure correction mechanism
than ours was used. Our naive mechanism simply treats erasures as errors, but
there might be much more efficient mechanism, maybe allowing to choose q as
small as 2.

Construction 2 The scheme PKE2 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Sample matrices A ∈ Fl1×n2 and C ∈ Fl3×n2 uniformly at ran-
dom. For every j ∈ Σ sample a matrix Tj from χl2×l1ρ and a matrix Xj from

χl2×nρ . Set Bj = G+Tj ·A+Xj. Set pk = (A, (Bj)j∈Σ , C) and sk = (Tj)j∈Σ.
Output (pk, sk).

– Encpk(m): Takes a public key pk = (A, (Bj)j∈Σ , C) and a plaintext m ∈ Fn2
as input. Write each Bj as Bj = (bj,1, . . . , bj,l2)T (The bTj,i are the rows of
Bj). Sample a tag τ ∈ Σn uniformly at random and set τ̂ = EncodeE(τ). It
then sets Bτ̂ = (bτ̂1,1, . . . , bτ̂l2 ,l2)T , i.e. the i-th row of Bτ̂ is bτ̂i,i. Encryption

now samples s from χnρ , e1 from χl1ρ , e2 from χl2ρ and e3 from χl3ρ . It sets
c1 = A · s+ e1, c2 = Bτ̂ · s+ e2 and c3 = C · s+ e3 + EncodeD(m). Output
c = (τ, c1, c2, c3).

– Decsk(c): Takes a secret key sk = (Tj)j∈Σ and a ciphertext c = (τ, c1, c2, c3)
as input. Write each Tj as Tj = (tj,1, . . . , tj,l2)T (The tTj,i are the rows of

Tj). Then it computes τ̂ = EncodeE(τ) and Tτ̂ = (tτ̂1,1, . . . , tτ̂l2 ,l2)T . Next it
computes y = c2 − Tτ̂ · c1 and s = DecodeC(y). Outputs ⊥ if decoding fails.
Otherwise compute m = DecodeD(c3−C ·s). Now it computes e1 = c1−A ·s,
e2 = c2−Bτ̂ · s, e3 = c3−C · s−EncodeD(m) and checks whether |s| < γρn,
|e1| < γρl1, |e2| < γρl2 and |e3| < γρl3. If yes it outputs m, otherwise ⊥.

Correctness of PKE2 follows immediately from the correctness of PKE1. The
only additional step is the check of the hamming weights |s|, |e1|, |e2| and |e3|.
However, this has been dealt with implicitly in Lemma 1. We will now prove
IND-CCA1 security for the scheme PKE2.

Theorem 2. The scheme PKE2 is IND-CCA1 secure, provided that the scheme
PKE1 is IND-CPA secure and the parameters α, β, γ, q and δ suffice δ < 1−1/q
and 2β + γρ+ 1− δ < α.

Proof. Let A be PPT-bounded IND-CPA adversary against PKE2. Consider the
following sequence of games.

– Game 1: This is the IND-CCA1 experiment.
– Game 2: This is the same as game 1, except that the tag τ∗ of the challenge-

ciphertext c∗ = (τ∗, c∗1, c
∗
2, c
∗
3) is chosen before the experiment starts, and

game 2 aborts if A sends a decryption-query with tag τ∗.
– Game 3 This is the same as game 2, except that the decryption-oracle

is implemented differently. For a decryption-query c = (τ, c1, c2, c3) the
decryption-oracle proceeds as follows. Let τ̂ = EncodeE(τ). For all i ∈
{1, . . . , l2} with τ̂i 6= τ̂∗i , it computes yi = c2,i − tTτ̂i,ic1. For all remaining



i it chooses yi uniformly at random. The decryption-oracle then continues
like in game 2, computing s = DecodeC(y) (and aborts if decoding fails)
and m = DecodeD(c3 − C · s), setting e1 = c1 − A · s, e2 = c2 − B · s,
e3 = c3 − C · s − EncodeD(m) and checking whether |s| < γρn, |e1| < γρl1,
|e2| < γρl2 and |e3| < γρl3. If yes it outputs m, otherwise ⊥.

In game 2, the event that A sends a decryption-query with tag τ∗ has prob-
ability at most f(k)/qn = negl(k), where f(k) is a polynomial upper bound for
the number of decryption-queries A makes. If this event does not occur, game 1
and game 2 are identically distributed from A’s view. Thus, from A’s view game
1 and game 2 are statistically indistinguishable. We will now show that game
2 and game 3 are statistically indistinguishable from A’s view. First, assume
that for every tag τ the matrices Tτ̂ and Xτ̂ are (β, γρ)-good. If this is the case,
we claim that the decryption oracles of game 2 and game 3 behave identical.
We split the claim in two cases. The first case is simple: If either |s| ≥ γρn,
|e1| ≥ γρl1, |e2| ≥ γρl2 or |e3| ≥ γρl3, then the decryption oracle will return
⊥ in both games, regardless whether decoding fails or not. In the other case it
holds that |s| < γρn, |e1| < γρl1, |e2| < γρl2 and |e3| < γρl3. Now it holds that
the hamming-weight of the error-term v = Xτ̂ · s+ e2 − Tτ̂ · e1 will be bounded
by 2βl2 + γρl2. Thus, in game 2 the decoding-algorithm DecodeC has to correct
at most (2β + γρ)l2 < αl2 and will thus be successful and output the unique
s. In game 3, there might be up to (1 − δ)l2 additional errors DecodeC has to
deal with, as the decryption oracle chooses up to (1 − δ)l2 components of the
codeword y at random. However, since (2β + γρ+ 1− δ)l2 < αl2 the decoding-
algorithm DecodeC will also succeed in game 3 and output the unique s. This
concludes the claim. What remains to show for this part of the proof is that,
with overwhelming probability in k, it holds that for every tag τ the matrices Tτ̂
and Xτ̂ are (β, γρ)-good. We can think of each matrix Tτ̂ as a row-sub-matrix of

a large matrix Tfull ∈ Fql2×n2 that consists of all the rows of all Ti for i ∈ Σ (i.e.
Tfull is just the vertical concatenation of all Ti). With overwhelming probability
in k, Tfull is (β/q, γρ)-good (since q is constant). This means that for each e1
with |e1| < γρl1 it holds that |Tfulle1| < β/q · (ql2) = βl2. However, as each
Tτ̂ is a row-sub-matrix of Tfull, it also holds that |Tτ̂e1| < βl2. Showing that
|Xτ̂s| < βl2 works analogously, which concludes this part of the proof. Finally,
A’s advantage of winning game 3 is negligible in k, given that PKE1 is IND-
CPA secure. Assume for contradiction that A wins game 3 with non-negligible
advantage ν(k). We will construct an IND-CPA adversary B against PKE1 that
wins the IND-CPA experiment with advantage ν. B’s input from the IND-CPA
experiment is a public key pk′ = (A′, B′, C ′) for the scheme PKE1. B now runs
the key-generation of game 3 with the following modifications. Instead of sam-
pling the matrices A and C uniformly at random, it sets A = A′ and C = C ′.
Now it generates the Bj and Tj exactly like the key-generation in game 3. Then
however, it replaces the public-key at the locations that constitute Bτ̂ with B′,
i.e. it sets bTτ̂i,i = b′i

T
for i = 1, . . . , l2. B. Then it simulates the interaction be-

tween A and game 3, answering decryption-queries like game 3. This is possible,
as game 3 never uses secret keys tτ̂i,i (that correspond to public keys bτ̂i,i) to



answer decryption queries. Once A sends challenge messages (m0,m1), B for-
wards (m0,m1) to the IND-CPA experiment and receives a challenge-ciphertext

c† = (c†1, c
†
2, c
†
2). B sends c∗ = (τ∗, c†1, c

†
2, c
†
2) to A and continues the simulation.

Once A terminates, B outputs whatever A outputs. From A’s view, B’s simu-
lation and game 3 are perfectly indistinguishable, as the distributions of A and
C are the same, as well as the distribution of the partial public keys bTj,i, which
are independent of one another (only depending on the same A). Moreover, the
decryption-oracle behaves identically in both experiments. Therefore, it holds
that AdvIND-CPA(B) = AdvIND-CCA1(A) = ν(k) which contradicts the IND-CPA
security of scheme PKE1.

7 The IND-CCA2 Scheme

We will now provide details how the scheme PKE2 can be transformed into an
IND-CCA2 secure scheme PKE3 using additional one-time signatures. We follow
an approach by Dolev, Dwork and Naor [DDN00], which has been used in sev-
eral other constructions [PW08,Pei09,RS09,DMQN09,MP12], especially in the
world of lattice and coding assumptions, to achieve full CCA2 security. First
observe that it is not necessary to choose the tag τ ∈ Σn uniformly at ran-
dom in the encryption procedure of PKE2. We only need to guarantee that a
PPT-adversary A will have negligible probability guessing the secret tag τ∗ cor-
rectly if it is granted a polynomial number of trials (this immediately yields
the statistical indistinguishability of game 1 and game 2 in Theorem 2). Thus
it is sufficient to sample the tags τ from a distribution with high min-entropy.
Moreover, observe that the proof of Theorem 2 still holds if we allow A to
make decryption-queries even after it has received the challenge-ciphertext c∗.
This can be seen by noting that the decryption-oracle in game 3 can answer
decryption-queries with τ 6= τ∗ regardless of whether the challenge-ciphertext
has been given to A or not (decryption-queries with τ = τ∗ are rejected un-
conditionally). In fact, the decryption-oracle in game 3 is oblivious of whether
the challenge-ciphertext has been given to A or not. Thus, the scheme PKE2

can be recast as a tag-based encryption scheme [Kil06]. We will now outline
PKE3. Let SIG = (Gen,Sign,Verify) be an EUF-CMA secure one-time signature
scheme. For simplicity, assume that the verification-keys vk of SIG are elements
of Σn (this can always be accomplished by encoding vk in the q-ary alphabet
Σ and choosing n large enough). The key-generation of PKE3 is identical to the
key-generation of PKE2. The encryption procedure PKE3.Enc first computes a
pair of verification and signature-keys (vk, sgk) = SIG.Gen(1k). Then it runs the
encryption procedure PKE2.Enc, with the difference that it sets τ = vk instead
of choosing τ uniformly at random. Let c′ be the output of PKE2.Enc. PKE3.Enc
then computes σ = SIG.Signsgk(c′) and outputs the ciphertext c = (c′, σ). The
decryption procedure PKE3.Dec first checks if σ is a valid signature on c′ using
the verification-key vk = τ (where τ is the tag given in c′). If the check succeeds,
it runs the decryption procedure PKE2.Dec on the ciphertext c′ and outputs
whatever PKE2.Dec outputs. We summarize this in the following construction.



Let Enc′pk(m, vk) be a procedure that does exactly the same as PKE2.Encpk(m),
but sets τ = vk instead of choosing τ uniformly at random.

Construction 3 The scheme PKE3 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Compute (pk, sk) = PKE2.KeyGen(1k) and output (pk, sk).
– Encpk(m): Generate (vk, sgk) = SIG.Gen(1k), encrypt c′ = Enc′pk(m, vk),

sign σ = SIG.Signsgk(c′) and output c = (c′, σ).
– Decsk(c): Let c = (c′, σ) and c′ = (τ, c1, c2, c3). Set vk = τ . Check if

SIG.Verifyvk(c′, σ) = 1, if not abort. Otherwise compute m = PKE2.Decsk(c′)
and output m.

Theorem 3. The scheme PKE3 is IND-CCA2 secure, provided that SIG is an
EUF-CMA secure one-time signature scheme and the same requirements as in
Theorem 2 are given.

Proof. (Sketch) Let A be PPT-bounded IND-CCA2 adversary against PKE3.
It suffices to show that with overwhelming probability, every decryption-query
by A tagged with τ∗ (the tag of the challenge-ciphertext) is rejected. Thus, we
can recycle the proof of Theorem 5 almost entirely, we only need to replace the
indistinguishability of game 1 and game 2 in the proof of Theorem 2. The rest
of the proof is identical. Consider the following two games.

– Game 1: This is the IND-CCA2 experiment.
– Game 2: This is the same as game 1, except that the tag τ∗ of the challenge-

ciphertext c∗ = (τ∗, c∗1, c
∗
2, c
∗
3, σ
∗) is generated before the experiment starts,

and game 2 aborts if A sends a decryption-query with tag τ∗.

Assume that A distinguishes between game 1 and game 2 with non-negligible
advantage ν(k). Clearly, given that the decryption-oracle rejects every decryption-
query tagged with τ∗, both games are identically distributed from A’s view.
Thus, to distinguish game 1 and game 2 A must generate a decryption-query
tagged with τ∗ that is accepted by the decryption-oracle. This implies that such
a decryption-query c = (c′, σ) with c′ = (τ∗, c1, c2, c3) suffices the condition
SIG.Verifyvk(c′, σ) = 1, where vk = τ∗. Thus we can assume that A gener-
ates such a decryption-query with probability ν(k). We construct an EUF-CMA
adversary B that breaks the EUF-CMA security of SIG with probability ν(k).
Let vk be the verification key provided to B by the EUF-CMA experiment. B
simulates game 2 with A, but makes the following changes. Instead of gener-
ating the tag τ∗ itself, it sets τ∗ = vk. Moreover, B obtains the signature σ∗

of the challenge-ciphertext c∗ by querying its signature-oracle with c′
∗
, where

c′
∗

= Enc′pk(mb, vk). Finally, once A sends a decryption-query c = (c′, σ) with
c′ = (τ∗, c1, c2, c3) and SIG.Verifyvk(c′, σ) = 1, B outputs (c′, σ) an terminates.
Clearly, game 2 and the simulation of B are identically distributed from the
view of A. Thus, the event that A sends a decryption-query c = (c′, σ) with
c′ = (τ∗, c1, c2, c3) and SIG.Verifyvk(c′, σ) = 1 happens with probability ν(k) in
B’s simulation. This means that B outputs a valid forged signature with proba-
bility ν(k), contradicting the EUF-CMA security of SIG.



8 Conclusion

In this work we constructed the first IND-CCA2 secure public key encryption
scheme based solely on the hardness of a low-noise variant of the learning parity
with noise problem. To achieve this, we introduced a novel all-but-one simula-
tion technique. This new technique enabled the construction of a CCA1 secure
scheme, which is more efficient than any previous such construction based on
the correlated-products approach. The scheme enjoys a constant-factor cipher-
text expansion as well as asymptotically efficient key-generation, encryption and
decryption.
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