
Certifying RSA

Saqib A. Kakvi, Eike Kiltz, and Alexander May

Faculty of Mathematics
Horst-Görtz Institute for IT Security
Ruhr-University Bochum, Germany

{saqib.kakvi,eike.kiltz,alex.may}@rub.de

Abstract. We propose an algorithm that, given an arbitrary N of un-

known factorization and prime e ≥ N
1
4
+ε, certifies whether the RSA

function RSAN,e(x) := xe mod N defines a permutation over Z∗N or not.
The algorithm uses Coppersmith’s method to find small solutions of poly-
nomial equations and runs in time O(ε−8 log2N). Previous certification
techniques required e > N .

Keywords: RSA, certified trapdoor permutations, Coppersmith.

1 Introduction

One of the most well known cryptographic primitives is the RSA function [25].
Given a public modulus N (which is usually the product of two primes) and
an exponent e, it is defined as RSAN,e : Z∗N → Z∗N , x 7→ xe mod N . It is well
known that the RSA function defines a permutation over the domain Z∗N iff
gcd(e, ϕ(N)) = 1. Furthermore, with the right choice of parameters, the RSA
function even defines a trapdoor permutation since the prime factorization of N
allows to efficiently invert RSAN,e.

Trapdoor permutations have many applications to public-key cryptosystems
and serve as a building block for (often quite complex) cryptographic proto-
cols. In a large number of applications of trapdoor functions, the fact that the
function is a permutation is required to be publicly verifiable. The importance
of trapdoor permutations with an efficient permutation checking procedure was
first noted by Bellare and Yung [2,3], who called them certified trapdoor permu-
tations. Certified trapdoor permutations are in particular important in scenarios
where one party (for example, the prover) sends a description of a trapdoor per-
mutation to another party (for example, the verifier). A dishonest prover may
send a malicious description of a trapdoor function which is not a permuta-
tion. If this remains unnoticed by the verifier, it may allow the prover to cheat
in the protocol. See Section 1.2 for a list of applications of certified trapdoor
permutations.

RSA as a certified trapdoor permutation. The question whether the
RSA function is a certified trapdoor permutation was first addressed by Bellare
and Yung who wrote in [2,3]:

In particular, RSA is (probably) not certified [...]. This is because [...]
the (description of) the trapdoor permutation f includes a number which
is a product of two primes, and there is (probably) no polynomial time
procedure to test whether or not a number is a product of two primes.

To overcome this problem, Bellare and Yung showed that every trapdoor permu-
tation can be transformed into a certified trapdoor permutation by presenting
pre-images (under the function) of random elements specified in a common refer-
ence string (CRS), hence certifying that the function is (almost) a permutation.
While this result is certainly interesting at a theoretical level, the Bellare-Yung
transformation has two main disadvantages. First, it comes with an additional
computational overhead (consisting of a number of evaluations of the function)
and is therefore relatively inefficient. Second, in order to keep the same data
structures one would rather prefer that the initial trapdoor function (e.g., RSA)
can be certified directly, without any additional overhead such as a CRS or
pre-images. Related transformations for RSA were proposed in [14,6,7].

Subsequently, two results were obtained about the direct certifiability of RSA,
i.e., without using a CRS and expanding the public description. First, [5,20]
observed that if e > N and e is prime, then the RSA function RSAN,e is a
certified permutation. (This is, since if e is a prime, then it can never divide
ϕ(N) < N and hence gcd(e, ϕ(N)) = 1.) However, choosing e > N is usually
avoided in practice due to the costs for modular exponentiation. Second, Kiltz
et al. [19] noted that if e < N1/4, then RSAN,e is a lossy trapdoor permutation
[24] (under the phi-Hiding Assumption [5]) and hence it cannot be certified.
This is because a lossy trapdoor permutation is in some sense the opposite
of a certified trapdoor permutation: a honestly generated (N, e) with N = pq
and gcd(e, ϕ(N)) = 1 cannot be efficiently distinguished from (N, e) for which
RSAN,e is many-to-1 and hence not a permutation.

To summarize, if e < N1/4, then the RSA function is lossy and cannot be
certified (unless the phi-hiding assumption is wrong); if e > N , then it is certified
[5,20]; if N1/4 < e < N , nothing is known and therefore generic Bellare-Yung
NIZK proofs [3] have to be added to certify RSA.

1.1 Our Results

In this work we close the above gap by showing an efficient certification proce-
dure that works for any prime exponent e > N1/4. Concretely, we construct an
algorithm that, given an arbitrary modulus N (with unknown factorization) and
a prime e ≥ N1/4+ε, returns 1 iff RSAN,e defines a permutation over Z∗N . The
running time of the algorithm is O(ε−8 log2(N)) bit operations plus additional
O(log4N) if e needs to be checked for primality.

Our Certification Algorithm. The idea of our new certification algorithm
is as follows. The RSAN,e function defines a permutation over Z∗N iff e does not
divide ϕ(N). Hence given N, e, our goal is to identify if gcd(e, ϕ(N)) = 1 or
not. First, we use Coppersmith’s algorithm [8,21] to find prime divisors p of N

in a specific range. Concretely, our algorithm FindFactor run with parameter β
successfully identifies if a given prime e > N1/4+ε divides p − 1 iff there exists
a divisor p of N in the range [Nβ , Nβ2+1/4+ε]. If we could assume that N = pq
is the product of two primes, both of size roughly N1/2, then we could run
FindFactor with parameter β = 1/2 to identify whether e divides ϕ(N) or not.
However, the certification algorithm has to view N as an arbitrary integer with
unknown factorization. If N = pq with p ≈ N2/3 and q ≈ N1/3, then FindFactor
run with parameter β = 1/2 does not work any more. To get around this, we run
the FindFactor algorithm multiple times (with different parameters β) to check
for various ranges of the prime factors of N . Our main technical contribution is to
show that the number of invocations of FindFactor in our certification algorithm
is poly(ε) if e ≥ N1/4+ε.

Extensions. Our certification algorithm works only for prime e but it can be
extended to the case where the factorization of e =

∏
ezii is known. In that case

we can give an efficient certification procedure if ei ≥ N1/4+ε, for all i. If, for
one i, we have ei < N1/4, then RSAN,e is (at least) ei-to-1 (lossy) under the
phi-hiding assumption. Extending our methods to work with arbitrary integers
e of unknown factorization remains an open problem.

1.2 Certified Trapdoor Permutations and Applications

The only known candidate trapdoor permutations are the (factoring-based)
Blum-Blum-Shub permutation [4], the RSA permutation [25], and Paillier [23].
Since the Blum-Blum-Shub function is lossy assuming one cannot distinguish
N = pq from N = pqr [22,12], the RSA trapdoor function is the most efficient
certified trapdoor permutation currently known. Our results show that one can
use RSA with prime e = N1/4+ε (rather than e > N) as a certified trapdoor
permutation.

We now mention a number of cryptographic protocols that are using cer-
tified (rather than standard) trapdoor permutations as a building block. Most
importantly, NIZK protocols for any NP-statement can be built from (doubly-
enhanced) certified trapdoor permutations [11,17,15,16]. Since the RSA trap-
door permutation is doubly-enhanced [17] we obtain simplified and more efficient
NIZK protocols from the RSA assumption (with e > N1/4), that do not suffer
from the Bellare-Yung certification overhead. Apart from that, [10] used certified
trapdoor permutations to construct ZAPS and verifiable PRFs; [13] to construct
round-optimal blind signatures; [20,1] to build sequential aggregate signatures.
We stress that requiring the trapdoor permutation to be certified is not only
an artifact of the security proofs. In almost all cases the use of a lossy trapdoor
permutation leads to a concrete attack on the scheme. For example, the security
of the RSA-based aggregate signatures scheme of [20] can be broken (assuming
the Phi-Hiding Assumption) when instantiated with e < N1/4 (e.g., using the
common choices e = 3 or e = 216 + 1). The same holds for the NIZK proto-
cols for any NP statement [17]. Recently, [18] showed that a full-domain hash
impossibility result by Coron [9] only holds if the trapdoor function is certified.

2 Definitions

2.1 Notation

We denote our security parameter as k. For all n ∈ N, we denote by 1n the n-bit
string of all ones. For any element x in a set S, we use x ∈

R
S to indicate that

we choose x uniformly at random from S. We denote the set of prime numbers
by P and the set of n-bit prime numbers by Pn. We denote by Z∗N = {x ∈ ZN :
gcd(x,N) = 1} the multiplicative group modulo an integer N . All logarithms
are base 2 unless otherwise stated.

2.2 Families of Permutations

Definition 1. A family of permutations P = (Gen,Eval) consists of the following
two polynomial-time algorithms.

1. A probabilistic algorithm Gen, which on input 1k outputs a public description
pub which includes an efficiently sampleable domain Dompub.

2. A deterministic algorithm Eval, which on input pub and x ∈ Dompub, outputs
y ∈ Dompub. We write f(x) = Eval(pub, x).

We require that for all k ∈ N and all pub output by Gen(1k), Eval(pub, ·) defines
a permutation over Dompub.

Definition 1 extends to families of trapdoor permutations, where Gen additionally
outputs a trapdoor trap which can be used by a deterministic polynomial-time
algorithm Invert to compute f−1(y), for any y ∈ Dompub .

We want to point out that Eval(pub, ·) is only required to be a permutation
for correctly generated pub but not every bit-string pub yields a permutation.
A family of permutations Π is said to be certified [3] if the fact that it is a
permutation can be verified in polynomial time given pub.

Definition 2. CP = (Gen,Eval,Certify) is called a family of certified permuta-
tions if (Gen,Eval) is a family of permutations and Certify is a deterministic
polynomial-time algorithm that, on input of 1k and an arbitrary pub (poten-
tially not generated by Gen), returns 1 iff Eval(pub, ·) defines a permutation over
Dompub.

Definition 2 also extends to families of certified trapdoor permutations.
We remark that Definition 2 follows [20] and is slightly weaker than that of

Bellare and Yung [3], where, for all inputs, the Certify algorithm is required to
return 1 iff pub was generated by Gen(1k), with some constant error probabil-
ity (in the sense of a BPP algorithm).1 In fact, it seems that the certification

1 The difference between the two definitions can be explained for the case of RSA. Sup-
pose the original Gen algorithm outputs pub = (N = pq, e) with gcd(e, ϕ(N)) = 1.
This cannot define a certified permutation with respect to the Bellare-Yung def-
inition since if pub′ = (N ′ = pqr, e′) with gcd(e′, ϕ(N ′)) = 1) then pub ≈ pub′

under the 2-vs-3 prime assumption but pub′ is never output by Gen. However, since
gcd(N ′, e′) = 1, RSAN′,e′ defines a permutation so there is some hope that it still
meets Definition 2.

constructions by Bellare and Yung [3, Section 3] only meet our weaker defini-
tion which is, in particular, sufficient for their applications to NIZK for all NP
languages.

2.3 RSA trapdoor permutation

In Figure 1 we give a description of a family of trapdoor permutations RSAγ =
(RSAGenγ ,RSAEval,RSAInvert), parametrized by some function γ > 0 (which
controls the size of the exponent e ≈ Nγ). The domain is defined as Dompub =
Z∗N .

algorithm RSAGenγ(1k) algorithm RSAEval(pk, x) algorithm RSAInvert(td, y)

p, q ∈R Pk/2 return xe mod N return yd mod N
N = pq
repeat

e ∈R Pγk
until (gcd(e, ϕ(N)) = 1)
d = e−1 mod ϕ(N)
return (pk = (N, e), td = d)

Fig. 1. RSA permutation algorithms

3 RSA Certification Algorithm

In this section we will give a certification algorithm for the RSA trapdoor permu-
tation RSAγ from Section 2.3. Our algorithm can be derived from the following
main theorem.

Theorem 3. Let N be an integer of unknown factorization and e < N be a
prime integer such that γ = logN e = 1

4 + ε and gcd(e,N) = 1. We can decide if

gcd(e, ϕ(N)) = 1 or gcd(e, ϕ(N)) = e in time O(ε−8 log2N).

Proof. Let us write N =
n∏
i=1

pzii , with prime pi. Therefore,

ϕ(N) =

n∏
i=1

pzi−1i (pi − 1).

Since e is prime, we can only have gcd(e, ϕ(N)) = 1 or gcd(e, ϕ(N)) = e. In the
last case, we must have e|ϕ(N). If e > N then we know that gcd(e, ϕ(N)) = 1
[20]. When e < N , then we need to perform some further checks.

Let us look at the case e|ϕ(N). If e|pzi−1i then gcd(e,N) = e, which contra-
dicts the prerequisite that e and N are coprime. Hence we must have e|(pi − 1)
for some i. Let us denote p = pi. There exists an x0 ∈ N s.t.

ex0 + 1 = p.

Our goal is to recover x0 and thus to find p. Notice that x0 is a small root of the
polynomial equation f(x) = ex+ 1 modulo p.

This allows us to use Coppersmith’s algorithm for finding small roots of
modular polynomial equations.

Theorem 4 (Coppersmith). Let N be an integer of unknown factorization,
which has a divisor p ≥ Nβ , 0 < β ≤ 1. Let 0 < µ ≤ 1

7β. Furthermore, let f(x)
be a univariate monic polynomial of degree δ. Then we can find all solutions x0
for the equation:

f(x0) = 0 mod p with |x0| ≤
1

2
N

β2

δ −µ

This can be achieved in time O(µ−7δ5 log2N). The number of solutions x0 is
bounded by O(µ−1δ).

A proof can be found in [21].
We use Coppersmith’s algorithm to find prime divisors p of N in a specific

range as specified in the following lemma.

Lemma 5. Let N be an integer of unknown factorization with divisor p ≥ Nβ

for some β ∈ (0, 1]. Let µ ∈ (0, β7]. Further, let e = Nγ with e|p−1. Then there is

an algorithm FindFactor that on input N, e, β, µ outputs p in time O(µ−7 log2N)
provided that

p ≤ Nβ2+γ−µ.

If FindFactor cannot find a non-trivial factor of N , it outputs ⊥.

Proof. Since e|p− 1, we have ex0 = p− 1 for some x0 ∈ N. Thus the polynomial
f(x) = ex+ 1 has the root x0 modulo p. Multiplication of f(x) by e−1 modulo
N gives us a monic polynomial with the same root modulo p. Let us bound the
size of our desired root x0. We have

x0 =
p− 1

e
<
Nβ2+γ−µ

Nγ
= Nβ2−µ.

Thus we can recover x0 by Theorem 4 in time O(µ−7 log2N). Also by Theorem 4,
the number of candidates for x0 is bounded by O(µ−1). For every candidate we
check whether gcd(ex0 + 1, N) gives us the divisor p. This can be done in time
O(µ−1 log2N), which concludes the proof.

Lemma 5 can be used to check whether e|p − 1 for some prime divisor p in

the range [Nβ , Nβ2−µ+γ]. Our goal is to check whether e|p− 1 for some p in the
entire range [e,N], which we will call the target range.

Obviously p ≤ N . Thus, we can set the upper bound to β2 + γ−µ = 1. This
in turn implies a lower bound of β =

√
1− (γ − µ). Hence, we can first search

for a divisor p in the interval [N
√

1−(γ−µ), N]. If we do not find a divisor p in

this interval, then we know that any divisor p must satisfy p ≤ N
√

1−(γ−µ). This
defines a new upper bound, and in turn a new lower bound.

In total, we cover the target range by a sequence of intervals [Nβ1 , Nβ0], . . . ,
[Nβn , Nβn−1] where the βi are defined by the recurrence relation

βi+1 = max{
√
βi − (γ − µ), γ} with β0 = 1.

Two examples of such an interval sequence are illustrated in Figure 2.
The following lemma shows that our recurrence reaches γ and thus covers

the target range [e,N] after a certain number of steps.

Lemma 6. Let 1
4 < γ − µ < γ < 1. Then the recurrence relation

βi+1 = max{
√
βi − (γ − µ), γ} with β0 = 1

satifies βk = γ for some k ≤
⌈

1−γ
γ−µ− 1

4

⌉
+ 1.

Proof. Since by definition γ ≤ βi ≤ 1 for all i and µ > 0, we have βi−(γ−µ) > 0
and therefore

√
βi − (γ − µ) is defined in R.

We now show by induction that the sequence of the βi is monotone decreasing.
Let us start with β1 < β0. Since β0 − (γ − µ) < 1, we have max{

√
β0 − (γ − µ),

γ} < 1 and therefore β1 < β0.
Our inductive hypothesis is βi ≤ βi−1 for all i ≤ n. Now βn ≤ βn−1 implies

βn − (γ − µ) ≤ βn−1 − (γ − µ)

and therefore by monotonicity of the square root function√
βn − (γ − µ) ≤

√
βn−1 − (γ − µ).

This yields max{
√
βn − (γ − µ), γ} ≤ max{

√
βn−1 − (γ − µ), γ}. Thus, βn+1 ≤

βn.
Since the sequence of the βi is monotone decreasing and bounded below by γ,

it converges. Now we show that we can upper bound the number k−1 of intervals
[βi, βi−1], 1 ≤ i < k for which βi > γ. This implies that our sequence stabilizes
after k steps at the point βk = γ.

Let us define a function ∆(βi−1) = βi−1 − βi ≥ 0, which gives us the length
of the ith interval. For βi > γ we obtain ∆(βi−1) = βi−1 −

√
βi−1 − (γ − µ).

Since the first two derivatives of ∆(β) satisfy

∆′(β) = 1− 1
2 (β − (γ − µ))−

1
2 and ∆′′(β) = 1

4 (β − (γ − µ))−
3
2 > 0,

an easy computation shows that ∆(β) achieves its minimum at the point β(0) =
1
4 + γ − µ. Therefore, each interval length is of size at least

∆(β(0)) = γ − µ− 1

4
.

This in turn means that the number k − 1 of intervals with βi > γ is at most

k − 1 ≤
⌈

1− γ
γ − µ− 1

4

⌉
,

which concludes the proof.

0 1
4

γ = β3 β2 β1 1

0 1
4

γ = β5 β4 β3 β2 β1 1

Fig. 2. Values Obtained for (γ = 0.43, µ = 0.06) and (γ = 0.365, µ = 0.05)

We continue the proof of Theorem 3. We can use the algorithm FindFactor
from Lemma 5 with the parameters (N, e, βi, µ) to test if there is any factor p

such that e|p−1 in the sub-range [Nβi , Nβ2
i−µ+γ]. If we run FindFactor multiple

times with the βi values computed using the relation in Lemma 6, we can test
the entire range as required.

We now discuss the choice of the parameter µ. Lemma 5 gives us the condition
µ ≤ βi/7 for all values of i. We know from the proof of Lemma 6 that γ ≤ βi
for all values of i. Hence it is sufficient to pick µ such that µ ≤ γ/7.

Furthermore, from Lemma 6 we have the condition µ < γ − 1
4 . It is easy to

verify that both conditions

µ ≤ γ/7 and µ < γ − 1
4

are satisfied by the choice µ := 1
7 (γ − 1

4) = 1
7ε for all γ > 1

4 .
We give the whole algorithm GCDDecide for deciding whether gcd(e, φ(N)) =

1 in Figure 3.

algorithm GDCDecide(N, e) algorithm RSACertify(N, e)

if (e > N) then return 1 if (!PRIME(e)) then return ⊥
γ = logN e, ε = γ − 1

4
if (gcd(e,N)! = 1) then return ⊥

if (ε ≤ 0) then return ⊥ if (GCDDecide(N, e)! = 1)
µ = 1

7
ε then return false

β0 = 1, i = 0 else return true
while(βi >= γ)

if (FindFactor(N, e, βi, µ) 6= ⊥) return e
i+ +

βi = max{
√
βi−1 − (γ − µ), γ}

wend
return 1

Fig. 3. GCD Decision and RSA Certification algorithms

It remains to determine the running time tGCDDecide of GCDDecide. We know
from Lemma 6 that we need at most d(1 − γ)/(γ − µ − 1

4)e + 1 iterations of

FindFactor, which can be bounded as⌈
1− γ

γ − µ− 1
4

⌉
+ 1 ≤

⌈
1

6µ− 1
4

⌉
+ 1 = O(µ−1) = O(ε−1).

Since each iteration takes time O(µ−7 log2N), we obtain

tGCDDecide = O(µ−8 log2N) = O(ε−8 log2N).

This concludes the proof of Theorem 3.

We now describe our full certification algorithm RSACertify that certifies the
RSA trapdoor permutation RSAγ from Section 2.3, for γ = 1/4 + ε. Note that
we assume in Theorem 3 that e is prime and that gcd(e,N) = 1. If we want
to check these prerequisites, we have an additional overhead of O(log4N) for
the primality test on e and O(log2N) for the GCD computation. The complete
certification algorithm RSACertify is described in Figure 3. The total running
time of RSACertify, denoted by tRSACertify, is given by the expression

tRSACertify = O(log4N) +O(log2N) + tGCDDecide

= O(max{log4N, ε−8 log2N}).

Let CRSAγ = (RSAGenγ ,RSAEval,RSAInvert,RSACertify), as described in
Figures 1 and 3, where γ controls the size of e ≈ Nγ . By Theorem 3 we can see
that, for any γ = 1/4 + 1/poly(k), CRSAγ defines a family of certified trapdoor
permutations with respect to Definition 2.

Acknowledgements

Saqib Kakvi and Eike Kiltz were funded by a Sofja Kovalevskaja Award of
the Alexander von Humboldt Foundation and the German Federal Ministry for
Education and Research.

References

1. M. Bellare, C. Namprempre, and G. Neven. Unrestricted aggregate signatures.
In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors, ICALP 2007: 34th
International Colloquium on Automata, Languages and Programming, volume 4596
of Lecture Notes in Computer Science, pages 411–422. Springer, July 2007. 3

2. M. Bellare and M. Yung. Certifying cryptographic tools: The case of trapdoor
permutations. In E. F. Brickell, editor, Advances in Cryptology – CRYPTO’92,
volume 740 of Lecture Notes in Computer Science, pages 442–460. Springer, Aug.
1993. 1

3. M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. Journal of Cryptology, 9(3):149–166, 1996. 1,
2, 4, 5

4. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing, 15(2):364–383, May 1986. 3

5. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In J. Stern, editor, Advances in Cryptology
– EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
402–414. Springer, May 1999. 2

6. J. Camenisch and M. Michels. Separability and efficiency for generic group sig-
nature schemes. In M. J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 413–430. Springer, Aug.
1999. 2

7. D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor hard-to-invert group iso-
morphisms and their application to password-based authentication. Journal of
Cryptology, 20(1):115–149, Jan. 2007. 2

8. D. Coppersmith. Finding a small root of a univariate modular equation. In U. M.
Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lec-
ture Notes in Computer Science, pages 155–165. Springer, May 1996. 2

9. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Ad-
vances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 229–235. Springer, Aug. 2000. 3

10. C. Dwork and M. Naor. Zaps and their applications. In 41st Annual Symposium on
Foundations of Computer Science, pages 283–293. IEEE Computer Society Press,
Nov. 2000. 3

11. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In FOCS, pages 308–
317, 1990. 3

12. D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More construc-
tions of lossy and correlation-secure trapdoor functions. In P. Q. Nguyen and
D. Pointcheval, editors, PKC 2010: 13th International Conference on Theory and
Practice of Public Key Cryptography, volume 6056 of Lecture Notes in Computer
Science, pages 279–295. Springer, May 2010. 3

13. S. Garg, V. Rao, A. Sahai, D. Schröder, and D. Unruh. Round optimal blind
signatures. In CRYPTO, pages 630–648, 2011. 3

14. R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical
zero-knowledge proof system for quasi-safe prime products. In ACM CCS 98: 5th
Conference on Computer and Communications Security, pages 67–72. ACM Press,
Nov. 1998. 2

15. O. Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001. 3

16. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004. 3

17. O. Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: The state of the art. In Studies in Complexity and Cryptography, pages
406–421. 2011. 3

18. S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of Lecture
Notes in Computer Science, pages 537–553. Springer, April 2012. 3

19. E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In T. Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 295–313. Springer, Aug.
2010. 2

20. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate sig-
natures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 74–90. Springer, May 2004. 2, 3, 4, 5

21. A. May. Using LLL-reduction for solving RSA and factorization problems. In The
LLL Algorithm, Information Security and Cryptography, pages 315–348. Springer,
2010. 2, 6

22. P. Mol and S. Yilek. Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010: 13th International
Conference on Theory and Practice of Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 296–311. Springer, May 2010. 3

23. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pages 223–238. Springer, May 1999. 3

24. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In
R. E. Ladner and C. Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 187–196. ACM Press, May 2008. 2

25. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association for
Computing Machinery, 21(2):120–126, 1978. 1, 3

	Certifying RSA

