
Computing on Authenticated Data: New Privacy
Definitions and Constructions
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Abstract. Homomorphic signatures are primitives that allow for public
computations on authenticated data. At TCC 2012, Ahn et al. defined a
framework and security notions for such systems. For a predicate P , their
notion of P -homomorphic signature makes it possible, given signatures
on a message set M , to publicly derive a signature on any message m′

such that P (M,m′) = 1. Beyond unforgeability, Ahn et al. considered a
strong notion of privacy – called strong context hiding – requiring that
derived signatures be perfectly indistinguishable from signatures newly
generated by the signer. In this paper, we first note that the definition
of strong context hiding may not imply unlinkability properties that can
be expected from homomorphic signatures in certain situations. We then
suggest other definitions of privacy and discuss the relations among them.
Our strongest definition, called complete context hiding security, is shown
to imply previous ones. In the case of linearly homomorphic signatures,
we only attain a slightly weaker level of privacy which is nevertheless
stronger than in previous realizations in the standard model. For subset
predicates, we prove that our strongest notion of privacy is satisfiable and
describe a completely context hiding system with constant-size public
keys. In the standard model, this construction is the first one that allows
signing messages of arbitrary length. The scheme builds on techniques
that are very different from those of Ahn et al.

Keywords. Homomorphic signatures, provable security, privacy, un-
linkability, standard model.

1 Introduction

With the advent of fully homomorphic encryption [24], much attention has been
paid to the problem of computing on encrypted data (see, e.g., [24, 37]) in the
recent years. This also revived the interest of the research community in homo-
morphic signatures, which allow for computations on authenticated data.
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Informally, a signer has a set of messages {mi}ki=1 and generates a cor-
responding set of signatures {σi}ki=1 with σi = Sign(sk,mi) for each i. The
signed dataset {(mi, σi)}ki=1 is then archived on a remote server. Later on, the
server can publicly compute (m,σ) = Evaluate(pk, {(mi, σi)}ki=1, f) such that
Verify(pk,m, σ) = 1, where m = f(m1, . . . ,mk) for some function f .

In the last decade, the area was investigated by several lines of research: ex-
amples include homomorphic signatures for arithmetic functions [10, 22, 11, 12]
but also redactable signatures [34, 15, 16, 14] and various other forms of algebraic
signatures [33, 7, 26, 27].

Recently, Ahn et al. [3] defined a framework for computing on signed data.
For a predicate P , their notion of P -homomorphic signature allows anyone who
observes signatures on a message m to publicly derive signatures on messages
m′ such that P (m,m′) = 1. This framework is geared towards capturing ho-
momorphic signatures supporting quoting and redacting, arithmetic functions
and more. Ahn et al. [3] gave thorough definitions for the unforgeability of P -
homomorphic signatures. Besides, they introduced a strong notion of privacy,
called strong context hiding, that captures the infeasibility of linking a derived
signature to the signature it was derived from. A scheme is said strongly context
hiding when a derived signature is statistically indistinguishable from a freshly
generated signature, even when the original signature is available.

1.1 Related Work

Homomorphic signatures were first considered by Johnson, Molnar, Song and
Wagner [32]. Boneh, Freeman, Katz and Waters [10] used them to sign vector
spaces in order to prevent pollution attacks in network coding. They adapted the
definitions of [32] to the network coding setting and designed a linearly homo-
morphic scheme in the random oracle model using bilinear maps. Gennaro, Katz,
Krawczyk and Rabin subsequently described a homomorphic signature [22] over
the integers based on the RSA assumption in the random oracle model. Later on,
Boneh and Freeman [11] gave a linearly homomorphic construction over binary
fields. They also formalized a notion, called weak privacy, which requires derived
signatures to hide the original dataset they were derived from.

In the network coding scenario, constructions in the standard model were
given by Attrapadung and Libert [4] and Catalano, Fiore and Warinschi [17,
18]. Recently, Freeman [20] defined a framework for constructing linearly ho-
momorphic signatures satisfying enhanced security properties. In the standard
model, the framework of [20] notably provides constructions based on the RSA,
Diffie-Hellman and Strong Diffie-Hellman assumptions. In the meantime, Boneh
and Freeman [12] used lattices to move beyond linear functions and described
homomorphic signatures (in the random oracle model) supporting the evaluation
of multivariate polynomials over signed data.

Recently, Ahn et al. [3] realized strongly context hiding P -homomorphic
signatures for quoting and subset predicates: a signed message allows deriv-
ing signatures on substrings or arbitrary subsets of that message, respectively.
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They also showed that linearly homomorphic signatures [10, 11, 17, 20] give P -
homomorphic signatures allowing for the computation of weighted averages and
Fourier transforms on signed data. The construction of [10] was notably shown
strongly context hiding thanks to its uniqueness of signatures property.

1.2 Our Contributions

New Definitions of Privacy. In this paper, we first reconsider the definition
of strong context hiding security in [3] and point out a subtlety that arises in
the context of randomizable signatures. While the definition of Ahn et al. [3]
aims at perfect indistinguishability, it only considers honestly generated original
signatures. In specific schemes, signatures may satisfy the verification algorithm
without being produced by the legitimate signing algorithm. Signatures [30, 4,
23] derived from Waters’ dual system encryption technique [39] – which is cur-
rently the only known way to prove the standard unforgeability property for
certain predicates – are typical examples. For these constructions, the defini-
tion of [3] does not guarantee the unlinkability when the original signature is
adversarially chosen (e.g., by re-randomizing original signatures). This may be
a concern in certain applications. In network coding, suppose that we want to
hide the path taken by specific packets. If a curious target node colludes with
some intermediate nodes that maliciously re-randomize signatures on the road,
they may infer information on the rest of the path downstream.

To address this issue, we suggest other definitions of unlinkability and discuss
the relations among them. We first define a security property, called adaptive
context hiding, that allows for adversarially-generated original signatures. Since
this definition only asks for computational security, it does not imply strong
context hiding security [3]: we show examples of schemes that are context hiding
according to one definition and fall short of satisfying the other one. In order
to unify these definitions, we thus define a notion of completely context hiding
homomorphic signature, which requires statistical unlinkability and implies both
strong and adaptive context hiding properties.

New Linearly Homomorphic Signatures. Using the dual system tech-
nique [39, 30], we describe a new linearly homomorphic signature and prove
it (in the standard model) both strongly context hiding and context hiding on
adversarially-chosen signatures with private key exposure. To our knowledge,
all previous such schemes fail to simultaneously satisfy both security notions.
The scheme of [4] is actually the only strongly context hiding realization in
the standard model but, as we shall see, it is provably not adaptively context
hiding. Since the new construction is only adaptively context hiding for compu-
tationally bounded distinguishers, it does not meet our strongest definition. This
shortcoming seems inherent to all signature schemes [4, 23] based on the dual sys-
tem paradigm. We leave it as an open problem to achieve information-theoretic
unlinkability in that sense without resorting to the random oracle model.
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If we settle for weak context hiding security1 (as in most linearly homomor-
phic signatures [11, 20]), a variant of our scheme provides the shortest linearly
homomorphic signature based on a simple assumption in the standard model. At
the expense of being context hiding in a weaker sense than [10], the scheme can
be proved unforgeable under the standard computational Diffie-Hellman (CDH)
assumption. Each signature consists of two group elements and one scalar, which
shortens Freeman’s CDH-based signatures [20] by about 25%.

Handling Subset Predicates for Messages of Arbitrary Length. Fi-
nally, the paper puts forward a new method for dealing with subset predicates.
Ahn et al. [3] showed how to obtain such signatures from a certain class of
ciphertext-policy attribute-based encryption (CP-ABE) systems, by applying
a Naor-like transformation [9]. With currently available fully secure CP-ABE
schemes [29, 35], this technique is limited to support messages of bounded length:
the maximal length nmax of original messages must be fixed at key generation
time and public keys comprise at least O(nmax) group elements. This limitation
could be avoided using a fully secure unbounded [31] CP-ABE scheme. However,
no such system is currently available: the only known [31, 28] unbounded ABE
constructions to date are selectively secure key-policy ABE schemes.

To fill this gap, we suggest an alternative design principle which yields
constant-size public keys and allows signing messages of arbitrary length. Our
construction departs from the ABE-based approach of [3] and rather uses the
randomizability properties of Groth-Sahai proofs [25]. In a nutshell, when origi-
nal signatures are computed for a set of words {m1, . . . ,mn}, the signer generates
a fresh public key pk′, which is certified using the long-term secret key of the
system, and uses sk′ to compute σi = Sign(sk′,mi) for each i. This construction
is made unlinkable by letting pk′ and all signatures {σi}ni=1 appear in committed
form, accompanied with non-interactive witness indistinguishable proofs of their
validity. The general idea is instantiated by combining the structure-preserving
signature of [1] with Waters signatures [38] – which are both partially random-
izable – in such a way that we only need to manipulate linear pairing product
equations (in the terminology of [25]). This makes it easy to re-randomize Groth-
Sahai proofs when deriving signatures. As a result, the system provably satisfies
our strongest definition of unlinkability.

We believe this approach to be of interest in its own right for the design of
P -homomorphic signatures. Indeed, if we compare it with the dual system tech-
nique [39], it allows us to more easily obtain completely context hiding schemes.

1.3 Organization

We first review previous security definitions for P -homomorphic signatures and
introduce new definitions of privacy in Section 2.1. Section 3 discusses the rela-
tions among these privacy definitions. In Section 4, we describe a new linearly

1 This property relaxes strong context hiding security by only requiring the indistin-
guishability when the original signatures are not given.
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homomorphic constructions, for which a CDH-based weakly context-hiding vari-
ant is described in the full version of the paper. Section 5 finally presents our
completely context hiding system for subset predicates.

2 Background

2.1 Definitions for Homomorphic Signatures

Definition 1 ([3]). Let M be a message space and 2M be its powerset. Let
P : 2M ×M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [3], P i(M) is the set of messages derivable
from P i−1(M), where P 0(M) := {m′ ∈M | P (M,m′) = 1}. Finally, P ∗(M) :=
∪∞i=0P

i(M) denotes the set of messages derivable from M by iterated derivation.

Definition 2 ([3]). A P-homomorphic signature for a predicate P : 2M×M→
{0, 1} is a triple of algorithms (Keygen,SignDerive,Verify) such that:

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a key pair
(sk, pk). As in [3], the private key sk is seen as a signature on the empty
tuple ε ∈M.

SignDerive
(
pk, ({σm}m∈M ,M),m′

)
: is a possibly randomized algorithm that takes

as input a public key pk, a set of messages M ⊂ M, a corresponding set of
signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0, it
returns ⊥. Otherwise, it outputs a derived signature σ′

Verify(pk, σ,m): is a deterministic algorithm that takes as input a public key pk,
a signature σ and a message m. It outputs 0 or 1.

Note that the empty tuple ε ∈M satisfies P (ε,m) = 1 for each m ∈M. Like [3],
we define the algorithm Sign(pk, sk,m) that runs SignDerive(pk, (sk, ε),m) and
returns the resulting output. For any set M = {m1, . . . ,mk} ⊂ M, we define
Sign(sk,M) := {Sign(sk,m1), . . . ,Sign(sk,mk)} .Also, Verify(pk,M, {σm}m∈M ) =
1 means that Verify(pk,m, σm) = 1 for each m ∈M .

Correctness. It is mandated that, for all pairs (pk, sk) ← Keygen(λ), for any
set M ⊂M, any message m′ ∈M such that P (M,m′) = 1, then, we have

- SignDerive(pk, (Sign(sk,M),M),m′) 6=⊥.
- Verify

(
pk,m′,SignDerive(pk, (Sign(sk,M),M),m′)

)
= 1.

Definition 3 ([3]). A P -homomorphic signature (Keygen,SignDerive,Verify) is
said unforgeable if no probabilistic polynomial-time (PPT) adversary has non-
negligible advantage in this game:

1. The challenger generates (pk, sk)← Keygen(λ) and gives pk to the adversary
A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.

- Signing queries: A chooses a message m ∈ M. The challenger replies
by choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a
table T . The handle h is returned to A.
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- Derivation queries: A chooses a vector of handles ~h = (h1, . . . , hk) and
a message m′ ∈M. The challenger retrieves the tuples {(hi,mi, σi)}ki=1

from T and returns ⊥ if one of these does not exist. Otherwise, it defines
M := (m1, . . . ,mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) = 1,
the challenger runs σ′ ← SignDerive

(
pk, ({σm}m∈M ,M),m′

)
, chooses a

handle h′, stores (h′,m′, σ′) in T and returns h′ to A.
- Reveal queries: A chooses a handle h. If no tuple of the form (h,m′, σ′)

exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. A outputs a pair (σ′,m′) and wins if the following conditions hold.

- Verify(pk,m′, σ′) = 1.
- If M ⊂M is the set of messages in Q, then m′ 6∈ P ∗(M).

Definition 4 ([3]). A homomorphic signature (Keygen,Sign,SignDerive,Verify)
is strongly context hiding for the predicate P if, for all key pairs (pk, sk)←
Keygen(λ), for all messages M ⊂M∗ and m′ ∈M such that P (M,m′) = 1, the
following two distributions are statistically close:

{(sk, {σm}m∈M ← Sign(sk,M), Sign(sk,m′))}sk,M,m′ ,{(
sk, {σm}m∈M ← Sign(sk,M), SignDerive

(
pk, ({σm}m∈M ,M),m′

))}
sk,M,m′ .

In [3] Ahn et al. showed that, if a scheme is strongly context hiding, then Defini-
tion 3 can be simplified by removing the SignDerive and Reveal oracles and only
providing the adversary with an ordinary signing oracle.

As we will see, specific constructions leave a gap between signatures accepted
by the verification algorithm and those generated by the original signing proce-
dure. For these schemes, a stronger definition than Definition 4 may be necessary
in some situations.

To illustrate this, we first give an alternative definition which is almost iden-
tical to the computational security definition of [3][Appendix A]: the only dif-
ference is that, in the challenge phase, one of the signatures is supplied by the
adversary instead of being honestly generated by the challenger. This modifica-
tion is motivated by re-randomizable signatures. It allows for adversaries who
attempt to re-randomize one of the signatures obtained from the oracle in order
to embed some subliminal information that would help them win the game.

Definition 5. A P -homomorphic signature (Keygen,Sign,SignDerive,Verify) is
weakly adaptively context hiding if no PPT adversary has non-negligible
advantage in the following game:

1. The challenger runs (sk, pk)← Keygen(λ) and gives pk to the adversary.
2. The adversary A adaptively interleaves queries exactly as in Definition 3.
3. The adversary A chooses a message set M ⊂ M together with a set of

signatures {σm}m∈M as well as another message m′ ∈M. If P (M,m′) = 0
or Verify(pk,M, {σm}m∈M ) = 0, return ⊥. Otherwise, the challenger flips a
fair binary coin β R← {0, 1}. If β = 0, it computes a derived signature σ? =
SignDerive

(
pk, ({σm}m∈M ,M),m′

)
. If β = 1, it computes σ? = Sign(sk,m′).

In either case, σ? is sent as a challenge to A.
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4. A is allowed to make another series of queries as in stage 2.
5. Eventually, A outputs a bit β′ ∈ {0, 1} and wins if β′ = β. As usual, A’s

advantage is defined to be Adv(A) = |Pr[β′ = β]− 1/2|.

The latter definition can be seen as an analogue of a definition of unlinkability
given by Prabhakaran and Rosulek [36] for homomorphic encryption: both mod-
els account for adversarially-chosen original signatures or ciphertexts.

We will see that Definitions 4 and 5 do not imply each other. While incom-
parable, we believe that they both make sense in practice. For example, when
it comes to conceal the path followed by packets in network coding signatures,
Definition 5 ensures that each node only learns the last node visited by incoming
packets, even if it colludes with another node far upstream.

Towards unifying previous definitions, we now simplify Definition 5 as fol-
lows. Instead of providing the adversary A with a signing oracle, A is directly
given the private key at the beginning.

Definition 6. A P -homomorphic signature is adaptively context hiding if
no PPT adversary has non-negligible advantage in the following game:

1. The challenger runs (sk, pk)← Keygen(λ) and hands (sk, pk) to A.
2. The adversary A chooses a message set M ⊂ M together with a set of

signatures {σm}m∈M as well as another message m′ ∈M. If P (M,m′) = 0
or Verify(pk,M, {σm}m∈M ) = 0, return ⊥. Otherwise, the challenger flips a
fair binary coin β R← {0, 1}. If β = 0, it computes a derived signature σ? =
SignDerive

(
pk, ({σm}m∈M ,M),m′

)
. If β = 1, it computes σ? = Sign(sk,m′).

In either case, σ? is sent as a challenge to A.
3. Eventually, A outputs a bit β′ ∈ {0, 1} and wins if β′ = β. As usual, A’s

advantage is defined to be Adv(A) = |Pr[β′ = β]− 1/2|.

While the latter definition seems sufficient for many applications, it still does not
imply Definition 4 and we may want signatures to be unlinkable in the statistical
sense. The resulting stronger definition implies both Definition 6 and Definition
4 and goes as follows.

Definition 7. A P -homomorphic signature (Keygen,Sign,SignDerive,Verify) is
completely context hiding if, for all pairs (pk, sk) ← Keygen(λ), all mes-
sages M ⊂ M∗ and m′ ∈ M such that P (M,m′) = 1, for all {σm}m∈M such
that Verify(pk,M, {σm}m∈M ) = 1, the distribution {(sk, Sign(sk,m′))}sk,M,m′ is

statistically close to
{(

sk, SignDerive
(
pk, ({σm}m∈M ,M),m′

))}
sk,M,m′ .

In all schemes based on the dual system approach [4, 23], the existence of an
alternative distribution of acceptable signatures makes it seemingly impossible
to satisfy the above definition. In these schemes, the combination of strong (i.e.,
Definition 4) and adaptive context hiding security thus appears as the best we
can hope for. For this reason, we chose to present Definition 6 first instead of
directly working with Definition 7.

Definition 7 assumes honestly generated keys (sk, pk). It can be strengthened
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by allowing the adversary to generate a pair (sk, pk) of its own. In the random
oracle model, the construction of [10] is easily seen to satisfy such a stronger
definition (if we assume that all public keys live in a cyclic group which is part
of common public parameters) because it has unique signatures. In the standard
model, we do not know of any scheme that would be secure in that sense.

In the following, we can satisfy Definition 7 with our homomorphic signature
for subset predicates. In the case of linearly homomorphic signatures, we are
only able to meet Definition 6.

2.2 Complexity Assumptions

We consider groups (G,GT ) of composite order N = p1p2p3, for which a bilinear
map e : G × G → GT is computable. For each i ∈ {1, 2, 3}, we denote by Gpi
the subgroup of order pi. Also, for all distinct i, j, we call Gpipj the subgroup of
order pipj . An important property of composite order groups is that pairing two
elements of order pi and pj , with i 6= j, always gives the identity element 1GT .

In these groups, we rely on the following assumptions introduced in [30].

Assumption 1 Given g R← Gp1 , X3
R← Gp3 , and T , it is infeasible to efficiently

decide if T ∈R Gp1p2 or T ∈R Gp1 .

Assumption 2 Let g,X1
R← Gp1 , X2, Y2

R← Gp2 , Y3, Z3
R← Gp3 . Given a tuple

(g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R G or T ∈R Gp1p3 .

Assumption 3 Let elements g, w, gt, X1
R← Gp1 with t R← ZN , X2, Y2, Z2

R←
Gp2 , X3, Y3, Z3

R← Gp3 . Given (g, w, gt, X1X2, X3, Y2Y3), and T ∈ G, decide
if T = wtZ3 or T = wtZ2Z3.

Assumption 4 Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and a, b, c R← ZN .
Given (g, ga, gb, gabX2, X3, g

cY2, Z2), it is infeasible to compute e(g, g)abc.

We also use bilinear maps e : G×G→ GT over groups of prime order p. In
these groups, we rely on the following hardness assumptions.

Definition 8 ([8]). The Decision Linear Problem (DLIN) in G, is to dis-
tinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), where
a, b, c, d R← Z∗p, z R← Z∗p. The Decision Linear Assumption is the intractabil-
ity of DLIN for any PPT distinguisher D.

Definition 9 ([1]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃ ∈ G

)
and q tuples

(zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),
(1)

to find a new tuple (z?, r?, s?, t?, u?, v?, w?) ∈ G7 satisfying (1) and such that
z? 6∈ {1G, z1, . . . , zq}.
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2.3 Structure-Preserving Signatures

Privacy-preserving protocols often require to sign elements of bilinear groups
as if they were ordinary messages. Abe, Haralambiev and Ohkubo [1, 2] (AHO)
described such an efficient structure-preserving signature. The description here-
under assumes public parameters pp =

(
(G,GT ), g

)
consisting of bilinear groups

(G,GT ) of prime order p > 2λ, where λ ∈ N and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
per signed message, choose generators Gr, Hr

R← G. Pick γz, δz
R← Zp and

γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγzr , Hz = Hδz

r and

Gi = Gγir , Hi = Hδi
r for each i ∈ {1, . . . , n}. Finally, choose αa, αb

R← Zp and
define A = e(Gr, g

αa) and B = e(Hr, g
αb). The public key is defined to be

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk, choose
ζ, ρa, ρb, ωa, ωb

R← Zp and compute θ1 = gζ as well as

θ2 = gρa−γzζ ·
n∏
i=1

M−γii , θ3 = Gωar , θ4 = g(αa−ρa)/ωa ,

θ5 = gρb−δzζ ·
n∏
i=1

M−δii , θ6 = Hωb
r , θ7 = g(αb−ρb)/ωb ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7.

Verify(pk, σ, (M1, . . . ,Mn)): given σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7), return 1 iff these
equalities hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏
i=1

e(Gi,Mi),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏
i=1

e(Hi,Mi).

The scheme was proved [1, 2] existentially unforgeable under chosen-message
attacks under the q-SFP assumption, where q is the number of signing queries.

As showed in [1, 2], signature components {θi}7i=2 can be publicly randomized
to obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on (M1, . . . ,Mn). After
randomization, we have θ′1 = θ1 while {θ′i}7i=2 are uniformly distributed among
the values (θ2, . . . , θ7) such that the equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) ·

e(θ3, θ4) and e(Hr, θ
′
5)·e(θ′6, θ′7) = e(Hr, θ5)·e(θ6, θ7) hold. This re-randomization

is performed by choosing %2, %5, µ, ν
R← Zp and computing

θ′2 = θ2 · θ%24 , θ′3 = (θ3 ·G−%2r )1/µ, θ′4 = θµ4 (2)

θ′5 = θ5 · θ%57 , θ′6 = (θ6 ·H−%5r )1/ν , θ′7 = θν7 .
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As a result, {θ′i}i∈{3,4,6,7} are statistically independent of the message and other
signature components. This implies that, in privacy-preserving protocols, re-
randomized {θ′i}i∈{3,4,6,7} can be safely given in the clear as long as (M1, . . . ,Mn)
and {θ′i}i∈{1,2,5} are given in committed form.

3 Separation Results

Separating Definitions 4 and 5. Let us consider the following variant2 of the
construction in [4], which relies on the Lewko-Waters signatures [30] and bilinear
groups whose order is a product N = p1p2p3 of three primes. If n denotes the
dimension of signed vectors, the public key is pk =

(
g, e(g, g)α, u, v, {hi}ni=1, X3

)
,

where α ∈R ZN , g, u, v, h1, . . . , hn ∈ Gp1 , X3 ∈ Gp3 and the private key consists
of sk = (gα, κ), where κ is the seed of a pseudorandom function. The latter is
used to de-randomize the scheme and make sure that all vectors of the same file
will be signed using partially identical random coins.

To sign a vector ~v = (v1, . . . , vn) ∈ ZnN using the file identifier τ , the signer
computes a pseudorandom r = Ψ(κ, τ) ∈ ZN which is used to compute

(σ1, σ2, σ3) =
(
gα · (uτ · v)r ·R3, g

r ·R′3, (

n∏
i=1

hvii )r ·R′′3
)
,

with R3, R
′
3, R

′′
3

R← Gp3 . The homomorphic property follows from the fact that
all vectors of the same dataset are signed using the same r ∈ ZN . The homomor-
phic evaluation algorithm proceeds in the obvious way and combines signatures
{(σi,1, σi,2, σi,3)}`i=1 by linearly combining the {σi,3}`i=1 and re-randomizing the
Gp3 components. Note that the underlying exponent r is not re-randomized, so
that all {(σi,1, σi,2)}`i=1 share the same Gp1 components.

It is easy to see that the construction is strongly context hiding in the sense of
Definition 4. Indeed, the signing algorithm is honestly run in the first distribution
of Definition 4. This implies that, for any message setM = {(τ,~v1), . . . , (τ,~vk)} ⊂
M, the underlying logg(σ2) will have the same value no matter if the second sig-
nature (σ1, σ2) is produced by Sign or SignDerive.

However, the scheme does not satisfy Definition 5. Indeed, in step 2, the ad-
versary can first invoke the signing oracle on k occasions to obtain signatures for
some set M = {(τ,~v1), . . . , (τ,~vk)} of its choice. If we denote by {σm}m∈M the
resulting signatures, the adversary re-randomizes {σm}m∈M in such a way that
each randomized σm is of the form

(
gα ·(uτ ·v)r

′ · R̃3, g
r′ · R̃′3, (

∏n
i=1 h

vi
i )r

′ · R̃′′3
)
,

for some fresh r′ ∈R ZN . The adversary A can then choose a random message
m′ ∈ M such that P (M,m′) = 1 and send

(
(M, {σ′m}m∈M ),m′

)
to the chal-

lenger. The latter returns a challenge signature σ? = (σ?1 , σ
?
2 , σ

?
3) onm′ andA can

immediately figure out if σ? is fresh or derived, by testing if e(σ?2 , g) = e(σm,2, g).
With overwhelming probability, the latter equality only holds if β = 0.

2 This variant is obtained by applying Freeman’s framework [20] to Lewko-Waters
signatures [31], which guarantees its unforgeability.
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Separating Definitions 5 and 6. The original construction of [4] works ex-
actly like the scheme outlined in the previous paragraph with the difference
that it prevents public randomizations of the Gp1 components of signatures
(σ1, σ2, σ3). More precisely, the scheme makes use of an additional collision-
resistant hash function H : {0, 1}∗ → ZN . If the file identifier is τ , a vector
~v = (v1, . . . , vn) is signed by computing r = Ψ(κ, τ) ∈ ZN , τ ′ = H(τ, e(g, g)r)
and returning

(σ1, σ2, σ3) =
(
gα · (uτ

′
· v)r ·R3, g

r ·R′3, (

n∏
i=1

hvii )r ·R′′3
)
,

with R3, R
′
3, R

′′
3

R← Gp3 . The security proof of [4] implies that, if the adversary
is given signatures {(σi,1, σi,2, σi,3)}`i=1 on messages (τ,~v1), . . . , (τ,~v`), the ad-
versary cannot generate a signature (σ1, σ2, σ3) on (τ, ~y) such that e(σ2, g) 6=
e(σi,2, g) for each i. Essentially, since (σi,1, σi,2) can be seen as a Lewko-Waters
signature on the message H(τ, e(g, g)r), any valid signature (σ1, σ2, σ3) for which
e(σi,2, g) 6= e(σ2, g) implies either an attack against the signature scheme of [30]
or a breach in the collision-resistance of H.

Let us consider an adversary in the sense of Definition 5. Since signatures
cannot be publicly randomized, when the adversary enters the challenge phase
in step 3, it can only choose a message set M = {(τ,~v1), . . . , (τ,~v`)} and signa-
tures {(σm,1, σm,2, σm,3)}m∈M for which {e(σm,2, g)}m∈M has the same value as
in signatures obtained from the signing oracle at step 2. Therefore, the only way
for A to have non-negligible advantage in the game of Definition 5 is to choose
(M, {σm}m∈M ) where {σm}m∈M is obtained by introducing a Gp2 component in
a signature obtained from the signing oracle. Otherwise, the distribution of the
challenge signature (σ?1 , σ

?
2 , σ

?
3) does not depend on β ∈ {0, 1} in step 3. Using

the same arguments as in the proof of Theorem 1, we can prove that Assumption
1 can be broken if A can output a set {σm}m∈M where one of the signatures
contains a Gp2 component. If H is collision-resistant and under the assumptions
used in [4], the scheme is thus weakly adaptively context hiding.

Now, we easily observe that the original scheme of [4] is not adaptively con-
text hiding in the sense of Definition 6. Recall that the adversary is given the pri-
vate key sk = (gα, κ) at the beginning of the game. In the challenge phase, it can
thus choose a message set M ⊂M and signatures {σm}m∈M for which each σm is
of the form (σm,1, σm,2, σm,3) =

(
gα·(uτ ′ ·v)r

′ ·R3, g
r′ ·R′3, (

∏n
i=1 h

vi
i )r

′ ·R′′3
)
, with

R3, R
′
3, R

′′
3 ∈R Gp3 , and for some random r′ ∈R ZN\{Ψ(κ, τ)}. When receiving

(M, {σm}m∈M ) and m′ such that P (M,m′) = 1, the challenger runs SignDerive
on {σm}m∈M if β = 0. If β = 1, it ignores {σm}m∈M and simply generates a
fresh signature on m′. In the letter case, the challenge signature (σ?1 , σ

?
2 , σ

?
3) is

such that logg(σ
?
2) = Ψ(κ, τ) mod p1 and, since the adversary knows κ, it can

easily test whether e(σ?2 , g) = e(g, g)Ψ(κ,τ) and, if so, return β′ = 1.
Later on, we will see an example of scheme that satisfies Definition 6 but

fails to be secure as per Definition 4. The two definitions are thus incomparable.
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4 An Adaptively Context Hiding Linearly Homomorphic
Scheme in the Standard Model

So far, the scheme of [4] is seemingly the only linearly homomorphic signature
in the standard model to satisfy Definition 4. This section presents a linearly
homomorphic signature satisfying both Definition 4 and the adaptive context
hiding property captured by Definition 6.

The scheme works over groups whose order is a product N = p1p2p3 of three
primes. Like [4], it builds on Lewko-Waters signatures, where public keys contain(
g, e(g, g)α, u, v

)
, with g, u, v ∈ Gp1 and α ∈ ZN , and a signature on m consists

of (gα · (um · v)r · R3, g
r · R′3), for some R3, R

′
3 ∈ Gp3 . A difference with [4] is

that e(g, g)α is replaced by gα in the public key and signatures are obtained
by aggregating a Lewko-Waters signature on the file identifier τ and a signed
vector hash (

∏n
i=1 g

vi
i )α of the vector ~v = (v1, . . . , vn), where (g1, . . . , gn) ∈ Gnp1

is part of the public key. We note that (
∏n
i=1 g

vi
i )α is not a secure homomorphic

signature in general: it can actually be seen as a one-time linearly homomorphic
signature where only one message set M = {(τ,~v1), . . . , (τ,~vk)} can be signed.
Nevertheless, we will show that aggregating the two components actually pro-
vides unforgeability. Moreover, beyond providing a stronger flavor of privacy
than [4], it also shortens signatures by 33%.

For simplicity, the scheme is described in terms of composite order groups.
It is very plausible that Lewko’s techniques [28] apply to translate the scheme
in the prime order setting.

4.1 Construction

Keygen(λ, n): given λ ∈ N and an integer n ∈ poly(λ), choose bilinear groups
(G,GT ) of order N = p1p2p3, where pi > 2λ for each i ∈ {1, 2, 3}. Choose
α R← ZN , g, u, v R← Gp1 , Xp3

R← Gp3 , gi
R← Gp1 for i = 1 to n. Then, select

an identifier space T . The private key is sk := α while the public key is

pk :=
(

(G,GT ), N, g, gα, u, v, {gi}i=1,...,n, Xp3

)
.

Sign(sk, τ, ~v): on input of a vector ~v = (v1, . . . , vn) ∈ ZnN , a file identifier τ ∈ T
and the private key sk = α ∈ ZN , return ⊥ if3 ~v = ~0. Otherwise, conduct the
following steps. First, choose r R← ZN and R3, R

′
3

R← Gp3 . Then, compute a
signature σ = (σ1, σ2) as

σ1 = (gv11 · · · gvnn )α · (uτ · v)r ·R3, σ2 = gr ·R′3,

SignDerive(pk, τ, {(βi, σi)}`i=1): given pk, a file identifier τ and ` tuples (βi, σi),
parse σi as σi = (σi,1, σi,2) for i = 1 to `. Then, choose r̃ R← ZN , R̃3, R̃

′
3

R← ZN
and compute σ1 =

∏`
i=1 σ

βi
i,1 · (uτ · v)r̃ · R̃3 and σ2 =

∏`
i=1 σ

βi
i,2 · gr̃ · R̃′3 and

output (σ1, σ2).

3 In the construction, we disallow signatures on the all-zeroes vector ~0. This is not a
restriction since, in all applications of linearly homomorphic signatures, a unit vector
(0, . . . , 1, . . . , 0) of appropriate length is appended to signed vectors.
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Verify(pk, τ, ~y, σ): given a public key pk, a signature σ = (σ1, σ2) and a message
(τ, ~y), where τ ∈ ZN and ~y = (y1, . . . , yn) ∈ (ZN )n, return ⊥ if ~y = ~0.
Otherwise, return 1 if and only if e(σ1, g) = e(gy11 · · · gynn , gα) · e(uτ · v, σ2).

Verifying the correctness of the scheme is straightforward since pairing an
element of Gp1 with an element of Gp3 always gives the identity element in GT .

4.2 Security

Theorem 1. The scheme is adaptively context hiding if Assumption 1 holds.
(The proof is given in the full version of the paper).

As already mentioned, computational adaptive context hiding security does
not imply statistical strong context hiding security (cf. Definition 4) in general.
Let us consider a simple modification of the scheme. The public key includes
e(g, g)ϕ, for some ϕ ∈R ZN which is not part of sk. Original signatures are
augmented with σ3 = e(g, g)ϕ·r, which is ignored by the verification algorithm.
Also, SignDerive replaces σ3 by a random element of GT . Although this artificial
scheme can be proved adaptively context hiding under Assumptions 1 and 4, it
does not meet the requirements of Definition 4.

Yet, it is immediate that the system of Section 4.1 is also secure in the sense
of Definition 4.

Theorem 2. The scheme is unforgeable assuming that Assumptions 1, 2, 3 and
4 hold. (The proof is given in the full version of the paper).

In the full version of the paper, we show that the same scheme can be safely
instantiated in prime order groups if we settle for the weaker privacy definition
used in [11, 12, 20]. The unforgeability of this modified scheme can be proved un-
der the standard Diffie-Hellman assumption. To date, this construction turns out
to be the shortest linearly homomorphic signature based on a simple assumption.

5 A Construction with Short Keys for Subset Predicates

In this section, we use the malleability properties of Groth-Sahai proofs (al-
ready exploited in, e.g., [6, 21, 19]) to construct a homomorphic signature for
subset predicates. The main advantage over the approach of [3] is that we ob-
tain constant-size4 public keys in the standard model. In the standard model,
the CP-ABE approach of [3] is currently limited to provide linear-size public
keys in the maximal length of signed messages.

This limitation could be avoided using a ciphertext-policy adaption of the
unbounded key-policy ABE system of [31]. However, the ABE construction of
[31] is only known to be selectively secure and, for the time being, no fully se-
cure unbounded CP-ABE system is available. Conceivably, such a scheme can be

4 By “constant”, we mean that it only depends on the security parameter and not on
the length of messages to be signed.
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obtained by extending the techniques of [31]. Still, the resulting system would
probably encounter the same difficulties as in Section 4 when it comes to obtain
complete context hiding security. In contrast, our scheme is proved completely
context hiding and fully (as opposed to selective-message) secure. It also allows
for messages of unbounded (but polynomial) length.

In homomorphic signatures for subset predicates, the message space M can
be defined as the set of tuplesM := Σ∗, where Σ is a set of words. The predicate
P is defined in such a way that, for any polynomials {ni}i and n′, we have

P
(
{m1, . . . ,mn} , {m′1, . . . ,m′n′}

)
= 1

⇐⇒ (n′ ≤ n) ∧ (m′j ∈ {m1, . . . ,mn} for j = 1 to n′).

The intuition of the scheme begins with the following naive construction, based
on any digital signature, that only works when privacy is not a concern. The
public key of the scheme is a standard digital signature key pair (sk, pk). When
a message Msg = {m1, . . . ,mn} must be signed, the signer generates a fresh
public key (sk′, pk′), certifies pk′ by computing σpk′ ← Sign(sk, pk′) and return-
ing (pk′, σpk′ , {σi = Sign(sk′,mi)}ni=1). This simple construction immediately
allows signature derivations for subset predicates. Moreover, since each signed
set of words Msg involves a different public key pk′, there is no way to gener-
ate a signature on a message Msg? that mixes words from two distinct signed
messages Msg1, Msg2. However, the latter construction is trivially not context
hiding. To achieve the latter property, instead of leaving pk′ and {σi}n

′

i=1 appear
in the clear within signatures, we let them appear in committed form and appeal
to non-interactive witness indistinguishable (NIWI) arguments of knowledge of
these signatures and keys. Then, the randomizability properties of Groth-Sahai
proofs come in handy to obtain the desired privacy properties.

To realize the above idea, we work with Waters signatures [38] and the
structure-preserving signature of Abe et al. [1, 2] because they make it possi-
ble to work with linear pairing product equations. As observed in [21], these
equations have proofs that only depend on the randomness of Groth-Sahai com-
mitments and not on the committed witnesses or on the right-hand-side member
of the equation. In the SignDerive algorithm, this allows updating some of the
witnesses in such a way that the old proof remains valid.

In the following notations, we define a coordinate-wise pairing E : G×G3 →
G3
T such that, for any element h ∈ G and any vector ~g = (g1, g2, g3), we have

E
(
h,~g
)

=
(
e(h, g1), e(h, g2), e(h, g3)

)
. In the following, when X ∈ G (resp.

Y ∈ GT ), the notation ιG(X) (resp. ιGT (Y )) will be used to denote the vec-
tor (1G, 1G, X) ∈ G3 (resp. the vector (1GT , 1GT , Y ) ∈ G3

T ).

Keygen(λ): given a security parameter λ ∈ N, choose bilinear groups (G,GT )
of prime order p > 2λ. Then, do the following.

1. Generate a Groth-Sahai CRS f = (~f1, ~f2, ~f3) for the perfect witness in-

distinguishability setting. Namely, choose ~f1 = (f1, 1, g), ~f2 = (1, f2, g),

and ~f3 = ~f1
ξ1 · ~f2

ξ2 · (1, 1, g)−1, with f1, f2
R← G, ξ1, ξ2

R← Zp.

14



2. Generate a key pair (skAHO, pkAHO) for the AHO signature in order to
sign messages consisting of a single group element. This key pair are

pkAHO =
(
Gr, Hr, Gz = Gγzr , Hz = Hδz

r , G1 = Gγ1r , H1 = Hδ1
r , A, B

)
and skAHO =

(
αa, αb, γz, δz, γ1, δ1

)
.

3. Generate parameters for the Waters signature. Namely, choose group
elements h R← G, and (u0, u1, . . . , uL) R← GL+1. These are used to im-
plement a hash function HG : {0, 1}L → G such that, for any string

m = m[1] . . .m[L] ∈ {0, 1}L, HG(m) = u0 ·
∏L
i=1 u

m[i]
i .

The public key is defined to be pk :=
(

(G,GT ), g, f , pkAHO, h, {ui}Li=0

)
and the private key is sk = skAHO. The public key defines Σ = {0, 1}L.

Sign(sk,Msg): on input of a message Msg = {mi}ni=1, where mi ∈ {0, 1}L for
each i, and the private key sk = skAHO, do the following.

1. Choose a new public key X = gx for Waters signatures, with x R← Zp.
Generate a Groth-Sahai commitment ~CX = ιG(X) · ~f1

rX · ~f2
sX · ~f3

tX
,

with rX , sX , tX
R← Zp.

2. Generate an AHO signature (θ1, . . . , θ7) ∈ G7 on the group element
X ∈ G. Then, for each j ∈ {1, 2, 5}, generate Groth-Sahai commit-

ments ~Cθj = ιG(θj) · ~f1
rθj · ~f2

sθj · ~f3
tθj . Finally, generate NIWI proofs

~πAHO,1, ~πAHO,2 ∈ G3 that committed variables (X, θ1, θ2, θ5) satisfy

A · e(θ3, θ4)−1 = e(Gz, θ1) · e(Gr, θ2) · e(G1, X) (3)

B · e(θ6, θ7)−1 = e(Hz, θ1) · e(Hr, θ5) · e(H1, X)

These proofs are obtained as

~πAHO,1 =
(
G
−rθ1
z G

−rθ2
r G−rX1 , G

−sθ1
z G

−sθ2
r G−sX1 , G

−tθ1
z G

−tθ2
r G−tX1

)
~πAHO,2 =

(
H
−rθ1
z H

−rθ5
r H−rX1 , H

−sθ1
z H

−sθ5
r H−sX1 , H

−tθ1
z H

−tθ5
r H−tX1

)
3. For each i ∈ {1, . . . , n}, generate a Waters signature (σi,1, σi,2) on the

word mi ∈ {0, 1}L by computing (σi,1, σi,2) =
(
hx ·HG(mi)

χi , gχi
)

for

a randomly chosen χi
R← Zp. Then, generate a Groth-Sahai commitment

~Cσi,1 = ιG(σi,1) · ~f1
ri,1 · ~f2

si,1 · ~f3
ti,1

, with ri,1, si,1, ti,1
R← Zp, and a NIWI

proof πW,i that (X,σi,1) satisfy

e(HG(mi), σi,2) = e(X,h)−1 · e(σi,1, g). (4)

This proof is obtained as πW,i =
(
hrX · g−ri,1 , hsX · g−si,1 , htX · g−ti,1

)
.

4. Return the signature

σ =
(
~CX , {~Cθj}j∈{1,2,5}, {θj}j∈{3,4,6,7}, ~πAHO,1, ~πAHO,2, {~Cσi,1 , σi,2, ~πW,i}ni=1

)
. (5)
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Note that proofs ~πAHO,1, ~πAHO,2 and {~πW,i}i only depend on the randomness
used in commitments and not on the committed values or on the left-hand-side
members of pairing-product equations (3) and (4).

SignDerive(pk,Msg,Msg′, σ): given pk, Msg = {mi}ni=1 and Msg′ = {m′i}n
′

i=1,
return ⊥ if there exists i ∈ {1, . . . , n′} such that m′i 6∈ {mi}ni=1. Otherwise,
parse σ as in (5). For each i ∈ {1, . . . , n′}, let ρ(i) ∈ {1, . . . , n} be the index
such that m′i = mρ(i). Then, for each i ∈ {1, . . . , n′}, do the following.

1. Re-randomize the commitment ~CX and the proofs ~πAHO,1, ~πAHO,2, {~πW,i}i
accordingly. Let ~C ′X , ~π′AHO,1, ~π

′
AHO,2, and {~π′W,i}i be the randomized com-

mitment and proofs. Note that, in all of these commitments and proofs
(rX , sX , tX) have been updated consistently.

2. Re-randomize {~Cθj}j∈{2,5} and {θj}j∈{3,4,6,7} by choosing %2, %5, µ, ν
and computing

~C ′θ2 = ~Cθ2 · ιG(θ4)%2 θ′3 =
(
θ3 ·G−%2r

)1/µ
θ′4 = θµ4 ,

~C ′θ5 = ~Cθ5 · ιG(θ7)%5 θ′6 =
(
θ6 ·H−%5r

)1/ν
θ′7 = θν7 .

We note that, although the committed values inside ~C ′θ2 ,
~C ′θ5 have changed.

The proofs π′AHO,1, π
′
AHO,2 are still valid for the new committed val-

ues. Then, compute {~C ′′θj}j∈{1,2,5} by re-randomizing the commitments

~Cθ1 , {~C ′θj}j∈{2,5} and re-randomize the proofs π′AHO,1, π
′
AHO,2 again. Let

~π′′AHO,1, ~π
′′
AHO,2 be the re-randomized proofs.

3. For each i ∈ {1, . . . , n′}, choose χ′i
R← Zp and compute

~C ′σρ(i),1 = ~Cσρ(i),1 · ιG
(
HG(mρ(i))

χ′
i
)
, σ′ρ(i),2 = σρ(i),2 · gχ

′
i .

Even though the committed value inside ~C ′σρ(i),1 has changed, ~π′W,ρ(i)
remains a valid proof that the updated committed value σ′ρ(i),1 satisfies

e(X,h) · e(HG(mρ(i)), σ
′
ρ(i),2) = e(σ′ρ(i),1, g). The commitment ~C ′σρ(i),1 is

then re-randomized and the proof ~π′W,ρ(i) is re-randomized accordingly.

Let ~C ′′σρ(i),1 and ~π′′W,ρ(i) denote the new commitment and proof.
4. Return the signature

σ′ =
(
~C ′X , {~C ′′θj}j∈{1,2,5}, {θ

′
j}j∈{3,4,6,7},

~π′′AHO,1, ~π
′′
AHO,2, {~C ′′σρ(i),1 , σ

′
ρ(i),2, ~π

′′
W,ρ(i)}

n′

i=1

)
. (6)

Verify(pk,Msg, σ): given pk, σ and Msg = {mi}ni=1, parse σ as per (5).

1. Return 0 if ~πAHO,1 = (π1, π2, π3) and ~πAHO,2 = (π4, π5, π6) do not satisfy.

ιGT (A) · E
(
θ3, ιG(θ4)

)−1
= E(Gz, ~Cθ1) · E(Gr, ~Cθ2) · E(G1, ~CX) ·

3∏
j=1

E(πj , ~fj)

ιGT (B) · E
(
θ6, ιG(θ7)

)−1
= E(Hz, ~Cθ1) · E(Hr, ~Cθ5) · E(H1, ~CX) ·

3∏
j=1

E(πj+3, ~fj).
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2. Return 1 if and only if, for each i, ~πW,i = (πW,i,1, πW,i,2, πW,i,3) satisfies

E
(
h, ~CX

)
· E
(
HG(mi), (1, 1, σi,2)

)
= E(g, ~Cσi,1) ·

3∏
j=1

E(πW,i,j , ~fj).

In the full version of the paper, we prove that the scheme is unforgeable under
the DLIN and q-SFP assumptions and completely context hiding.
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